Search results for: named data networking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25784

Search results for: named data networking

24914 Definition and Core Components of the Role-Partner Allocation Problem in Collaborative Networks

Authors: J. Andrade-Garda, A. Anguera, J. Ares-Casal, M. Hidalgo-Lorenzo, J.-A. Lara, D. Lizcano, S. Suárez-Garaboa

Abstract:

In the current constantly changing economic context, collaborative networks allow partners to undertake projects that would not be possible if attempted by them individually. These projects usually involve the performance of a group of tasks (named roles) that have to be distributed among the partners. Thus, an allocation/matching problem arises that will be referred to as Role-Partner Allocation problem. In real life this situation is addressed by negotiation between partners in order to reach ad hoc agreements. Besides taking a long time and being hard work, both historical evidence and economic analysis show that such approach is not recommended. Instead, the allocation process should be automated by means of a centralized matching scheme. However, as a preliminary step to start the search for such a matching mechanism (or even the development of a new one), the problem and its core components must be specified. To this end, this paper establishes (i) the definition of the problem and its constraints, (ii) the key features of the involved elements (i.e., roles and partners); and (iii) how to create preference lists both for roles and partners. Only this way it will be possible to conduct subsequent methodological research on the solution method.     

Keywords: collaborative network, matching, partner, preference list, role

Procedia PDF Downloads 233
24913 Community Base Peacebuilding in Fragile Context

Authors: Nizar Ahmad

Abstract:

Peace without community participation will remain a vision, so, this study presents the contribution and efforts made by community base organization in views of local conflict affect population in Pakhtun society. A four conflict affected villages of Malakad Division were selected and a sample size of 278 household respondents were determined through online survey system software out of total 982 households. A Chi-square test was applied to ascertain association between various communication base organizations factors with state of peace in the area. It was found that provision of humanitarian aid, rehabilitation of displaced population, rebuilding of trust in government and peace festivals by communication organization had significant association with state of peace in the area. In contrast provision of training, peace education monitoring and reporting of human rights violation in war zone by local organization was non-significantly related to the state of peace in the area. Community base organization play an active role in building peace in the area but lack capacity, linkages with external actors and outside support. National and international organization actors working in the area of peace and conflict resolution need to focus on the capacity, networking and peace initiatives of local organizations working in fragile context.

Keywords: community base peacebuilding, conflict resolution, terrorism, violence

Procedia PDF Downloads 280
24912 BigCrypt: A Probable Approach of Big Data Encryption to Protect Personal and Business Privacy

Authors: Abdullah Al Mamun, Talal Alkharobi

Abstract:

As data size is growing up, people are became more familiar to store big amount of secret information into cloud storage. Companies are always required to need transfer massive business files from one end to another. We are going to lose privacy if we transmit it as it is and continuing same scenario repeatedly without securing the communication mechanism means proper encryption. Although asymmetric key encryption solves the main problem of symmetric key encryption but it can only encrypt limited size of data which is inapplicable for large data encryption. In this paper we propose a probable approach of pretty good privacy for encrypt big data using both symmetric and asymmetric keys. Our goal is to achieve encrypt huge collection information and transmit it through a secure communication channel for committing the business and personal privacy. To justify our method an experimental dataset from three different platform is provided. We would like to show that our approach is working for massive size of various data efficiently and reliably.

Keywords: big data, cloud computing, cryptography, hadoop, public key

Procedia PDF Downloads 320
24911 Implementation of Big Data Concepts Led by the Business Pressures

Authors: Snezana Savoska, Blagoj Ristevski, Violeta Manevska, Zlatko Savoski, Ilija Jolevski

Abstract:

Big data is widely accepted by the pharmaceutical companies as a result of business demands create through legal pressure. Pharmaceutical companies have many legal demands as well as standards’ demands and have to adapt their procedures to the legislation. To manage with these demands, they have to standardize the usage of the current information technology and use the latest software tools. This paper highlights some important aspects of experience with big data projects implementation in a pharmaceutical Macedonian company. These projects made improvements of their business processes by the help of new software tools selected to comply with legal and business demands. They use IT as a strategic tool to obtain competitive advantage on the market and to reengineer the processes towards new Internet economy and quality demands. The company is required to manage vast amounts of structured as well as unstructured data. For these reasons, they implement projects for emerging and appropriate software tools which have to deal with big data concepts accepted in the company.

Keywords: big data, unstructured data, SAP ERP, documentum

Procedia PDF Downloads 271
24910 Saving Energy at a Wastewater Treatment Plant through Electrical and Production Data Analysis

Authors: Adriano Araujo Carvalho, Arturo Alatrista Corrales

Abstract:

This paper intends to show how electrical energy consumption and production data analysis were used to find opportunities to save energy at Taboada wastewater treatment plant in Callao, Peru. In order to access the data, it was used independent data networks for both electrical and process instruments, which were taken to analyze under an ISO 50001 energy audit, which considered, thus, Energy Performance Indexes for each process and a step-by-step guide presented in this text. Due to the use of aforementioned methodology and data mining techniques applied on information gathered through electronic multimeters (conveniently placed on substation switchboards connected to a cloud network), it was possible to identify thoroughly the performance of each process and thus, evidence saving opportunities which were previously hidden before. The data analysis brought both costs and energy reduction, allowing the plant to save significant resources and to be certified under ISO 50001.

Keywords: energy and production data analysis, energy management, ISO 50001, wastewater treatment plant energy analysis

Procedia PDF Downloads 193
24909 An Investigation into the Impact of Techno-Entrepreneurship Education on Self-Employment

Authors: Farnaz Farzin, Julie C. Thomson, Rob Dekkers, Geoff Whittam

Abstract:

Research has shown that techno-entrepreneurship is economically significant. Therefore, it is suggested that teaching techno-entrepreneurship may be important because such programmes would prepare current and future generations of learners to recognize and act on high-technology opportunities. Education in techno-entrepreneurship may increase the knowledge of how to start one’s own enterprise and recognize the technological opportunities for commercialisation to improve decision-making about starting a new venture; also it influence decisions about capturing the business opportunities and turning them into successful ventures. Universities can play a main role in connecting and networking techno-entrepreneurship students towards a cooperative attitude with real business practice and industry knowledge. To investigate and answer whether education for techno-entrepreneurs really helps, this paper chooses a comparison of literature reviews as its method of research. Then, 6 different studies were selected. These particular papers were selected based on a keywords search and as their aim, objectives, and gaps were close to the current research. In addition, they were all based on the influence of techno-entrepreneurship education in self-employment and intention of students to start new ventures. The findings showed that teaching techno-entrepreneurship education may have an influence on students’ intention and their future self-employment, but which courses should be covered and the duration of programmes needs further investigation.

Keywords: techno entrepreneurship education, training, higher education, intention, self-employment

Procedia PDF Downloads 337
24908 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network

Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar

Abstract:

Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.

Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network

Procedia PDF Downloads 517
24907 System and Method for Providing Web-Based Remote Application Service

Authors: Shuen-Tai Wang, Yu-Ching Lin, Hsi-Ya Chang

Abstract:

With the development of virtualization technologies, a new type of service named cloud computing service is produced. Cloud users usually encounter the problem of how to use the virtualized platform easily over the web without requiring the plug-in or installation of special software. The object of this paper is to develop a system and a method enabling process interfacing within an automation scenario for accessing remote application by using the web browser. To meet this challenge, we have devised a web-based interface that system has allowed to shift the GUI application from the traditional local environment to the cloud platform, which is stored on the remote virtual machine. We designed the sketch of web interface following the cloud virtualization concept that sought to enable communication and collaboration among users. We describe the design requirements of remote application technology and present implementation details of the web application and its associated components. We conclude that this effort has the potential to provide an elastic and resilience environment for several application services. Users no longer have to burden the system maintenances and reduce the overall cost of software licenses and hardware. Moreover, this remote application service represents the next step to the mobile workplace, and it lets user to use the remote application virtually from anywhere.

Keywords: virtualization technology, virtualized platform, web interface, remote application

Procedia PDF Downloads 288
24906 Reflections of Young Language Learners’ and Teacher Candidates’ for ‘Easy English’ Project

Authors: F. Özlem Saka

Abstract:

There should be connections between universities and state schools in order to improve the quality of instruction. ELT department of Akdeniz University carries out a project named ‘Easy English’ with a state primary school in Antalya for 2 years. According to the Project requirements, junior students at university teach English to 3rd grade primary school students during the term. They are supposed to teach the topics planned before, preparing different activities for the students. This study reflects the ideas of both students at university and at state school related to the language programme carried out. Their ideas have been collected with a questionnaire consisting of similar structured questions. The result shows that both groups like the programme and evaluate it from their own perspectives. It is believed the efficient results of this project will lead to planning similar programmes for different levels. From this study, curriculum planners and teachers can get ideas to improve language teaching at primary level as both university students, being the teachers in the project and students at state primary school have positive feelings and thoughts about it.

Keywords: foreign language teacher training, games in English teaching, songs in English teaching, teaching English to young learners

Procedia PDF Downloads 200
24905 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.

Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction

Procedia PDF Downloads 537
24904 Hierarchical Checkpoint Protocol in Data Grids

Authors: Rahma Souli-Jbali, Minyar Sassi Hidri, Rahma Ben Ayed

Abstract:

Grid of computing nodes has emerged as a representative means of connecting distributed computers or resources scattered all over the world for the purpose of computing and distributed storage. Since fault tolerance becomes complex due to the availability of resources in decentralized grid environment, it can be used in connection with replication in data grids. The objective of our work is to present fault tolerance in data grids with data replication-driven model based on clustering. The performance of the protocol is evaluated with Omnet++ simulator. The computational results show the efficiency of our protocol in terms of recovery time and the number of process in rollbacks.

Keywords: data grids, fault tolerance, clustering, chandy-lamport

Procedia PDF Downloads 341
24903 An Observation of the Information Technology Research and Development Based on Article Data Mining: A Survey Study on Science Direct

Authors: Muhammet Dursun Kaya, Hasan Asil

Abstract:

One of the most important factors of research and development is the deep insight into the evolutions of scientific development. The state-of-the-art tools and instruments can considerably assist the researchers, and many of the world organizations have become aware of the advantages of data mining for the acquisition of the knowledge required for the unstructured data. This paper was an attempt to review the articles on the information technology published in the past five years with the aid of data mining. A clustering approach was used to study these articles, and the research results revealed that three topics, namely health, innovation, and information systems, have captured the special attention of the researchers.

Keywords: information technology, data mining, scientific development, clustering

Procedia PDF Downloads 278
24902 Security in Resource Constraints: Network Energy Efficient Encryption

Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy

Abstract:

Wireless nodes in a sensor network gather and process critical information designed to process and communicate, information flooding through such network is critical for decision making and data processing, the integrity of such data is one of the most critical factors in wireless security without compromising the processing and transmission capability of the network. This paper presents mechanism to securely transmit data over a chain of sensor nodes without compromising the throughput of the network utilizing available battery resources available at the sensor node.

Keywords: hybrid protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node data processing, Z-MAC

Procedia PDF Downloads 145
24901 Data Mining Techniques for Anti-Money Laundering

Authors: M. Sai Veerendra

Abstract:

Today, money laundering (ML) poses a serious threat not only to financial institutions but also to the nation. This criminal activity is becoming more and more sophisticated and seems to have moved from the cliché of drug trafficking to financing terrorism and surely not forgetting personal gain. Most of the financial institutions internationally have been implementing anti-money laundering solutions (AML) to fight investment fraud activities. However, traditional investigative techniques consume numerous man-hours. Recently, data mining approaches have been developed and are considered as well-suited techniques for detecting ML activities. Within the scope of a collaboration project on developing a new data mining solution for AML Units in an international investment bank in Ireland, we survey recent data mining approaches for AML. In this paper, we present not only these approaches but also give an overview on the important factors in building data mining solutions for AML activities.

Keywords: data mining, clustering, money laundering, anti-money laundering solutions

Procedia PDF Downloads 537
24900 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.

Authors: Zabeehullah, Fahim Arif, Yawar Abbas

Abstract:

Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.

Keywords: SDN, IoT, DL, ML, DRS

Procedia PDF Downloads 110
24899 Intimate Partner Violence Concerns during COVID-19 Pandemic

Authors: Fatemeh Abdollahi, Munn-Sann Lye, Jamshid Yazdani Charati, Mehran Zarghami

Abstract:

Background: In March 2020, the World Health Organization (WHO) declared the outbreak of a new coronavirus disease, COVID-19, as a public health concern and pandemic. This situation is generating psychological consequences such as stress, anxiety, depression, and intimate partner violence (IPV) throughout the population. This is a brief note on the magnitude of this threat and different ways for abused women to minimize the effects of it in their daily life. Methods: A literature review was conducted using the MEDLINE, PSYCHINFO, and SCIENCE DIRECT databases. The keywords used included intimate partner violence, abuse, victims, pandemic, quarantine, coronavirus, and COVID-19. A Google search was also conducted using these words to identify reports published in non-indexed health care and social science journals. The literature search was restricted to English language studies. Results: The prevalence of IPV and its consequences are rising during such a pandemic. Having sufficient support from healthcare workers and acquaintances is critical for women in such circumstances. Conclusion: Community members, healthcare providers, governments, and policymakers should be informed of the increased risk of IPV during such a pandemic. They should provide a supporting structure for abused women. Social networking is also a good approach that could help abusive women during this situation.

Keywords: covid-19, intimate partner violence, pandemic, women

Procedia PDF Downloads 64
24898 About the State of Students’ Career Guidance in the Conditions of Inclusive Education in the Republic of Kazakhstan

Authors: Laura Butabayeva, Svetlana Ismagulova, Gulbarshin Nogaibayeva, Maiya Temirbayeva, Aidana Zhussip

Abstract:

Over the years of independence, Kazakhstan has not only ratified international documents regulating the rights of children to Inclusive education, but also developed its own inclusive educational policy. Along with this, the state pays particular attention to high school students' preparedness for professional self-determination. However, a number of problematic issues in this field have been revealed, such as the lack of systemic mechanisms coordinating stakeholders’ actions in preparing schoolchildren for a conscious choice of in-demand profession, meeting their individual capabilities and special educational needs (SEN). The analysis of the state’s current situation indicates school graduates’ adaptation to the labor market does not meet existing demands of the society. According to the Ministry of Labor and Social Protection of the Population of the Republic of Kazakhstan, about 70 % of Kazakhstani school graduates find themselves difficult to choose a profession, 87 % of schoolchildren make their career choice under the influence of parents and school teachers, 90 % of schoolchildren and their parents have no idea about the most popular professions on the market. The results of the study conducted by KorlanSyzdykova in 2016 indicated the urgent need of Kazakhstani school graduates in obtaining extensive information about in- demand professions and receiving professional assistance in choosing a profession in accordance with their individual skills, abilities, and preferences. The results of the survey, conducted by Information and Analytical Center among heads of colleges in 2020, showed that despite significant steps in creating conditions for students with SEN, they face challenges in studying because of poor career guidance provided to them in schools. The results of the study, conducted by the Center for Inclusive Education of the National Academy of Education named after Y. Altynsarin in the state’s general education schools in 2021, demonstrated the lack of career guidance, pedagogical and psychological support for children with SEN. To investigate these issues, the further study was conducted to examine the state of students’ career guidance and socialization, taking into account their SEN. The hypothesis of this study proposed that to prepare school graduates for a conscious career choice, school teachers and specialists need to develop their competencies in early identification of students' interests, inclinations, SEN and ensure necessary support for them. The state’s 5 regions were involved in the study according to the geographical location. The triangulation approach was utilized to ensure the credibility and validity of research findings, including both theoretical (analysis of existing statistical data, legal documents, results of previous research) and empirical (school survey for students, interviews with parents, teachers, representatives of school administration) methods. The data were analyzed independently and compared to each other. The survey included questions related to provision of pedagogical support for school students in making their career choice. Ethical principles were observed in the process of developing the methodology, collecting, analyzing the data and distributing the results. Based on the results, methodological recommendations on students’ career guidance for school teachers and specialists were developed, taking into account the former’s individual capabilities and SEN.

Keywords: career guidance, children with special educational needs, inclusive education, Kazakhstan

Procedia PDF Downloads 172
24897 Human Performance Technology (HPT) as an Entry Point to Achieve Organizational Development in Educational Institutions of the Ministry of Education

Authors: Alkhathlan Mansour

Abstract:

Current research aims at achieving the organizational development in the educational institutions in the governorate of Al-Kharj through the human performance technology (HPT) model that is named; “The Intellectual Model to improve human performance”. To achieve the goal of this research, it tools -that it is consisting of targeted questionnaires to research sample numbered (120)- have been set up. This sample is represented in; department managers in Prince Sattam Bin Abdulaziz University (50), educational supervisors in the Department of Education (40), school administrators in the governorate (30), and the views of education experts through personal interviews in the proposal to achieve organizational development through the intellectual model to improve human performance. Among the most important research results is that there are many obstacles prevent the organizational development in the educational institutions, so the research suggested a model to achieve organizational development through human performance technologies, as well as the researcher recommended through the results of his research that the administrators have to take into account the justice in the distribution of incentives to employees of educational institutions and training leaders in educational institutions on organizational development strategies and working on the preparation of experts of organizational development in the educational institutions to develop the necessary policies and procedures of each institution.

Keywords: human performance, development, education, organizational

Procedia PDF Downloads 290
24896 Development of New Technology Evaluation Model by Using Patent Information and Customers' Review Data

Authors: Kisik Song, Kyuwoong Kim, Sungjoo Lee

Abstract:

Many global firms and corporations derive new technology and opportunity by identifying vacant technology from patent analysis. However, previous studies failed to focus on technologies that promised continuous growth in industrial fields. Most studies that derive new technology opportunities do not test practical effectiveness. Since previous studies depended on expert judgment, it became costly and time-consuming to evaluate new technologies based on patent analysis. Therefore, research suggests a quantitative and systematic approach to technology evaluation indicators by using patent data to and from customer communities. The first step involves collecting two types of data. The data is used to construct evaluation indicators and apply these indicators to the evaluation of new technologies. This type of data mining allows a new method of technology evaluation and better predictor of how new technologies are adopted.

Keywords: data mining, evaluating new technology, technology opportunity, patent analysis

Procedia PDF Downloads 377
24895 Network Governance and Renewable Energy Transition in Sub-Saharan Africa: Contextual Evidence from Ghana

Authors: Kyere Francis, Sun Dongying, Asante Dennis, Nkrumah Nana Kwame Edmund, Naana Yaa Gyamea Kumah

Abstract:

With a focus on renewable energy to achieve low-carbon transition objectives, there is a greater demand for effective collaborative strategies for planning, strategic decision mechanisms, and long-term policy designs to steer the transitions. Government agencies, NGOs, the private sector, and individual citizens play an important role in sustainable energy production. In Ghana, however, such collaboration is fragile in the fight against climate change. This current study seeks to re-examine the position or potential of network governance in Ghana's renewable energy transition. The study adopted a qualitative approach and employed semi-structured interviews for data gathering. To explore network governance and low carbon transitions in Ghana, we examine key themes such as political environment and impact, actor cooperation and stakeholder interactions, financing and the transition, market design and renewable energy integration, existing regulation and policy gaps for renewable energy transition, clean cooking accessibility, and affordability. The findings reveal the following; Lack of comprehensive consultations with relevant stakeholders leads to lower acceptance of the policy model and sometimes lack of policy awareness. Again, the unavailability and affordability of renewable energy technologies and access to credit facilities is a significant hurdle to long-term renewable transition. Ghana's renewable energy transitions require strong networking and interaction among the public, private, and non-governmental organizations. The study participants believe that the involvement of relevant energy experts and stakeholders devoid of any political biases is instrumental in accelerating renewable energy transitions, as emphasized in the proposed framework. The study recommends that the national renewable energy transition plan be evident to all stakeholders and political administrators. Such policy may encourage renewable energy investment through stable and fixed lending rates by the financial institutions and build a network with international organizations and corporations. These findings could serve as valuable information for the transition-based energy process, primarily aiming to govern sustainability changes through network governance.

Keywords: actors, development, sustainable energy, network governance, renewable energy transition

Procedia PDF Downloads 88
24894 Anomaly Detection Based on System Log Data

Authors: M. Kamel, A. Hoayek, M. Batton-Hubert

Abstract:

With the increase of network virtualization and the disparity of vendors, the continuous monitoring and detection of anomalies cannot rely on static rules. An advanced analytical methodology is needed to discriminate between ordinary events and unusual anomalies. In this paper, we focus on log data (textual data), which is a crucial source of information for network performance. Then, we introduce an algorithm used as a pipeline to help with the pretreatment of such data, group it into patterns, and dynamically label each pattern as an anomaly or not. Such tools will provide users and experts with continuous real-time logs monitoring capability to detect anomalies and failures in the underlying system that can affect performance. An application of real-world data illustrates the algorithm.

Keywords: logs, anomaly detection, ML, scoring, NLP

Procedia PDF Downloads 94
24893 Vaccine Development for Newcastle Disease Virus in Poultry

Authors: Muhammad Asif Rasheed

Abstract:

Newcastle disease virus (NDV), an avian orthoavulavirus, is a causative agent of Newcastle disease named (NDV) and can cause even the epidemics when the disease is not treated. Previously several vaccines based on attenuated and inactivated viruses have been reported, which are rendered useless with the passage of time due to versatile changes in viral genome. Therefore, we aimed to develop an effective multi-epitope vaccine against the haemagglutinin neuraminidase (HN) protein of 26 NDV strains from Pakistan through a modern immunoinformatic approaches. As a result, a vaccine chimaera was constructed by combining T-cell and B-cell epitopes with the appropriate linkers and adjuvant. The designed vaccine was highly immunogenic, non-allergen, and antigenic; therefore, the potential 3D-structureof multi epitope vaccine was constructed, refined, and validated. A molecular docking study of a multiepitope vaccine candidate with the chicken Toll-like receptor-4 indicated successful binding. An In silico immunological simulation was used to evaluate the candidate vaccine's ability to elicit an effective immune response. According to the computational studies, the proposed multiepitope vaccine is physically stable and may induce immune responses, whichsuggested it a strong candidate against 26 Newcastle disease virus strains from Pakistan. A wet lab study is under process to confirm the results.

Keywords: epitopes, newcastle disease virus, paramyxovirus virus, vaccine

Procedia PDF Downloads 120
24892 EnumTree: An Enumerative Biclustering Algorithm for DNA Microarray Data

Authors: Haifa Ben Saber, Mourad Elloumi

Abstract:

In a number of domains, like in DNA microarray data analysis, we need to cluster simultaneously rows (genes) and columns (conditions) of a data matrix to identify groups of constant rows with a group of columns. This kind of clustering is called biclustering. Biclustering algorithms are extensively used in DNA microarray data analysis. More effective biclustering algorithms are highly desirable and needed. We introduce a new algorithm called, Enumerative tree (EnumTree) for biclustering of binary microarray data. is an algorithm adopting the approach of enumerating biclusters. This algorithm extracts all biclusters consistent good quality. The main idea of ​​EnumLat is the construction of a new tree structure to represent adequately different biclusters discovered during the process of enumeration. This algorithm adopts the strategy of all biclusters at a time. The performance of the proposed algorithm is assessed using both synthetic and real DNA micryarray data, our algorithm outperforms other biclustering algorithms for binary microarray data. Biclusters with different numbers of rows. Moreover, we test the biological significance using a gene annotation web tool to show that our proposed method is able to produce biologically relevent biclusters.

Keywords: DNA microarray, biclustering, gene expression data, tree, datamining.

Procedia PDF Downloads 372
24891 The Impact of Financial Reporting on Sustainability

Authors: Lynn Ruggieri

Abstract:

The worldwide pandemic has only increased sustainability awareness. The public is demanding that businesses be held accountable for their impact on the environment. While financial data enjoys uniformity in reporting requirements, there are no uniform reporting requirements for non-financial data. Europe is leading the way with some standards being implemented for reporting non-financial sustainability data; however, there is no uniformity globally. And without uniformity, there is not a clear understanding of what information to include and how to disclose it. Sustainability reporting will provide important information to stakeholders and will enable businesses to understand their impact on the environment. Therefore, there is a crucial need for this data. This paper looks at the history of sustainability reporting in the countries of the European Union and throughout the world and makes a case for worldwide reporting requirements for sustainability.

Keywords: financial reporting, non-financial data, sustainability, global financial reporting

Procedia PDF Downloads 178
24890 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies

Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk

Abstract:

Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, this project proposes AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project presents the best-in-school techniques used to preserve the data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptographic techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures and identifies potential correction/mitigation measures.

Keywords: data privacy, artificial intelligence (AI), healthcare AI, data sharing, healthcare organizations (HCOs)

Procedia PDF Downloads 93
24889 Discovering Causal Structure from Observations: The Relationships between Technophile Attitude, Users Value and Use Intention of Mobility Management Travel App

Authors: Aliasghar Mehdizadeh Dastjerdi, Francisco Camara Pereira

Abstract:

The increasing complexity and demand of transport services strains transportation systems especially in urban areas with limited possibilities for building new infrastructure. The solution to this challenge requires changes of travel behavior. One of the proposed means to induce such change is multimodal travel apps. This paper describes a study of the intention to use a real-time multi-modal travel app aimed at motivating travel behavior change in the Greater Copenhagen Region (Denmark) toward promoting sustainable transport options. The proposed app is a multi-faceted smartphone app including both travel information and persuasive strategies such as health and environmental feedback, tailoring travel options, self-monitoring, tunneling users toward green behavior, social networking, nudging and gamification elements. The prospective for mobility management travel apps to stimulate sustainable mobility rests not only on the original and proper employment of the behavior change strategies, but also on explicitly anchoring it on established theoretical constructs from behavioral theories. The theoretical foundation is important because it positively and significantly influences the effectiveness of the system. However, there is a gap in current knowledge regarding the study of mobility-management travel app with support in behavioral theories, which should be explored further. This study addresses this gap by a social cognitive theory‐based examination. However, compare to conventional method in technology adoption research, this study adopts a reverse approach in which the associations between theoretical constructs are explored by Max-Min Hill-Climbing (MMHC) algorithm as a hybrid causal discovery method. A technology-use preference survey was designed to collect data. The survey elicited different groups of variables including (1) three groups of user’s motives for using the app including gain motives (e.g., saving travel time and cost), hedonic motives (e.g., enjoyment) and normative motives (e.g., less travel-related CO2 production), (2) technology-related self-concepts (i.e. technophile attitude) and (3) use Intention of the travel app. The questionnaire items led to the formulation of causal relationships discovery to learn the causal structure of the data. Causal relationships discovery from observational data is a critical challenge and it has applications in different research fields. The estimated causal structure shows that the two constructs of gain motives and technophilia have a causal effect on adoption intention. Likewise, there is a causal relationship from technophilia to both gain and hedonic motives. In line with the findings of the prior studies, it highlights the importance of functional value of the travel app as well as technology self-concept as two important variables for adoption intention. Furthermore, the results indicate the effect of technophile attitude on developing gain and hedonic motives. The causal structure shows hierarchical associations between the three groups of user’s motive. They can be explained by “frustration-regression” principle according to Alderfer's ERG (Existence, Relatedness and Growth) theory of needs meaning that a higher level need remains unfulfilled, a person may regress to lower level needs that appear easier to satisfy. To conclude, this study shows the capability of causal discovery methods to learn the causal structure of theoretical model, and accordingly interpret established associations.

Keywords: travel app, behavior change, persuasive technology, travel information, causality

Procedia PDF Downloads 141
24888 Mapping Tunnelling Parameters for Global Optimization in Big Data via Dye Laser Simulation

Authors: Sahil Imtiyaz

Abstract:

One of the biggest challenges has emerged from the ever-expanding, dynamic, and instantaneously changing space-Big Data; and to find a data point and inherit wisdom to this space is a hard task. In this paper, we reduce the space of big data in Hamiltonian formalism that is in concordance with Ising Model. For this formulation, we simulate the system using dye laser in FORTRAN and analyse the dynamics of the data point in energy well of rhodium atom. After mapping the photon intensity and pulse width with energy and potential we concluded that as we increase the energy there is also increase in probability of tunnelling up to some point and then it starts decreasing and then shows a randomizing behaviour. It is due to decoherence with the environment and hence there is a loss of ‘quantumness’. This interprets the efficiency parameter and the extent of quantum evolution. The results are strongly encouraging in favour of the use of ‘Topological Property’ as a source of information instead of the qubit.

Keywords: big data, optimization, quantum evolution, hamiltonian, dye laser, fermionic computations

Procedia PDF Downloads 194
24887 Thailand’s Education Cooperation with Neighboring Countries: The Key Factors to Strengthen the “Soft Power” Relationship

Authors: Rungrot Trongsakul

Abstract:

This paper was aimed to study the model of education cooperation during Thailand and neighbor countries, especially the countries which the territory-cohesion border with Thailand used “Soft Power” to enhance the good relationship. This research employed qualitative method, analyzed and synthesized the content of cooperation projects, policies, laws, relevant theories, relevant research papers and documents and used SWOT analysis. The research findings revealed that Thailand’s education cooperation projects with neighbor countries had two characteristics: 1) education cooperation projects/programs were a part in economic cooperation projects, and 2) there were directly education cooperation projects. The suggested education cooperation model was based on the concept of “Soft Power”, thus the determination of action plans or projects as key factors of public and private organizations should be based on sincere participation among people, communities and relevant organizations of the neighbor countries. Adoption of education-cultural exchange, learning and sharing process is a key to strengthen good relationship of the countries’ cooperation. The roles of education in this included sharing and acceptance of culture and local wisdom, human resource development, knowledge management, integration and networking building could enhance relationship between agents of related organizations of Thailand and neighbors countries.

Keywords: education, soft-power, relationship, cooperation, Thailand neighboring countries

Procedia PDF Downloads 359
24886 Applying Different Stenography Techniques in Cloud Computing Technology to Improve Cloud Data Privacy and Security Issues

Authors: Muhammad Muhammad Suleiman

Abstract:

Cloud Computing is a versatile concept that refers to a service that allows users to outsource their data without having to worry about local storage issues. However, the most pressing issues to be addressed are maintaining a secure and reliable data repository rather than relying on untrustworthy service providers. In this study, we look at how stenography approaches and collaboration with Digital Watermarking can greatly improve the system's effectiveness and data security when used for Cloud Computing. The main requirement of such frameworks, where data is transferred or exchanged between servers and users, is safe data management in cloud environments. Steganography is the cloud is among the most effective methods for safe communication. Steganography is a method of writing coded messages in such a way that only the sender and recipient can safely interpret and display the information hidden in the communication channel. This study presents a new text steganography method for hiding a loaded hidden English text file in a cover English text file to ensure data protection in cloud computing. Data protection, data hiding capability, and time were all improved using the proposed technique.

Keywords: cloud computing, steganography, information hiding, cloud storage, security

Procedia PDF Downloads 191
24885 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics

Authors: Farhad Asadi, Mohammad Javad Mollakazemi

Abstract:

In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.

Keywords: time series, fluctuation in statistical characteristics, optimal learning, change-point algorithm

Procedia PDF Downloads 426