Search results for: sensor technologies
4050 Survey of Access Controls in Cloud Computing
Authors: Monirah Alkathiry, Hanan Aljarwan
Abstract:
Cloud computing is one of the most significant technologies that the world deals with, in different sectors with different purposes and capabilities. The cloud faces various challenges in securing data from unauthorized access or modification. Consequently, security risks and levels have greatly increased. Therefore, cloud service providers (CSPs) and users need secure mechanisms that ensure that data are kept secret and safe from any disclosures or exploits. For this reason, CSPs need a number of techniques and technologies to manage and secure access to the cloud services to achieve security goals, such as confidentiality, integrity, identity access management (IAM), etc. Therefore, this paper will review and explore various access controls implemented in a cloud environment that achieve different security purposes. The methodology followed in this survey was conducting an assessment, evaluation, and comparison between those access controls mechanisms and technologies based on different factors, such as the security goals it achieves, usability, and cost-effectiveness. This assessment resulted in the fact that the technology used in an access control affects the security goals it achieves as well as there is no one access control method that achieves all security goals. Consequently, such a comparison would help decision-makers to choose properly the access controls that meet their requirements.Keywords: access controls, cloud computing, confidentiality, identity and access management
Procedia PDF Downloads 1314049 Performance Evaluation of Clustered Routing Protocols for Heterogeneous Wireless Sensor Networks
Authors: Awatef Chniguir, Tarek Farah, Zouhair Ben Jemaa, Safya Belguith
Abstract:
Optimal routing allows minimizing energy consumption in wireless sensor networks (WSN). Clustering has proven its effectiveness in organizing WSN by reducing channel contention and packet collision and enhancing network throughput under heavy load. Therefore, nowadays, with the emergence of the Internet of Things, heterogeneity is essential. Stable election protocol (SEP) that has increased the network stability period and lifetime is the first clustering protocol for heterogeneous WSN. SEP and its descendants, namely SEP, Threshold Sensitive SEP (TSEP), Enhanced TSEP (ETSSEP) and Current Energy Allotted TSEP (CEATSEP), were studied. These algorithms’ performance was evaluated based on different metrics, especially first node death (FND), to compare their stability. Simulations were conducted on the MATLAB tool considering two scenarios: The first one demonstrates the fraction variation of advanced nodes by setting the number of total nodes. The second considers the interpretation of the number of nodes while keeping the number of advanced nodes permanent. CEATSEP outperforms its antecedents by increasing stability and, at the same time, keeping a low throughput. It also operates very well in a large-scale network. Consequently, CEATSEP has a useful lifespan and energy efficiency compared to the other routing protocol for heterogeneous WSN.Keywords: clustering, heterogeneous, stability, scalability, IoT, WSN
Procedia PDF Downloads 1314048 Ancient Iran Water Technologies
Authors: Akbar Khodavirdizadeh, Ali Nemati Babaylou, Hassan Moomivand
Abstract:
The history of human access to water technique has been one of the factors in the formation of human civilizations in the ancient world. The technique that makes surface water and groundwater accessible to humans on the ground has been a clever technique in human life to reach the water. In this study, while examining the water technique of ancient Iran using the Qanats technique, the water supply system of different regions of the ancient world were also studied and compared. Six groups of the ancient region of ancient Greece (Archaic 480-750 BC and Classical 223-480 BC), Urartu in Tuspa (600-850 BC), Petra (106-168 BC), Ancient Rome (265 BC), and the ancient United States (1450 BC) and ancient Iranian water technologies were studied under water supply systems. Past water technologies in these areas: water transmission systems in primary urban centers, use of water structures in water control, use of bridges in water transfer, construction of waterways for water transfer, storage of rainfall, construction of various types of pottery- ceramic, lead, wood and stone pipes have been used in water transfer, flood control, water reservoirs, dams, channel, wells, and Qanat. The central plateau of Iran is one of the arid and desert regions. Archaeological, geomorphological, and paleontological studies of the central region of the Iranian plateau showed that without the use of Qanats, the possibility of urban civilization in this region was difficult and even impossible. Zarch aqueduct is the most important aqueduct in Yazd region. Qanat of Zarch is a plain Qanat with a gallery length of 80 km; its mother well is 85 m deep and has 2115 well shafts. The main purpose of building the Qanat of Zārch was to access the groundwater source and transfer it to the surface of the ground. Regarding the structure of the aqueduct and the technique of transferring water from the groundwater source to the surface, it has a great impact on being different from other water techniques in the ancient world. The results show that the use of water technologies in ancient is very important to understand the history of humanity in the use of hydraulic techniques.Keywords: ancient water technologies, groundwaters, qanat, human history, Ancient Iran
Procedia PDF Downloads 1124047 Technology of Gyro Orientation Measurement Unit (Gyro Omu) for Underground Utility Mapping Practice
Authors: Mohd Ruzlin Mohd Mokhtar
Abstract:
At present, most operators who are working on projects for utilities such as power, water, oil, gas, telecommunication and sewerage are using technologies e.g. Total station, Global Positioning System (GPS), Electromagnetic Locator (EML) and Ground Penetrating Radar (GPR) to perform underground utility mapping. With the increase in popularity of Horizontal Directional Drilling (HDD) method among the local authorities and asset owners, most of newly installed underground utilities need to use the HDD method. HDD method is seen as simple and create not much disturbance to the public and traffic. Thus, it was the preferred utilities installation method in most of areas especially in urban areas. HDDs were installed much deeper than exiting utilities (some reports saying that HDD is averaging 5 meter in depth). However, this impacts the accuracy or ability of existing underground utility mapping technologies. In most of Malaysia underground soil condition, those technologies were limited to maximum of 3 meter depth. Thus, those utilities which were installed much deeper than 3 meter depth could not be detected by using existing detection tools. The accuracy and reliability of existing underground utility mapping technologies or work procedure were in doubt. Thus, a mitigation action plan is required. While installing new utility using Horizontal Directional Drilling (HDD) method, a more accurate underground utility mapping can be achieved by using Gyro OMU compared to existing practice using e.g. EML and GPR. Gyro OMU is a method to accurately identify the location of HDD thus this mapping can be used or referred to avoid those cost of breakdown due to future HDD works which can be caused by inaccurate underground utility mapping.Keywords: Gyro Orientation Measurement Unit (Gyro OMU), Horizontal Directional Drilling (HDD), Ground Penetrating Radar (GPR), Electromagnetic Locator (EML)
Procedia PDF Downloads 1404046 Self-Efficacy Perceptions of Pre-Service Art and Music Teachers towards the Use of Information and Communication Technologies
Authors: Agah Tugrul Korucu
Abstract:
Information and communication technologies have become an important part of our daily lives with significant investments in technology in the 21st century. Individuals are more willing to design and implement computer-related activities, and they are the main component of computer self-efficacy and self-efficacy related to the fact that the increase in information technology, with operations in parallel with these activities more successful. The Self-efficacy level is a significant factor which determines how individuals act in events, situations and difficult processes. It is observed that individuals with higher self-efficacy perception of computers who encounter problems related to computer use overcome them more easily. Therefore, this study aimed to examine self-efficacy perceptions of pre-service art and music teachers towards the use of information and communication technologies in terms of different variables. Research group consists of 60 pre-service teachers who are studying at Necmettin Erbakan University Ahmet Keleşoğlu Faculty of Education Art and Music department. As data collection tool of the study; “personal information form” developed by the researcher and used to collect demographic data and "the perception scale related to self-efficacy of informational technology" are used. The scale is 5-point Likert-type scale. It consists of 27 items. The Kaiser-Meyer-Olkin (KMO) sample compliance value is found 0.959. The Cronbach alpha reliability coefficient of the scale is found to be 0.97. computer-based statistical software package (SPSS 21.0) is used in order to analyze the data collected by data collection tools; descriptive statistics, t-test, analysis of variance are used as statistical techniques.Keywords: self-efficacy perceptions, teacher candidate, information and communication technologies, art teacher
Procedia PDF Downloads 3264045 Towards a Successful Implementation of ICT in Education : Analyzing Teacher Practices and Perceptions
Authors: Azzeddine Atibi, Lamalif latifa, Khadija El Kababi, Salim Ahmed, Mohamed Radid
Abstract:
This study analyzes the integration of Information and Communication Technologies (ICT) in modern education, where these tools have become essential. Due to the rapid emergence of new technologies and their increasing adoption in education, it is important to understand how teachers use and perceive these tools. The study pursues three objectives : examining current teacher practices regarding ICT, evaluating their impact on student skills and engagement, and making recommendations for better integration of ICT in education. The study's methodology is based on a quantitative approach, using a questionnaire administered to a sample of 104 teachers. This questionnaire, rigorously validated to ensure its reliability, gathers representative data on perceptions and challenges related to the use of ICT. The results show widespread adoption of ICT by teachers, with the majority reporting an improvement in student skills due to these technologies. However, opinions diverge on their impact on student engagement : some teachers note an increase in engagement, while others remain skeptical. Persistent challenges include insufficient technological infrastructure and the need for ongoing training. The recommendations highlight the importance of improving infrastructures and supporting the professional development of teachers to optimize the integration of ICT.Keywords: ICT, education, teaching practices, teacher perceptions, continuing education
Procedia PDF Downloads 334044 Application of Simulated Annealing to Threshold Optimization in Distributed OS-CFAR System
Authors: L. Abdou, O. Taibaoui, A. Moumen, A. Talib Ahmed
Abstract:
This paper proposes an application of the simulated annealing to optimize the detection threshold in an ordered statistics constant false alarm rate (OS-CFAR) system. Using conventional optimization methods, such as the conjugate gradient, can lead to a local optimum and lose the global optimum. Also for a system with a number of sensors that is greater than or equal to three, it is difficult or impossible to find this optimum; Hence, the need to use other methods, such as meta-heuristics. From a variety of meta-heuristic techniques, we can find the simulated annealing (SA) method, inspired from a process used in metallurgy. This technique is based on the selection of an initial solution and the generation of a near solution randomly, in order to improve the criterion to optimize. In this work, two parameters will be subject to such optimisation and which are the statistical order (k) and the scaling factor (T). Two fusion rules; “AND” and “OR” were considered in the case where the signals are independent from sensor to sensor. The results showed that the application of the proposed method to the problem of optimisation in a distributed system is efficiency to resolve such problems. The advantage of this method is that it allows to browse the entire solutions space and to avoid theoretically the stagnation of the optimization process in an area of local minimum.Keywords: distributed system, OS-CFAR system, independent sensors, simulating annealing
Procedia PDF Downloads 4974043 RFID Based Indoor Navigation with Obstacle Detection Based on A* Algorithm for the Visually Impaired
Authors: Jayron Sanchez, Analyn Yumang, Felicito Caluyo
Abstract:
The visually impaired individual may use a cane, guide dog or ask for assistance from a person. This study implemented the RFID technology which consists of a low-cost RFID reader and passive RFID tag cards. The passive RFID tag cards served as checkpoints for the visually impaired. The visually impaired was guided through audio output from the system while traversing the path. The study implemented an ultrasonic sensor in detecting static obstacles. The system generated an alternate path based on A* algorithm to avoid the obstacles. Alternate paths were also generated in case the visually impaired traversed outside the intended path to the destination. A* algorithm generated the shortest path to the destination by calculating the total cost of movement. The algorithm then selected the smallest movement cost as a successor to the current tag card. Several trials were conducted to determine the effect of obstacles in the time traversal of the visually impaired. A dependent sample t-test was applied for the statistical analysis of the study. Based on the analysis, the obstacles along the path generated delays while requesting for the alternate path because of the delay in transmission from the laptop to the device via ZigBee modules.Keywords: A* algorithm, RFID technology, ultrasonic sensor, ZigBee module
Procedia PDF Downloads 4094042 Indoor Real-Time Positioning and Mapping Based on Manhattan Hypothesis Optimization
Authors: Linhang Zhu, Hongyu Zhu, Jiahe Liu
Abstract:
This paper investigated a method of indoor real-time positioning and mapping based on the Manhattan world assumption. In indoor environments, relying solely on feature matching techniques or other geometric algorithms for sensor pose estimation inevitably resulted in cumulative errors, posing a significant challenge to indoor positioning. To address this issue, we adopt the Manhattan world hypothesis to optimize the camera pose algorithm based on feature matching, which improves the accuracy of camera pose estimation. A special processing method was applied to image data frames that conformed to the Manhattan world assumption. When similar data frames appeared subsequently, this could be used to eliminate drift in sensor pose estimation, thereby reducing cumulative errors in estimation and optimizing mapping and positioning. Through experimental verification, it is found that our method achieves high-precision real-time positioning in indoor environments and successfully generates maps of indoor environments. This provides effective technical support for applications such as indoor navigation and robot control.Keywords: Manhattan world hypothesis, real-time positioning and mapping, feature matching, loopback detection
Procedia PDF Downloads 614041 Preparation of Indium Tin Oxide Nanoparticle-Modified 3-Aminopropyltrimethoxysilane-Functionalized Indium Tin Oxide Electrode for Electrochemical Sulfide Detection
Authors: Md. Abdul Aziz
Abstract:
Sulfide ion is water soluble, highly corrosive, toxic and harmful to the human beings. As a result, knowing the exact concentration of sulfide in water is very important. However, the existing detection and quantification methods have several shortcomings, such as high cost, low sensitivity, and massive instrumentation. Consequently, the development of novel sulfide sensor is relevant. Nevertheless, electrochemical methods gained enormous popularity due to a vast improvement in the technique and instrumentation, portability, low cost, rapid analysis and simplicity of design. Successful field application of electrochemical devices still requires vast improvement, which depends on the physical, chemical and electrochemical aspects of the working electrode. The working electrode made of bulk gold (Au) and platinum (Pt) are quite common, being very robust and endowed with good electrocatalytic properties. High cost, and electrode poisoning, however, have so far hindered their practical application in many industries. To overcome these obstacles, we developed a sulfide sensor based on an indium tin oxide nanoparticle (ITONP)-modified ITO electrode. To prepare ITONP-modified ITO, various methods were tested. Drop-drying of ITONPs (aq.) on aminopropyltrimethoxysilane-functionalized ITO (APTMS/ITO) was found to be the best method on the basis of voltammetric analysis of the sulfide ion. ITONP-modified APTMS/ITO (ITONP/APTMS/ITO) yielded much better electrocatalytic properties toward sulfide electro-οxidation than did bare or APTMS/ITO electrodes. The ITONPs and ITONP-modified ITO were also characterized using transmission electron microscopy and field emission scanning electron microscopy, respectively. Optimization of the type of inert electrolyte and pH yielded an ITONP/APTMS/ITO detector whose amperometrically and chronocoulοmetrically determined limits of detection for sulfide in aqueous solution were 3.0 µM and 0.90 µM, respectively. ITONP/APTMS/ITO electrodes which displayed reproducible performances were highly stable and were not susceptible to interference by common contaminants. Thus, the developed electrode can be considered as a promising tool for sensing sulfide.Keywords: amperometry, chronocoulometry, electrocatalytic properties, ITO-nanoparticle-modified ITO, sulfide sensor
Procedia PDF Downloads 1304040 Influence of the 3D Printing Parameters on the Dynamic Characteristics of Composite Structures
Authors: Ali Raza, Rūta Rimašauskienė
Abstract:
In the current work, the fused deposition modelling (FDM) technique is used to manufacture PLA reinforced with carbon fibre composite structures with two unique layer patterns, 0°\0° and 0°\90°. The purpose of the study is to investigate the dynamic characteristics of each fabricated composite structure. The Macro Fiber Composite (MFC) is embedded with 0°/0° and 0°/90° structures to investigate the effect of an MFC (M8507-P2 type) patch on vibration amplitude suppression under dynamic loading circumstances. First, modal analysis testing was performed using a Polytec 3D laser vibrometer to identify bending mode shapes, natural frequencies, and vibration amplitudes at the corresponding natural frequencies. To determine the stiffness of each structure, several loads were applied at the free end of the structure, and the deformation was recorded using a laser displacement sensor. The findings confirm that a structure with 0°\0° layers pattern was found to have more stiffness compared to a 0°\90° structure. The maximum amplitude suppression in each structure was measured using a laser displacement sensor at the first resonant frequency when the control voltage signal with optimal phase was applied to the MFC. The results confirm that the 0°/0° pattern's structure exhibits a higher displacement reduction than the 0°/90° pattern. Moreover, stiffer structures have been found to perform amplitude suppression more effectively.Keywords: carbon fibre composite, MFC, modal analysis stiffness, stiffness
Procedia PDF Downloads 634039 A Study on Thermodynamic Prototype for Vernacular Dwellings in Perspective of Bioclimatic Architecture
Authors: Zhenzhen Zhang
Abstract:
As major human activity places, buildings consume a large amount of energy, and residential buildings are very important part of it. An extensive research work had been conducted to research how to achieve low energy goals, vernacular dwellings and contemporary technologies are two prime parameters among them. On one hand, some researchers concentrated on vernacular dwellings which were climate-response design and could offer a better living condition without mechanic application. On the other hand, a series concepts appeared based on modern technologies, surplus energy house, bioclimatic architecture, etc. especially thermodynamic architecture which integrates the micro-climate, human activity, thermal comfort, and energy efficiency into design. How to blend the two parameters is the key research topic now, which would act as the key to how to integrate the ancient design wise and contemporary new technologies. By several cases study, this paper will represent the evolution of thermodynamic architecture and then try to develop one methodology about how to produce a typical thermodynamic prototype for one area by blending the ancient building wise and contemporary concepts to achieve both low energy consumption and surplus energy.Keywords: vernacular dwelling, thermodynamic architecture, bioclimatic architecture, thermodynamic prototype, surplus energy
Procedia PDF Downloads 2904038 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement
Procedia PDF Downloads 944037 Teachers’ Incorporation of Emerging Communication Technologies in Higher Education in Kuwait
Authors: Bashaiar Alsanaa
Abstract:
Never has a revolution influenced all aspects of humanity as the communication revolution during the past two decades. This revolution, with all its advances and utilities, swept the world thus becoming an integral part of our lives, hence giving way to emerging applications at the social, economic, political, and educational levels. More specifically, such applications have changed the delivery system through which learning is acquired by students. Interaction with educators, accessibility to content, and creative delivery options are but a few facets of the new learning experience now being offered through the use of technology in the educational field. With different success rates, third world countries have tried to pace themselves with use of educational technology in advanced parts of the world. One such country is the small rich-oil state of Kuwait which has tried to adopt the e-educational model, however, an evaluation of such trial is yet to be done. This study aims to fill the void of research conducted around that topic. The study explores teachers’ acceptance of incorporating communication technologies in higher education in Kuwait. Teachers’ responses to survey questions present an overview of the e-learning experience in this country, and draw a framework through which implications and suggestions for future research can be discussed to better serve the advancement of e-education in developing countries.Keywords: communication technologies, E-learning, Kuwait, social media
Procedia PDF Downloads 2824036 Teachers Tolerance of Using Emerging Communication Technologies in Higher Education in Kuwait
Authors: Bashaiar Alsana
Abstract:
Never has a revolution influenced all aspects of humanity as the communication revolution during the past two decades. This revolution, with all its advances and utilities, swept the world thus becoming an integral part of our lives, hence giving way to emerging applications at the social, economic, political, and educational levels. More specifically, such applications have changed the delivery system through which learning is acquired by students. Interaction with educators, accessibility to content, and creative delivery options are but a few facets of the new learning experience now being offered through the use of technology in the educational field. With different success rates, third world countries have tried to pace themselves with use of educational technology in advanced parts of the world. One such country is the small rich-oil state of Kuwait which has tried to adopt the e-educational model, however, an evaluation of such trial is yet to be done. This study aims to fill the void of research conducted around that topic. The study explores teachers’ acceptance of incorporating communication technologies in higher education in Kuwait. Teachers’ responses to survey questions present an overview of the e-learning experience in this country, and draw a framework through which implications and suggestions for future research can be discussed to better serve the advancement of e-education in developing countries.Keywords: communication technologies, e-learning, Kuwait, social media
Procedia PDF Downloads 2614035 An Exploratory Survey Questionnaire to Understand What Emotions Are Important and Difficult to Communicate for People with Dysarthria and Their Methodology of Communicating
Authors: Lubna Alhinti, Heidi Christensen, Stuart Cunningham
Abstract:
People with speech disorders may rely on augmentative and alternative communication (AAC) technologies to help them communicate. However, the limitations of the current AAC technologies act as barriers to the optimal use of these technologies in daily communication settings. The ability to communicate effectively relies on a number of factors that are not limited to the intelligibility of the spoken words. In fact, non-verbal cues play a critical role in the correct comprehension of messages and having to rely on verbal communication only, as is the case with current AAC technology, may contribute to problems in communication. This is especially true for people’s ability to express their feelings and emotions, which are communicated to a large part through non-verbal cues. This paper focuses on understanding more about the non-verbal communication ability of people with dysarthria, with the overarching aim of this research being to improve AAC technology by allowing people with dysarthria to better communicate emotions. Preliminary survey results are presented that gives an understanding of how people with dysarthria convey emotions, what emotions that are important for them to get across, what emotions that are difficult for them to convey, and whether there is a difference in communicating emotions when speaking to familiar versus unfamiliar people.Keywords: alternative and augmentative communication technology, dysarthria, speech emotion recognition, VIVOCA
Procedia PDF Downloads 1634034 Nordic Study on Public Acceptance of Drones
Authors: Virpi Oksman
Abstract:
Drones are new phenomenon in public spaces. Adoption of this kind of new technologies requires public acceptance. Drones and other unmanned aerial systems may have various impacts on people’s living environments, and the public is exposed to possible disadvantages of drones. Public acceptance may be expressed as positive or negative attitude by majority of the citizens towards the new technology or service or as rapid adoption of it in everyday life. In various parts of the globe, in cities and in rural areas, drones as emerging technologies are perceived quite differently. Public acceptance studies of drones have been conducted mostly in highly urbanized environments like in Singapore and in European cities. This paper presents results of a Nordic survey study (N=1000) conducted in Sweden and in Finland. The survey aims at understanding the level of acceptance of different uses of drones in public spaces and the main concerns and benefits related to emerging UAM technologies. The study shows that even though the general attitude towards drones is quite positive, privacy and safety, and noise levels are the main concerns by Nordic citizens. Also, for what purpose and by whom the drones are operated affects the acceptability significantly. The study concludes, that there is need for regulations that safeguard public interests. In addition, considering privacy in design, and quiet environmentally friendly drones support public acceptance of drones.Keywords: public acceptance, privacy, safety, survey
Procedia PDF Downloads 1664033 Designing a Patient Monitoring System Using Cloud and Semantic Web Technologies
Authors: Chryssa Thermolia, Ekaterini S. Bei, Stelios Sotiriadis, Kostas Stravoskoufos, Euripides G. M. Petrakis
Abstract:
Moving into a new era of healthcare, new tools and devices are developed to extend and improve health services, such as remote patient monitoring and risk prevention. In this concept, Internet of Things (IoT) and Cloud Computing present great advantages by providing remote and efficient services, as well as cooperation between patients, clinicians, researchers and other health professionals. This paper focuses on patients suffering from bipolar disorder, a brain disorder that belongs to a group of conditions called effective disorders, which is characterized by great mood swings.We exploit the advantages of Semantic Web and Cloud Technologies to develop a patient monitoring system to support clinicians. Based on intelligently filtering of evidence-knowledge and individual-specific information we aim to provide treatment notifications and recommended function tests at appropriate times or concluding into alerts for serious mood changes and patient’s non-response to treatment. We propose an architecture, as the back-end part of a cloud platform for IoT, intertwining intelligence devices with patients’ daily routine and clinicians’ support.Keywords: bipolar disorder, intelligent systems patient monitoring, semantic web technologies, healthcare
Procedia PDF Downloads 5084032 Disperse Innovation in the Turning German Energy Market
Authors: J. Gochermann
Abstract:
German energy market is under historical change. Turning-off the nuclear power plants and intensive subsidization of the renewable energies causes a paradigm change from big central energy production and distribution to more local structures, bringing the energy production near to the consumption. The formerly big energy market with only a few big energy plants and grid operating companies is changing into a disperse market with growing numbers of small and medium size companies (SME) generating new value-added products and services. This change in then energy market, in Germany called the “Energiewende”, inverts also the previous innovation system. Big power plants and large grids required also big operating companies. Innovations in the energy market focused mainly on big projects and complex energy technologies. Innovation in the new energy market structure is much more dispersed. Increasing number of SME is now able to develop energy production and storage technologies, smart technologies to control the grids, and numerous new energy related services. Innovation is now regional distributed, which is a remarkable problem for the old big energy companies. The paper will explain the change in the German energy market and the paradigm change as well as the consequences for the innovation structure in the German energy market. It will show examples how SME participate from this change and how innovation systems, as well for the big companies and for SME, can be adapted.Keywords: changing energy markets, disperse innovation, new value-added products and services, SME
Procedia PDF Downloads 3484031 Design and Integration of a Renewable Energy Based Polygeneration System with Desalination for an Industrial Plant
Authors: Lucero Luciano, Cesar Celis, Jose Ramos
Abstract:
Polygeneration improves energy efficiency and reduce both energy consumption and pollutant emissions compared to conventional generation technologies. A polygeneration system is a variation of a cogeneration one, in which more than two outputs, i.e., heat, power, cooling, water, energy or fuels, are accounted for. In particular, polygeneration systems integrating solar energy and water desalination represent promising technologies for energy production and water supply. They are therefore interesting options for coastal regions with a high solar potential, such as those located in southern Peru and northern Chile. Notice that most of the Peruvian and Chilean mining industry operations intensive in electricity and water consumption are located in these particular regions. Accordingly, this work focus on the design and integration of a polygeneration system producing industrial heating, cooling, electrical power and water for an industrial plant. The design procedure followed in this work involves integer linear programming modeling (MILP), operational planning and dynamic operating conditions. The technical and economic feasibility of integrating renewable energy technologies (photovoltaic and solar thermal, PV+CPS), thermal energy store, power and thermal exchange, absorption chillers, cogeneration heat engines and desalination technologies is particularly assessed. The polygeneration system integration carried out seek to minimize the system total annual cost subject to CO2 emissions restrictions. Particular economic aspects accounted for include investment, maintenance and operating costs.Keywords: desalination, design and integration, polygeneration systems, renewable energy
Procedia PDF Downloads 1254030 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.Keywords: optimal control, nonlinear systems, state estimation, Kalman filter
Procedia PDF Downloads 2024029 Proposal of Commutation Protocol in Hybrid Sensors and Vehicular Networks for Intelligent Transport Systems
Authors: Taha Bensiradj, Samira Moussaoui
Abstract:
Hybrid Sensors and Vehicular Networks (HSVN), represent a hybrid network, which uses several generations of Ad-Hoc networks. It is used especially in Intelligent Transport Systems (ITS). The HSVN allows making collaboration between the Wireless Sensors Network (WSN) deployed on the border of the road and the Vehicular Network (VANET). This collaboration is defined by messages exchanged between the two networks for the purpose to inform the drivers about the state of the road, provide road safety information and more information about traffic on the road. Moreover, this collaboration created by HSVN, also allows the use of a network and the advantage of improving another network. For example, the dissemination of information between the sensors quickly decreases its energy, and therefore, we can use vehicles that do not have energy constraint to disseminate the information between sensors. On the other hand, to solve the disconnection problem in VANET, the sensors can be used as gateways that allow sending the messages received by one vehicle to another. However, because of the short communication range of the sensor and its low capacity of storage and processing of data, it is difficult to ensure the exchange of road messages between it and the vehicle, which can be moving at high speed at the time of exchange. This represents the time where the vehicle is in communication range with the sensor. This work is the proposition of a communication protocol between the sensors and the vehicle used in HSVN. The latter has as the purpose to ensure the exchange of road messages in the available time of exchange.Keywords: HSVN, ITS, VANET, WSN
Procedia PDF Downloads 3614028 A Measurement and Motor Control System for Free Throw Shots in Basketball Using Gyroscope Sensor
Authors: Niloofar Zebarjad
Abstract:
This research aims at finding a tool to provide basketball players with real-time audio feedback on their shooting form in free throw shots. Free throws played a pivotal role in taking the lead in fierce competitions. The major problem in performing an accurate free throw seems to be improper training. Since the arm movement during the free throw shot is complex, the coach or the athlete might miss the movement details during practice. Hence, there is a necessity to create a system that measures arm movements' critical characteristics and control for improper kinematics. The proposed setup in this study quantifies arm kinematics and provides real-time feedback as an audio signal consisting of a gyroscope sensor. Spatial shoulder angle data are transmitted in a mobile application in real-time and can be saved and processed for statistical and analysis purposes. The proposed system is easy to use, inexpensive, portable, and real-time applicable. Objectives: This research aims to modify and control the free throw using audio feedback and determine if and to what extent the new setup reduces errors in arm formations during throws and finally assesses the successful throw rate. Methods: One group of elite basketball athletes and two novice athletes (control and study group) participated in this study. Each group contains 5 participants being studied in three separate sessions over a week. Results: Empirical results showed enhancements in the free throw shooting style, shot pocket (SP), and locked position (LP). The mean values of shoulder angle were controlled on 25° and 45° for SP and LP, respectively, recommended by valid FIBA references. Conclusion: Throughout the experiments, the system helped correct and control the shoulder angles toward the targeted pattern of shot pocket (SP) and locked position (LP). According to the desired results for arm motion, adding another sensor to measure and control the elbow angle is recommended.Keywords: audio-feedback, basketball, free-throw, locked-position, motor-control, shot-pocket
Procedia PDF Downloads 2944027 Landsat 8-TIRS NEΔT at Kīlauea Volcano and the Active East Rift Zone, Hawaii
Authors: Flora Paganelli
Abstract:
The radiometric performance of remotely sensed images is important for volcanic monitoring. The Thermal Infrared Sensor (TIRS) on-board Landsat 8 was designed with specific requirements in regard to the noise-equivalent change in temperature (NEΔT) at ≤ 0.4 K at 300 K for the two thermal infrared bands B10 and B11. This study investigated the on-orbit NEΔT of the TIRS two bands from a scene-based method using clear-sky images over the volcanic activity of Kīlauea Volcano and the active East Rift Zone (Hawaii), in order to optimize the use of TIRS data. Results showed that the NEΔTs of the two bands exceeded the design specification by an order of magnitude at 300 K. Both separate bands and split window algorithm were examined to estimate the effect of NEΔT on the land surface temperature (LST) retrieval, and NEΔT contribution to the final LST error. These results were also useful in the current efforts to assess the requirements for volcanology research campaign using the Hyperspectral Infrared Imager (HyspIRI) whose airborne prototype MODIS/ASTER instruments is plan to be flown by NASA as a single campaign to the Hawaiian Islands in support of volcanology and coastal area monitoring in 2016.Keywords: landsat 8, radiometric performance, thermal infrared sensor (TIRS), volcanology
Procedia PDF Downloads 2414026 Geographical Data Visualization Using Video Games Technologies
Authors: Nizar Karim Uribe-Orihuela, Fernando Brambila-Paz, Ivette Caldelas, Rodrigo Montufar-Chaveznava
Abstract:
In this paper, we present the advances corresponding to the implementation of a strategy to visualize geographical data using a Software Development Kit (SDK) for video games. We use multispectral images from Landsat 7 platform and Laser Imaging Detection and Ranging (LIDAR) data from The National Institute of Geography and Statistics of Mexican (INEGI). We select a place of interest to visualize from Landsat platform and make some processing to the image (rotations, atmospheric correction and enhancement). The resulting image will be our gray scale color-map to fusion with the LIDAR data, which was selected using the same coordinates than in Landsat. The LIDAR data is translated to 8-bit raw data. Both images are fused in a software developed using Unity (an SDK employed for video games). The resulting image is then displayed and can be explored moving around. The idea is the software could be used for students of geology and geophysics at the Engineering School of the National University of Mexico. They will download the software and images corresponding to a geological place of interest to a smartphone and could virtually visit and explore the site with a virtual reality visor such as Google cardboard.Keywords: virtual reality, interactive technologies, geographical data visualization, video games technologies, educational material
Procedia PDF Downloads 2464025 E-Marketing Strategies and Destination Branding for the Tourism Industry in Nigeria
Authors: Abdullahi Marshal Idris, Murtala Mohammed Alamai, Adama Jummai Idris, Bello Mohammed Gwagwada
Abstract:
The technological revolution of the 1990s have brought about many new opportunities and challenges for the tourism and hospitality industries mostly in Nigeria and with tourism having global industry information as its life-blood and technology becoming fundamental to the ability of the industry to operate effectively and competitively. The whole system of information technologies is being rapidly diffused throughout the tourism industry and no player will escape information technologies impacts. The paper gives an insight into the importance of destination branding and the application of information technologies and the use of Internet in tourism and hospitality industries in Nigeria giving strategic frameworks, providing analysis of the Internet and its impact on these sectors. It also aims to show how technological innovations and information system can be beneficial for destinations companies like game reserves national parks, and other resorts by using the literature of existing efforts in global industry players as well as documented evidences where recommendations for destinations and companies is made to seek to foster the development of this connection by investing considerable resources in marketing activities on social networks and by reinforcing the trust of users, because credibility and reliability are still critical in this area.Keywords: branding, marketing, technology, tourism product
Procedia PDF Downloads 4464024 Portable, Noninvasive and Wireless Near Infrared Spectroscopy Device to Monitor Skeletal Muscle Metabolism during Exercise
Authors: Adkham Paiziev, Fikrat Kerimov
Abstract:
Near Infrared Spectroscopy (NIRS) is one of the biophotonic techniques which can be used to monitor oxygenation and hemodynamics in a variety of human tissues, including skeletal muscle. In the present work, we are offering tissue oximetry (OxyPrem) to measure hemodynamic parameters of skeletal muscles in rest and exercise. Purpose: - To elaborate the new wireless, portable, noninvasive, wearable NIRS device to measure skeletal muscle oxygenation during exercise. - To test this device on brachioradialis muscle of wrestler volunteers by using combined method of arterial occlusion (AO) and NIRS (AO+NIRS). Methods: Oxyprem NIRS device has been used together with AO test. AO test and Isometric brachioradialis muscle contraction experiments have been performed on one group of wrestler volunteers. ‘Accu- Measure’ caliper (USA) to measure skinfold thickness (SFT) has been used. Results: Elaborated device consists on power supply box, a sensor head and installed ‘Tubis’ software for data acquisition and to compute deoxyhemoglobin ([HHb), oxyhemoglobin ([O2Hb]), tissue oxygenation (StO2) and muscle tissue oxygen consumption (mVO2). Sensor head consists on four light sources with three light emitting diodes with nominal wavelengths of 760 nm, 805 nm, and 870 nm, and two detectors. AO and isometric voluntary forearm muscle contraction (IVFMC) on five healthy male subjects (23,2±0.84 in age, 0.43±0.05cm of SFT ) and four female subjects (22.0±1.0 in age and 0.24±0.04 cm SFT) has been measured. mVO2 for control group has been calculated (-0.65%/sec±0.07) for male and -0.69%/±0.19 for female subjects). Tissue oxygenation index for wrestlers in average about 75% whereas for control group StO2 =63%. Second experiment was connected with quality monitoring muscle activity during IVFMC at 10%,30% and 50% of MVC. It has been shown, that the concentration changes of HbO2 and HHb positively correlated to the contraction intensity. Conclusion: We have presented a portable multi-channel wireless NIRS device for real-time monitoring of muscle activity. The miniaturized NIRS sensor and the usage of wireless communication make the whole device have a compact-size, thus can be used in muscle monitoring.Keywords: skeletal muscle, oxygenation, instrumentation, near infrared spectroscopy
Procedia PDF Downloads 2754023 Detection of Cyberattacks on the Metaverse Based on First-Order Logic
Authors: Sulaiman Al Amro
Abstract:
There are currently considerable challenges concerning data security and privacy, particularly in relation to modern technologies. This includes the virtual world known as the Metaverse, which consists of a virtual space that integrates various technologies and is therefore susceptible to cyber threats such as malware, phishing, and identity theft. This has led recent studies to propose the development of Metaverse forensic frameworks and the integration of advanced technologies, including machine learning for intrusion detection and security. In this context, the application of first-order logic offers a formal and systematic approach to defining the conditions of cyberattacks, thereby contributing to the development of effective detection mechanisms. In addition, formalizing the rules and patterns of cyber threats has the potential to enhance the overall security posture of the Metaverse and, thus, the integrity and safety of this virtual environment. The current paper focuses on the primary actions employed by avatars for potential attacks, including Interval Temporal Logic (ITL) and behavior-based detection to detect an avatar’s abnormal activities within the Metaverse. The research established that the proposed framework attained an accuracy of 92.307%, resulting in the experimental results demonstrating the efficacy of ITL, including its superior performance in addressing the threats posed by avatars within the Metaverse domain.Keywords: security, privacy, metaverse, cyberattacks, detection, first-order logic
Procedia PDF Downloads 404022 Research on Placement Method of the Magnetic Flux Leakage Sensor Based on Online Detection of the Transformer Winding Deformation
Authors: Wei Zheng, Mao Ji, Zhe Hou, Meng Huang, Bo Qi
Abstract:
The transformer is the key equipment of the power system. Winding deformation is one of the main transformer defects, and timely and effective detection of the transformer winding deformation can ensure the safe and stable operation of the transformer to the maximum extent. When winding deformation occurs, the size, shape and spatial position of the winding will change, which directly leads to the change of magnetic flux leakage distribution. Therefore, it is promising to study the online detection method of the transformer winding deformation based on magnetic flux leakage characteristics, in which the key step is to study the optimal placement method of magnetic flux leakage sensors inside the transformer. In this paper, a simulation model of the transformer winding deformation is established to obtain the internal magnetic flux leakage distribution of the transformer under normal operation and different winding deformation conditions, and the law of change of magnetic flux leakage distribution due to winding deformation is analyzed. The results show that different winding deformation leads to different characteristics of the magnetic flux leakage distribution. On this basis, an optimized placement of magnetic flux leakage sensors inside the transformer is proposed to provide a basis for the online detection method of transformer winding deformation based on the magnetic flux leakage characteristics.Keywords: magnetic flux leakage, sensor placement method, transformer, winding deformation
Procedia PDF Downloads 1964021 Implementation of Digital Technologies in SMEs in Kazakhstan: A Pathway to Sustainable Development
Authors: Toibayeva Shara, Zainolda Fariza, Abylkhassenova Dina, Zholdybaev Baurzhan, Almassov Nurbek, Aldabergenov Ablay
Abstract:
The article explores the opportunities and challenges associated with the adoption of digital technologies and automation in small and medium-sized businesses (SMEs) in Kazakhstan to achieve the Sustainable Development Goals (SDGs). Key aspects such as improving production efficiency, reducing carbon footprint, and resource efficiency are discussed, as well as the challenges faced by companies, including limited access to finance and lack of knowledge about digital solutions. Based on an analysis of existing practices, recommendations are offered to improve digital infrastructure and create an enabling environment for SMEs to increase their competitiveness and adaptability in the face of global change. The introduction of innovative technologies is seen as an important step towards long-term sustainability and successful business development in Kazakhstan. The study was supported by grants from the Ministry of Science and Higher Education of the Republic of Kazakhstan (grant No. AP23488459) ‘Research and development of scientific and methodological foundations of an intelligent system of management of medium and small businesses in Kazakhstan’.Keywords: small and medium-sized businesses, digitalization, automation, sustainable development, sustainable development goals, innovation, competitiveness
Procedia PDF Downloads 6