Search results for: poor glycaemic control
12269 Influence of IL-1β on Hamster Blastocyst Hatching via Regulation of Hatching Associated Proteases
Authors: Madhulika Pathak, Polani Seshagiri, Vani Venkatappa
Abstract:
Blastocyst hatching is an indispensable process for successful implantation. One of the major reasons for implantation failure in IVF clinic is poor quality of embryo, which are not development/hatching-competent. Therefore, attempts are required to develop or enhance the culture system with a molecule recapitulating the autocrine/paracrine factors containing the environment of in-vivo endometrial milieu. We have tried to explore the functional molecules involved in the hamster hatching phenomenon. Blastocyst hatching is governed by several molecules that are entwined and regulate this process, among which cytokines are known to be expressed and are still least explored. Two of such cytokines we have used for our study are IL-1β and its natural antagonist IL-1ra to understand the functional dynamics of cytokines involved in the hatching process. Using hamster, an intriguing experimental model for hatching behavior, we have shown the mRNA (qPCR) and protein (ICC) expression of IL-1β, IL-1ra and IL-1 receptor type 1 throughout all the stages of morula, blastocyst and hatched blastocyst. Post-asserting the expression, the functional role is shown by supplementation studies, where IL-1β supplementation showed enhancement in hatching level (IL-1β treated: 84.1 ± 4.2% vs control: 63.7 ± 3.1 %, N=11), further confirmed by the diminishing effect of IL-1ra on hatching rate (IL-1ra treated: 27.5 ± 11.1% vs control: 67.9 ± 3.1%). The exogenous supplementation of IL-1ra decreased the survival rate of embryos and affected the viability in dose-dependent manner, establishing the importance of IL-1β in blastocyst cell survival. Previously, the cathepsin L and B were established as the proteases that were involved in the hamster hatching process. The inducing effect of IL-1β was correlated with enhanced mRNA level, as analyzed by qPCR, for both CAT L (by 1.9 ± 0.5 fold) and CAT B (by 3.5 ± 0.1) fold which was diminished in presence of IL-1ra (Cat L by 88 percent and Cat B by 94 percent. Moreover, using a specific fluorescent substrate-based assay kit, the enzymatic activity of these proteases was found to be increased in presence of IL-1β (Cat L by 2.1 ± 0.1 fold and CAT B by 2.3 ± 0.7 fold) and was curtailed in presence of IL-1ra. These observations provide functional insights with respect to the involvement of cytokines in the hatching process. This has implications in understanding the hatching biology and improving the embryo development quality in IVF clinics.Keywords: Blastocyst, Cytokines, Hatching, Interleukin
Procedia PDF Downloads 14412268 Developing and Shake Table Testing of Semi-Active Hydraulic Damper as Active Interaction Control Device
Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung
Abstract:
Semi-active control system for structure under excitation of earthquake provides with the characteristics of being adaptable and requiring low energy. DSHD (Displacement Semi-Active Hydraulic Damper) was developed by our research team. Shake table test results of this DSHD installed in full scale test structure demonstrated that this device brought its energy-dissipating performance into full play for test structure under excitation of earthquake. The objective of this research is to develop a new AIC (Active Interaction Control Device) and apply shake table test to perform its dissipation of energy capability. This new proposed AIC is converting an improved DSHD (Displacement Semi-Active Hydraulic Damper) to AIC with the addition of an accumulator. The main concept of this energy-dissipating AIC is to apply the interaction function of affiliated structure (sub-structure) and protected structure (main structure) to transfer the input seismic force into sub-structure to reduce the structural deformation of main structure. This concept is tested using full-scale multi-degree of freedoms test structure, installed with this proposed AIC subjected to external forces of various magnitudes, for examining the shock absorption influence of predictive control, stiffness of sub-structure, synchronous control, non-synchronous control and insufficient control position. The test results confirm: (1) this developed device is capable of diminishing the structural displacement and acceleration response effectively; (2) the shock absorption of low precision of semi-active control method did twice as much seismic proof efficacy as that of passive control method; (3) active control method may not exert a negative influence of amplifying acceleration response of structure; (4) this AIC comes into being time-delay problem. It is the same problem of ordinary active control method. The proposed predictive control method can overcome this defect; (5) condition switch is an important characteristics of control type. The test results show that synchronism control is very easy to control and avoid stirring high frequency response. This laboratory results confirm that the device developed in this research is capable of applying the mutual interaction between the subordinate structure and the main structure to be protected is capable of transforming the quake energy applied to the main structure to the subordinate structure so that the objective of minimizing the deformation of main structural can be achieved.Keywords: DSHD (Displacement Semi-Active Hydraulic Damper), AIC (Active Interaction Control Device), shake table test, full scale structure test, sub-structure, main-structure
Procedia PDF Downloads 51912267 DNA Methylation Changes in Response to Ocean Acidification at the Time of Larval Metamorphosis in the Edible Oyster, Crassostrea hongkongensis
Authors: Yong-Kian Lim, Khan Cheung, Xin Dang, Steven Roberts, Xiaotong Wang, Vengatesen Thiyagarajan
Abstract:
Unprecedented rate of increased CO₂ level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g., some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors, including OA, can influence the addition and removal of methyl groups through epigenetic modification (e.g., DNA methylation) process to turn gene expression “on or off” as part of a rapid adaptive mechanism to cope with OA. In this study, the above hypothesis was tested through testing the effect of OA, using decreased pH 7.4 as a proxy, on the DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis, at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1; however, over one-third of the larvae raised at pH 7.4 failed to attach to an optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.Keywords: adaptive plasticity, DNA methylation, larval metamorphosis, ocean acidification
Procedia PDF Downloads 13912266 Schematic Study of Groundwater Potential Zones in Granitic Terrain Using Remotesensing and GIS Techniques, in Miyapur and Bollaram Areas of Hyderabad, India
Authors: Ishrath, Tapas Kumar Chatterjee
Abstract:
The present study aims developing interpretation and evaluation to integrate various data types for management of existing water resources for sustainable use. Proper study should be followed based on the geomorphology of the area. Thematic maps such as lithology, base map, land use/land cover, geomorphology, drainage and lineaments maps are prepared to study the area by using area toposheet, IRS P6 and LISIII Satellite imagery. These thematic layers are finally integrated by using Arc GIS, Arc View, and software to prepare a ground water potential zones map of the study area. In this study, an integrated approach involving remote sensing and GIS techniques has successfully been used in identifying groundwater potential zones in the study area to classify them as good, moderate and poor. It has been observed that Pediplain shallow (PPS) has good recharge, Pediplain moderate (PPM) has moderately good recharge, Pediment Inselberg complex (PIC) has poor recharge and Inselberg (I) has no recharge. The study has concluded that remote sensing and GIS techniques are very efficient and useful for identifying ground water potential zones.Keywords: satellite remote sensing, GIS, ground water potential zones, Miyapur
Procedia PDF Downloads 44512265 4-DOFs Parallel Mechanism for Minimally Invasive Robotic Surgery
Authors: Khalil Ibrahim, Ahmed Ramadan, Mohamed Fanni, Yo Kobayashi, Ahmed Abo-Ismail, Masakatus G. Fujie
Abstract:
This paper deals with the design process and the dynamic control simulation of a new type of 4-DOFs parallel mechanism that can be used as an endoscopic surgical manipulator. The proposed mechanism, 2-PUU_2-PUS, is designed based on the screw theory and the parallel virtual chain type synthesis method. Based on the structure analysis of the 4-DOF parallel mechanism, the inverse position equation is studied using the inverse analysis theory of kinematics. The design and the stress analysis of the mechanism are investigated using SolidWorks software. The virtual prototype of the parallel mechanism is constructed, and the dynamic simulation is performed using ADAMS TM software. The system model utilizing PID and PI controllers has been built using MATLAB software. A more realistic simulation in accordance with a given bending angle and point to point control is implemented by the use of both ADAMS/MATLAB software. The simulation results showed that this control method has solved the coordinate control for the 4-DOF parallel manipulator so that each output is feedback to the four driving rods. From the results, the tracking performance is achieved. Other control techniques, such as intelligent ones, are recommended to improve the tracking performance and reduce the numerical truncation error.Keywords: parallel mechanisms, medical robotics, tracjectory control, virtual chain type synthesis method
Procedia PDF Downloads 46812264 Modeling of the Attitude Control Reaction Wheels of a Spacecraft in Software in the Loop Test Bed
Authors: Amr AbdelAzim Ali, G. A. Elsheikh, Moutaz M. Hegazy
Abstract:
Reaction wheels (RWs) are generally used as main actuator in the attitude control system (ACS) of spacecraft (SC) for fast orientation and high pointing accuracy. In order to achieve the required accuracy for the RWs model, the main characteristics of the RWs that necessitate analysis during the ACS design phase include: technical features, sequence of operating and RW control logic are included in function (behavior) model. A mathematical model is developed including the various errors source. The errors in control torque including relative, absolute, and error due to time delay. While the errors in angular velocity due to differences between average and real speed, resolution error, loose in installation of angular sensor, and synchronization errors. The friction torque is presented in the model include the different feature of friction phenomena: steady velocity friction, static friction and break-away torque, and frictional lag. The model response is compared with the experimental torque and frequency-response characteristics of tested RWs. Based on the created RW model, some criteria of optimization based control torque allocation problem can be recommended like: avoiding the zero speed crossing, bias angular velocity, or preventing wheel from running on the same angular velocity.Keywords: friction torque, reaction wheels modeling, software in the loop, spacecraft attitude control
Procedia PDF Downloads 26612263 Disturbance Observer for Lateral Trajectory Tracking Control for Autonomous and Cooperative Driving
Authors: Christian Rathgeber, Franz Winkler, Dirk Odenthal, Steffen Müller
Abstract:
In this contribution a structure for high level lateral vehicle tracking control based on the disturbance observer is presented. The structure is characterized by stationary compensating side forces disturbances and guaranteeing a cooperative behavior at the same time. Driver inputs are not compensated by the disturbance observer. Moreover the structure is especially useful as it robustly stabilizes the vehicle. Therefore the parameters are selected using the Parameter Space Approach. The implemented algorithms are tested in real world scenarios.Keywords: disturbance observer, trajectory tracking, robust control, autonomous driving, cooperative driving
Procedia PDF Downloads 56312262 Design Fractional-Order Terminal Sliding Mode Control for Synchronization of a Class of Fractional-Order Chaotic Systems with Uncertainty and External Disturbances
Authors: Shabnam Pashaei, Mohammadali Badamchizadeh
Abstract:
This paper presents a new fractional-order terminal sliding mode control for synchronization of two different fractional-order chaotic systems with uncertainty and external disturbances. A fractional-order integral type nonlinear switching surface is presented. Then, using the Lyapunov stability theory and sliding mode theory, a fractional-order control law is designed to synchronize two different fractional-order chaotic systems. Finally, a simulation example is presented to illustrate the performance and applicability of the proposed method. Based on numerical results, the proposed controller ensures that the states of the controlled fractional-order chaotic response system are asymptotically synchronized with the states of the drive system.Keywords: terminal sliding mode control, fractional-order calculus, chaotic systems, synchronization
Procedia PDF Downloads 40912261 Indoor Air Pollution Control Using a Soil Biofilter
Authors: Daisy B. Badilla, Peter A. Gostomski
Abstract:
Abstract: Biofiltration may be used to control indoor air pollution. In biofiltration, microorganisms break down harmful contaminants in air or water, transforming them into non-toxic substances like carbon dioxide, water, and biomass. In this study, the CO₂ production and the elimination capacity (EC) of toluene at inlet concentrations between 20 and 80 ppm were investigated using three biofilters operated separately with soil as bed material. Results showed soil, with its rich microflora taken to full advantage without inoculants and additional nutrients, biodegraded toluene at removal rates comparable to those in other studies at higher concentrations. The amount of CO₂ generated corresponds to the amount of toluene removed, indicating efficient biodegradation and suggesting stable long-term performance at these low concentrations. Although the concentrations in this study differ from typical indoor toluene levels (ppb), the findings suggest that biofiltration could be effective for indoor air pollution control with appropriate design, taking into account biomass growth or biofilm structure, concentration, and gas flow rate.Keywords: biofiltration, air pollution control, soil, toluene
Procedia PDF Downloads 1212260 Impact of Pulmonary Rehabilitation on Respiratory Parameters in Interstitial Lung Disease Patients: A Tertiary Care Hospital Study
Authors: Vivek Ku, A. K. Janmeja, D. Aggarwal, R. Gupta
Abstract:
Purpose: Pulmonary rehabilitation plays a key role in management of chronic lung diseases. However, pulmonary rehabilitation is an underused modality in the management of interstitial lung disease (ILD). This is because limited information is available in literature and no data is available from India on this issue so far. The study was carried out to evaluate the role of pulmonary rehabilitation on respiratory parameters in ILD patients. Methods: The present study was a prospective randomized non-blind case control study. Total of 40 ILD patients were randomized into 2 groups of 20 patients each viz ‘pulmonary rehabilitation group’ and ‘control group’. Pulmonary rehabilitation group underwent 8 weeks pulmonary rehabilitation (PR) along with medical management as per guidelines and the control group was advised only medical management. Results: Mean age in case group was 59.15 ± 10.39 years and in control group was 62.10 ± 14.54 years. The case and the control groups were matched for age and sex. Mean MRC grading at the end of 8 weeks showed significant improvement in the case group as compared to control group (p= 0.011 vs p = 0.655). Similarly, mean St. George Respiratory Questionnaire (SGRQ) score also showed significant improvement in pulmonary rehabilitation group at the end of the study (p= 0.001 vs p= 0.492). However, FEV1 and FVC had no significant change in the case and control group. Similarly, blood gases also did not show any significant difference in the group. Conclusion: Pulmonary rehabilitation improves breathlessness and thereby improves quality of life in the patients suffering from ILD. However, the pulmonary function values and blood gases are unaffected by pulmonary rehabilitation. Clinical Implications: Further large scale multicentre study is needed to ascertain the association.Keywords: ILD, pulmonary rehabilitation, quality of life, pulmonary functions
Procedia PDF Downloads 27012259 Intrathecal Fentanyl with 0.5% Bupivacaine Heavy in Chronic Opium Abusers
Authors: Suneet Kathuria, Shikha Gupta, Kapil Dev, Sunil Katyal
Abstract:
Chronic use of opioids in opium abusers can cause poor pain control and increased analgaesic requirement. We compared the duration of spinal anaesthesia in chronic opium abusers and non-abusers. This prospective randomised study included 60 American Society of Anesthesiologists (ASA) Grade I or II adults undergoing surgery under spinal anaesthesia with 10 mg bupivacaine, and 25 μg fentanyl in non-opium abusers (Group A); and chronic opium abusers (Group B), and 40 μg fentanyl in chronic opium abusers (Group C). Patients were assessed for onset and duration of sensory and motor blockade and duration of effective analgesia. Mean time to onset of adequate analgesia in opium abusers was significantly longer in chronic opium abusers than in opium-naive patients. The duration of sensory block and motor block was significantly less in chronic opium abusers than in non-opium abusers. Duration of effective analgesia in groups A, B and C was 255.55 ± 26.84, 217.85 ± 15.15, and 268.20 ± 18.25 minutes, respectively; this difference was statistically significant. In chronic opium abusers, the duration of spinal anaesthesia is significantly shorter than that in opium nonabusers. The duration of spinal anaesthesia with bupivacaine and fentanyl in chronic opium abusers can be improved by increasing the intrathecal fentanyl dose from 25 μg to 40 μg.Keywords: bupivacaine, chronic opium abusers, fentanyl, intrathecal
Procedia PDF Downloads 29712258 A609 Modeling of AC Servomotor Using Genetic Algorithm and Tests for Control of a Robotic Joint
Authors: J. G. Batista, T. S. Santiago, E. A. Ribeiro, G. A. P. Thé
Abstract:
This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measure and/or expected values.Keywords: modeling, AC servomotor, permanent magnet synchronous motor-PMSM, genetic algorithm, vector control, robotic manipulator, control
Procedia PDF Downloads 52012257 Association of Daily Physical Activity with Diabetes Control in Patients with Type II Diabetes
Authors: Chia-Hsun Chang
Abstract:
Background: Combination of drug treatment, dietary management, and regular exercise can effectively control type II diabetes mellitus (T2DM). Performing daily physical activities other than structured exercise is much easier and whether daily physical activities including work, walking, housework, gardening, leisure exercise, or transportation have a similar effect on diabetes control is not well studied.Aims and Objectives: This study aims to determine whether daily physical activity undertaken by patients with T2DM is associated with their diabetes control. Design: A correlation study with prospective design. Methods: Purposive sampling of 206 patients with T2DM was recruited from a medical center in Central Taiwan. The International Physical Activity Questionnaire was used to assess daily levels of physical activities, and the Diabetes Compliance Questionnaire was used to assess medication and dietary compliance. Data of diabetes control (hemoglobin A1c, HbA1c)were followed up every three months for one year after recruitment. Results: In this study, the average age of the participants was 62.5 years (±10.4 years), and the average duration of diabetes since diagnosis was 13.2 years (±7.8), 112 of the participants were women (54.4%) and 94 of the participants were men (45.6%). The mean HbA1c level was 7.8% (±1.4), and 78.2% of the participants presented with unsatisfactory diabetes control. Because the participants were distributed across a wide age range, and their physical health, activity levels, and comorbidities might have varied with age, the participants were divided into two groups: 121 participants who were younger than 65 years (58.7%) and 85 participants who were older than 65 years (41.3%). Both younger (< 65 years) and older (> 65 years) patients with diabetes engaged in more moderate and low levels of physical activity (89.3% and 87%, respectively). Results showed that the levels of daily physical activity were not significantly associated with diabetes control after adjustment for medication and dietary compliance in both groups. Conclusion: Performing daily physical activity is not significantly correlated with diabetes control. Daily physical activity cannot completely replace exercise. Relevance to Clinical Practice: Health personnel must encourage patients to engage in exercise that is planned, structured, and repetitive for improving diabetes control.Keywords: daily physical activity, diabetes control, international physical activity questionnaire (IPAQ), type II diabetes mellitus (T2DM)
Procedia PDF Downloads 16912256 Implementation of State-Space and Super-Element Techniques for the Modeling and Control of Smart Structures with Damping Characteristics
Authors: Nader Ghareeb, Rüdiger Schmidt
Abstract:
Minimizing the weight in flexible structures means reducing material and costs as well. However, these structures could become prone to vibrations. Attenuating these vibrations has become a pivotal engineering problem that shifted the focus of many research endeavors. One technique to do that is to design and implement an active control system. This system is mainly composed of a vibrating structure, a sensor to perceive the vibrations, an actuator to counteract the influence of disturbances, and finally a controller to generate the appropriate control signals. In this work, two different techniques are explored to create two different mathematical models of an active control system. The first model is a finite element model with a reduced number of nodes and it is called a super-element. The second model is in the form of state-space representation, i.e. a set of partial differential equations. The damping coefficients are calculated and incorporated into both models. The effectiveness of these models is demonstrated when the system is excited by its first natural frequency and an active control strategy is developed and implemented to attenuate the resulting vibrations. Results from both modeling techniques are presented and compared.Keywords: damping coefficients, finite element analysis, super-element, state-space model
Procedia PDF Downloads 32012255 Predictors of Behavior Modification Prior to Bariatric Surgery
Authors: Rosemarie Basile, Maria Loizos, John Pallarino, Karen Gibbs
Abstract:
Given that complications can be significant following bariatric surgery and with rates of long-term success measured in excess weight loss varying as low as 33% after five years, an understanding of the psychological factors that may mitigate findings and increase success and result in better screening and supports prior to surgery are critical. An internally oriented locus of control (LOC) has been identified as a predictor for success in obesity therapy, but has not been investigated within the context of bariatric surgery. It is hypothesized that making behavioral changes prior to surgery which mirror those that are required post-surgery may ultimately predict long-term success. 122 subjects participated in a clinical interview and completed self-report measures including the Multidimensional Health Locus of Control Scale, Overeating Questionnaire (OQ), and Lifestyle Questionnaire (LQ). Pearson correlations were computed between locus of control orientation and likelihood to make behavior changes prior to surgery. Pearson correlations revealed a positive correlation between locus of control and likelihood to make behavior changes r = 0.23, p < .05. As hypothesized, there was a significant correlation between internal locus of control and likelihood to make behavior changes. Participants with a higher LOC believe that they are able to make decisions about their own health. Future research will focus on whether this positive correlation is a predictor for future bariatric surgery success.Keywords: bariatric surgery, behavior modification, health locus of control, overeating questionnaire
Procedia PDF Downloads 31312254 The Analysis of Increment of Road Traffic Accidents in Libya: Case Study City of Tripoli
Authors: Fares Elturki, Shaban Ismael Albrka Ali Zangena, H. A. M. Yahia
Abstract:
Safety is an important consideration in the design and operation of streets and highways. Traffic and highway engineers working with law enforcement officials are constantly seeking for better methods to ensure safety for motorists and pedestrians. Also, a highway safety improvement process involves planning, implementation, and evaluation. The planning process requires that engineers collect and maintain traffic safety data, identify the hazards location, conduct studies and establish project priorities. Unfortunately, in Libya, the increase in demand for private transportation in recent years, due to poor or lack of public transportation led to some traffic problems especially in the capital (Tripoli). Also, the growth of private transportation has significant influences on the society regarding road traffic accidents (RTAs). This study investigates the most critical factors affect RTAs in Tripoli the capital city of Libya. Four main classifications were chosen to build the questionnaire, namely; human factors, road factors, vehicle factors and environmental factors. Moreover, a quantitative method was used to collect the data from the field, the targeted sample size 400 respondents include; drivers, pedestrian and passengers and relative importance index (RII) were used to rank the factors of one group and between all groups. The results show that the human factors have the most significant impacts compared with other factors. Also, 84% of respondents considered the over speeding as the most significant factor cusses of RTAs while 81% considered the disobedience to driving regulations as the second most influential factor in human factors. Also, the results showed that poor brakes or brake failure factor a great impact on the RTAs among the vehicle factors with nearly 74%, while 79% categorized poor or no street lighting factor as one of the most effective factors on RTAs in road factors and third effecting factor concerning all factors. The environmental factors have the slights influences compared with other factors.Keywords: road traffic accidents, Libya, vehicle factors, human factors, relative importance index
Procedia PDF Downloads 27912253 Bandwidth Control Using Reconfigurable Antenna Elements
Authors: Sudhina H. K, Ravi M. Yadahalli, N. M. Shetti
Abstract:
Reconfigurable antennas represent a recent innovation in antenna design that changes from classical fixed-form, Fixed function antennas to modifiable structures that can be adapted to fit the requirements of a time varying system. The ability to control the operating band of an antenna system can have many useful applications. Systems that operate in an acquire-and-track configuration would see a benefit from active bandwidth control. In such systems a wide band search mode is first employed to find a desired signal, Then a narrow band track mode is used to follow only that signal. Utilizing active antenna bandwidth control, A single antenna would function for both the wide band and narrow band configurations providing the rejection of unwanted signals with the antenna hardware. This ability to move a portion of the RF filtering out of the receiver and onto the antenna itself will also aid in reducing the complexity of the often expensive RF processing subsystems.Keywords: designing methods, mems, stack, reconfigurable elements
Procedia PDF Downloads 27212252 Field Application of Trichoderma Harzianum for Biological Control of Root-Knot Nematodes in Summer Tomatoes
Authors: Baharullah Khattak, Saifullah
Abstract:
To study the efficacy of the selected Trichoderma isolates, field trials were conducted in the root-knot nematode-infested areas of Dargai and Swat, Pakistan. Four isolates of T. harzianum viz, Th-1, Th-2, Th-9 and Th-15 were tested against root knot nematodes on summer tomatoes under field conditions. The T. harzianum isolates, grown on wheat grains substrate, were applied @ 8 g plant-1, either alone or in different combinations. Root weight of tomato plants was reduced Th-9 as compared to 26.37 g in untreated control. Isolate Th-1 was found to enhance shoot and root lengths to the maximum levels of 78.76 cm and 19.59 cm, respectively. Tomato shoot weight was significantly increased (65.36g) in Th-1-treated plots as compared to 49.66 g in control. Maximum (156) number of flowers plant-1 and highest (48.18%) fruit set plant-1 was observed in Th-1 treated plots, while there were 87 flowers and 35.50% fruit set in the untreated control. Maximum fruit weight (70.97 g) plant-1 and highest (17.99 t ha-1) marketable yield were recorded in the treatments where T. harzianum isolate Th-1 was used, in comparison to 51.33 g tomato fruit weight and 9.90 t ha-1 yield was noted in the control plots. It was observed that T. harzianum isolates significantly reduced the nematode populations. The fungus enhanced plant growth and yield in all the treated plots. Jabban isolate (Th-1) was found as the most effective in nematode suppression followed by Shamozai (Th-9) isolate. It was concluded from the present findings that T. harzianum has a potential bio control capability against root-knot nematodes.Keywords: biological control, Trichoderma harzianum, root-knot nematode, meloidogyne
Procedia PDF Downloads 49612251 Implementation of a Predictive DTC-SVM of an Induction Motor
Authors: Chebaani Mohamed, Gplea Amar, Benchouia Mohamed Toufik
Abstract:
Direct torque control is characterized by the merits of fast response, simple structure and strong robustness to the motor parameters variations. This paper proposes the implementation of DTC-SVM of an induction motor drive using Predictive controller. The principle of the method is explained and the system mathematical description is provided. The derived control algorithm is implemented both in the simulation software MatLab/Simulink and on the real induction motor drive with dSPACE control system. Simulated and measured results in steady states and transients are presented.Keywords: induction motor, DTC-SVM, predictive controller, implementation, dSPACE, Matlab, Simulink
Procedia PDF Downloads 51812250 Disaster Risk Reduction (DRR) through Harvesting Encosternum delegorguei Insect (Harurwa) in Nerumedzo, Bikita District, Zimbabwe
Authors: Mkhokheli Sithole, Brenda N. Muchapondwa
Abstract:
Food security is becoming a critical issue for people residing mainly in the rural areas where frequent droughts interrupt food production, reduce income, compromise the ability to save and erode livelihoods. This tends to increase the vulnerability of poor households to food and income insecurity, hence, malnutrition. There is an emerging need for DRR strategies to complement the existing rain fed crop production based livelihoods. One of such strategies employed by the community of Nerumedzo in Bikita district is the harvesting of Encosternum delegorguei insect. This article analyses the livelihood impacts of Encosternum delegorguei insect as a DRR strategy. The research used a combination of qualitative and quantitative approaches. The insect samples were tested in the laboratory for their nutritional composition while surveys were done on a sample of 40 community members. Participatory observations and 5 focus group discussions were also done. The results revealed that harvesting the Encosternum delegorguei insects provides a livelihood for the locals by complementing crop production thereby mitigating potential negative effects of frequent droughts. The insects are now a significant source of income to poor households in the community.Keywords: disaster risk reduction, livelihoods, human, social sciences
Procedia PDF Downloads 19512249 Assessing the Contribution of Informal Buildings to Energy Inefficiency in Kenya: A Case of Mukuru Slums
Authors: Bessy Thuranira
Abstract:
Buildings, as they are designed and used, may contribute to serious environmental problems because of excessive consumption of energy and other natural resources. Buildings in the informal settlements particularly, due to their unplanned physical structure and design, have significantly contributed the global energy problematic scenario typified by high-level inefficiencies. Energy used in buildings in Africa is estimated to be the highest of the total national electricity consumption. Over the last decade, assessments of energy consumption and efficiency/inefficiency has focused on formal and modern buildings. This study seeks to go off the beaten path, by focusing on energy use in informal settlements. Operationally, it sought to establish the contribution of informal buildings in the overall energy consumption in the city and the country at large. This study was carried out in Mukuru kwa Reuben informal settlement where there is distinct manifestation of different settlement morphologies within a small locality. The research narrowed down to three villages (Mombasa, Kosovo and Railway villages) within the settlement, that were representative of the different slum housing typologies. Due to the unpredictability nature and informality in slums, this study takes a multi-methodology approach. Detailed energy audits and measurements are carried out to predict total building consumption, and document building design and envelope, typology, materials and occupancy levels. Moreover, the study uses semi-structured interviews and to access energy supply, cost, access and consumption patterns. Observations and photographs are also used to shed more light on these parameters. The study reveals the high energy inefficiencies in slum buildings mainly related to sub-standard equipment and appliances, building design and settlement layout, poor access and utilization/consumption patterns of energy. The impacts of this inefficiency are high economic burden to the poor, high levels of pollution, lack of thermal comfort and emissions to the environment. The study highlights a set of urban planning and building design principles that can be used to retrofit slums into more energy efficient settlements. The study explores principles of responsive settlement layouts/plans and appropriate building designs that use the beneficial elements of nature to achieve natural lighting, natural ventilation, and solar control to create thermally comfortable, energy efficient, and environmentally responsive buildings/settlements. As energy efficiency in informal settlements is a relatively less explored area of efficiency, it requires further research and policy recommendations, for which this paper will set a background.Keywords: energy efficiency, informal settlements, renewable energy, settlement layout
Procedia PDF Downloads 13112248 Balancing a Rotary Inverted Pendulum System Using Robust Generalized Dynamic Inverse: Design and Experiment
Authors: Ibrahim M. Mehedi, Uzair Ansari, Ubaid M. Al-Saggaf, Abdulrahman H. Bajodah
Abstract:
This paper presents a methodology for balancing a rotary inverted pendulum system using Robust Generalized Dynamic Inversion (RGDI) under influence of parametric variations and external disturbances. In GDI control, dynamic constraints are formulated in the form of asymptotically stable differential equation which encapsulates the control objectives. The constraint differential equations are based on the deviation function of the angular position and its rates from their reference values. The constraint dynamics are inverted using Moore-Penrose Generalized Inverse (MPGI) to realize the control expression. The GDI singularity problem is addressed by augmenting a dynamic scale factor in the interpretation of MPGI which guarantee asymptotically stable position tracking. An additional term based on Sliding Mode Control is appended within GDI control to make it robust against parametric variations, disturbances and tracking performance deterioration due to generalized inversion scaling. The stability of the closed loop system is ensured by using positive definite Lyapunov energy function that guarantees semi-global practically stable position tracking. Numerical simulations are conducted on the dynamic model of rotary inverted pendulum system to analyze the efficiency of proposed RGDI control law. The comparative study is also presented, in which the performance of RGDI control is compared with Linear Quadratic Regulator (LQR) and is verified through experiments. Numerical simulations and real-time experiments demonstrate better tracking performance abilities and robustness features of RGDI control in the presence of parametric uncertainties and disturbances.Keywords: generalized dynamic inversion, lyapunov stability, rotary inverted pendulum system, sliding mode control
Procedia PDF Downloads 17212247 Dynamic Balance and Functional Performance in Total Hip Arthroplasty
Authors: Mahmoud Ghazy, Ahmed R. Z. Baghdadi
Abstract:
Background: With the perceived pain and poor function experienced following total hip Arthroplasty (THA), patients usually feel un-satisfied. Methods: Thirty patients with THA (group I) and thirty indicated for arthroplasty but weren’t operated on yet (group II) participated in the study. The mean age was 54.53±3.44 and 55.33±2.32 years and BMI 35.7±3.03 and 35.73±1.03 kg/m2 for group I and III respectively. The Berg Balance Scale (BBS), Timed Up-and-Go (TUG) and Stair-Climbing (SC) tests were used for assessment. Assessments were conducted four weeks pre- and post-operatively and three months post-operatively with the control group being assessed at the same time intervals. The post-operative rehabilitation involved hospitalization (1st week), home-based (2nd-4th weeks), and outpatient clinic (5th-12th weeks) programs. Results: group I had significantly lower TUG and SC time compared with group II four weeks and three months post-operatively. Moreover, the BBS scores increased significantly and the pain scores and TUG and SC time decreased significantly four weeks and three months post-operatively compared with four weeks pre- operatively in group. But no significant differences in BBS scores four weeks and three months post-operatively in group I compared with group II. Interpretation/Conclusion : Patients with THA still have defects in proprioception, so they needs more concentration on proprioception training.Keywords: dynamic balance, functional performance, hip arthroplasty, total
Procedia PDF Downloads 37212246 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids
Authors: Niklas Panten, Eberhard Abele
Abstract:
This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control
Procedia PDF Downloads 19512245 Augmented ADRC for Trajectory Tracking of a Novel Hydraulic Spherical Motion Mechanism
Authors: Bin Bian, Liang Wang
Abstract:
A hydraulic spherical motion mechanism (HSMM) is proposed. Unlike traditional systems using serial or parallel mechanisms for multi-DOF rotations, the HSMM is capable of implementing continuous 2-DOF rotational motions in a single joint without the intermediate transmission mechanisms. It has some advantages of compact structure, low inertia and high stiffness. However, as HSMM is a nonlinear and multivariable system, it is very complicate to realize accuracy control. Therefore, an augmented active disturbance rejection controller (ADRC) is proposed in this paper. Compared with the traditional PD control method, three compensation items, i.e., dynamics compensation term, disturbance compensation term and nonlinear error elimination term, are added into the proposed algorithm to improve the control performance. The ADRC algorithm aims at offsetting the effects of external disturbance and realizing accurate control. Euler angles are applied to describe the orientation of rotor. Lagrange equations are utilized to establish the dynamic model of the HSMM. The stability of this algorithm is validated with detailed derivation. Simulation model is formulated in Matlab/Simulink. The results show that the proposed control algorithm has better competence of trajectory tracking in the presence of uncertainties.Keywords: hydraulic spherical motion mechanism, dynamic model, active disturbance rejection control, trajectory tracking
Procedia PDF Downloads 10512244 Development of an Interactive Display-Control Layout Design System for Trains Based on Train Drivers’ Mental Models
Authors: Hyeonkyeong Yang, Minseok Son, Taekbeom Yoo, Woojin Park
Abstract:
Human error is the most salient contributing factor to railway accidents. To reduce the frequency of human errors, many researchers and train designers have adopted ergonomic design principles for designing display-control layout in rail cab. There exist a number of approaches for designing the display control layout based on optimization methods. However, the ergonomically optimized layout design may not be the best design for train drivers, since the drivers have their own mental models based on their experiences. Consequently, the drivers may prefer the existing display-control layout design over the optimal design, and even show better driving performance using the existing design compared to that using the optimal design. Thus, in addition to ergonomic design principles, train drivers’ mental models also need to be considered for designing display-control layout in rail cab. This paper developed an ergonomic assessment system of display-control layout design, and an interactive layout design system that can generate design alternatives and calculate ergonomic assessment score in real-time. The design alternatives generated from the interactive layout design system may not include the optimal design from the ergonomics point of view. However, the system’s strength is that it considers train drivers’ mental models, which can help generate alternatives that are more friendly and easier to use for train drivers. Also, with the developed system, non-experts in ergonomics, such as train drivers, can refine the design alternatives and improve ergonomic assessment score in real-time.Keywords: display-control layout design, interactive layout design system, mental model, train drivers
Procedia PDF Downloads 30612243 Design of a Photovoltaic Power Generation System Based on Artificial Intelligence and Internet of Things
Authors: Wei Hu, Wenguang Chen, Chong Dong
Abstract:
In order to improve the efficiency and safety of photovoltaic power generation devices, this photovoltaic power generation system combines Artificial Intelligence (AI) and the Internet of Things (IoT) to control the chasing photovoltaic power generation device to track the sun to improve power generation efficiency and then convert energy management. The system uses artificial intelligence as the control terminal, the power generation device executive end uses the Linux system, and Exynos4412 is the CPU. The power generating device collects the sun image information through Sony CCD. After several power generating devices feedback the data to the CPU for processing, several CPUs send the data to the artificial intelligence control terminal through the Internet. The control terminal integrates the executive terminal information, time information, and environmental information to decide whether to generate electricity normally and then whether to convert the converted electrical energy into the grid or store it in the battery pack. When the power generation environment is abnormal, the control terminal authorizes the protection strategy, the power generation device executive terminal stops power generation and enters a self-protection posture, and at the same time, the control terminal synchronizes the data with the cloud. At the same time, the system is more intelligent, more adaptive, and longer life.Keywords: photo-voltaic power generation, the pursuit of light, artificial intelligence, internet of things, photovoltaic array, power management
Procedia PDF Downloads 12312242 Nonlinear Control of Mobile Inverted Pendulum: Theory and Experiment
Authors: V. Sankaranarayanan, V. Amrita Sundari, Sunit P. Gopal
Abstract:
This paper presents the design and implementation of a nonlinear controller for the point to point control of a mobile inverted pendulum (MIP). The controller is designed based on the kinematic model of the MIP to stabilize all the four coordinates. The stability of the closed-loop system is proved using Lyapunov stability theory. The proposed controller is validated through numerical simulations and also implemented in a laboratory prototype. The results are presented to evaluate the performance of the proposed closed loop system.Keywords: mobile inverted pendulum, switched control, nonlinear systems, lyapunov stability
Procedia PDF Downloads 32812241 An Axiomatic Model for Development of the Allocated Architecture in Systems Engineering Process
Authors: Amir Sharahi, Reza Tehrani, Ali Mollajan
Abstract:
The final step to complete the “Analytical Systems Engineering Process” is the “Allocated Architecture” in which all Functional Requirements (FRs) of an engineering system must be allocated into their corresponding Physical Components (PCs). At this step, any design for developing the system’s allocated architecture in which no clear pattern of assigning the exclusive “responsibility” of each PC for fulfilling the allocated FR(s) can be found is considered a poor design that may cause difficulties in determining the specific PC(s) which has (have) failed to satisfy a given FR successfully. The present study utilizes the Axiomatic Design method principles to mathematically address this problem and establishes an “Axiomatic Model” as a solution for reaching good alternatives for developing the allocated architecture. This study proposes a “loss Function”, as a quantitative criterion to monetarily compare non-ideal designs for developing the allocated architecture and choose the one which imposes relatively lower cost to the system’s stakeholders. For the case-study, we use the existing design of U. S. electricity marketing subsystem, based on data provided by the U.S. Energy Information Administration (EIA). The result for 2012 shows the symptoms of a poor design and ineffectiveness due to coupling among the FRs of this subsystem.Keywords: allocated architecture, analytical systems engineering process, functional requirements (FRs), physical components (PCs), responsibility of a physical component, system’s stakeholders
Procedia PDF Downloads 40812240 Disposal Behavior of Extreme Poor People Living in Guatemala at the Base of the Pyramid
Authors: Katharina Raab, Ralf Wagner
Abstract:
With the decrease of poverty, the focus on the solid waste challenge shifts away from affluent, mostly Westernized consumers to the base of the pyramid. The relevance of considering the disposal behavior of impoverished people arises from improved welfare, leading to an increase in consumption opportunities and, consequently, of waste production. In combination with the world’s growing population the relevance of the topic increases, because solid waste management has global impacts on consumers’ welfare. The current annual municipal solid waste generation is estimated to 1.9 billion tonnes, 30% remains uncollected. As for the collected 70% is landfilling and dumping, 19% is recycled or recovered, 11% is led to energy recovery facilities. Therefore, aim is to contribute by adding first insights about poor people's disposal behaviors, including the framing of their rationalities, emotions and cognitions. The study provides novel empirical results obtained from qualitative semi-structured in-depth interviews near Guatemala City. In the study’s framework consumers have to choose from three options when deciding what to do with their obsolete possessions: Keeping the product: The main reason for this is the respondent´s emotional attachment to a product. Further, there is a willingness to use the same product under a different scope when it loses its functionality–they recycle their belongings in a customized and sustainable way. Permanently disposing of the product: The study reveals two dominant disposal methods: burning in front of their homes and throwing away in the physical environment. Respondents clearly recognized the disadvantages of burning toxic durables, like electronics. Giving a product away as a gift supports the integration of individuals in their peer networks of family and friends. Temporarily disposing of the product: Was not mentioned–to be specific, rent or lend a product to someone else was out of question. Contrasting the background to which extend poor people are aware of the consequences of their disposal decisions and how they feel about and rationalize their actions were quite unexpected. Respondents reported that they are worried about future consequences with impacts they cannot anticipate now–they are aware that their behaviors harm their health and the environment. Additionally, they expressed concern about the impact this disposal behavior would have on others’ well-being and are therefore sensitive to the waste that surrounds them. Concluding, the BoP-framed life and Westernized consumption, both fit in a circular economy pattern, but the nature of how to recycle and dispose separates these two societal groups. Both systems own a solid waste management system, but people living in slum-type districts and rural areas of poor countries are less interested in connecting to the system–they are primarily afraid of the costs. Further, it can be said that a consumer’s perceived effectiveness is distinct from environmental concerns, but contributes to forecasting certain pro-ecological behaviors. Considering the rationales underlying disposal decisions, thoughtfulness is a well-established determinant of disposition behavior. The precipitating events, emotions and decisions associated with the act of disposing of products are important because these decisions can trigger different results for the disposal process.Keywords: base of the pyramid, disposal behavior, poor consumers, solid waste
Procedia PDF Downloads 171