Search results for: memory stimulation
665 The Role of a Novel DEAD-Box Containing Protein in NLRP3 Inflammasome Activation
Authors: Yi-Hui Lai, Chih-Hsiang Yang, Li-Chung Hsu
Abstract:
The inflammasome is a protein complex that modulates caspase-1 activity, resulting in proteolytic cleavage of proinflammatory cytokines such as IL-1β and IL-18, into their bioactive forms. It has been shown that the inflammasomes play a crucial role in the clearance of pathogenic infection and tissue repair. However, dysregulated inflammasome activation contributes to a wide range of human diseases such as cancers and auto-inflammatory diseases. Yet, regulation of NLRP3 inflammasome activation remains largely unknown. We discovered a novel DEAD box protein, whose biological function has not been reported, not only negatively regulates NLRP3 inflammasome activation by interfering NLRP3 inflammasome assembly and cellular localization but also mitigate pyroptosis upon pathogen evasion. The DEAD-box protein is the first DEAD-box protein gets involved in modulation of the inflammasome activation. In our study, we found that caspase-1 activation and mature IL-1β production were largely enhanced upon LPS challenge in the DEAD box-containing protein- deleted THP-1 macrophages and bone marrow-derived macrophages (BMDMs). In addition, this DEAD box-containing protein migrates from the nucleus to the cytoplasm upon LPS stimulation, which is required for its inhibitory role in NLRP3 inflammasome activation. The DEAD box-containing protein specifically interacted with the LRR motif of NLRP3 via its DEAD domain. Furthermore, due to the crucial role of the NLRP3 LRR domain in the recruitment of NLRP3 to mitochondria and binding to its adaptor ASC, we found that the interaction of NLRP3 and ASC was downregulated in the presence of the DEAD box-containing protein. In addition to the mechanical study, we also found that this DEAD box protein protects host cells from inflammasome-triggered cell death in response to broad-ranging pathogens such as Candida albicans, Streptococcus pneumoniae, etc., involved in nosocomial infections and severe fever shock. Collectively, our results suggest that this novel DEAD box molecule might be a key therapeutic strategy for various infectious diseases.Keywords: inflammasome, inflammation, innate immunity, pyroptosis
Procedia PDF Downloads 283664 Vector-Based Analysis in Cognitive Linguistics
Authors: Chuluundorj Begz
Abstract:
This paper presents the dynamic, psycho-cognitive approach to study of human verbal thinking on the basis of typologically different languages /as a Mongolian, English and Russian/. Topological equivalence in verbal communication serves as a basis of Universality of mental structures and therefore deep structures. Mechanism of verbal thinking consisted at the deep level of basic concepts, rules for integration and classification, neural networks of vocabulary. In neuro cognitive study of language, neural architecture and neuro psychological mechanism of verbal cognition are basis of a vector-based modeling. Verbal perception and interpretation of the infinite set of meanings and propositions in mental continuum can be modeled by applying tensor methods. Euclidean and non-Euclidean spaces are applied for a description of human semantic vocabulary and high order structures.Keywords: Euclidean spaces, isomorphism and homomorphism, mental lexicon, mental mapping, semantic memory, verbal cognition, vector space
Procedia PDF Downloads 519663 A Natural Method for Reducing Pain in Female Patients
Authors: Seyed Ali Hossein Zahraei, Iman Dianat
Abstract:
The role of midwives and healthcare providers in applying pain relief methods to female patients is very important. different therapies like hydropathy, flavorer remedies, and respiratory techniques for pain relief do not work properly as what we expected. Lack of recognition of the physiological property of birth, despite findings that coming will attenuate the consequences of hurting, suggests the necessity for bigger awareness among expectant oldsters, educators, and health professionals of the potential of coming as a way of pain relief. Method: In our method we have 5 steps to achieve activation of oxytocin and dopamine pathways in order to reduce pain in all possible fields and reasons instead of using other treatments such as chemical painkillers. Step 1: First of all the patient should start by rubbing the clitoris up and down till occurring first clitoral orgasm. Step 2: Without stop rubing clitoris the patient must continue stimulate the clitoris in different way like circular motion in clock pathway until occurring second clitoral orgasm. Step 3: Immedietly the patient can change the position from clitoris to urethral opening where vestibular glands located. In this step the patient nock the urethral area very slowly without pressure and just like touching the area till feeling want to pee. But because of activation of sympathic nerves the gi tract is inactive. Step 4: In this step the patient should apply more pressure and change the motion to circular on urethral area in which the pee sensation increase but actually it is vestibular gland fluid. The patient should release it in small amount in this step. Step 5: The last step is combination of clitoral and urethral stimulation in up and down motion that cause more pee feeling and after clitoral orgasm occurred the amount of released fluid can be about 400ml.Keywords: female, natural, method, pain
Procedia PDF Downloads 257662 The Effect of an Abnormal Prefrontal Cortex on the Symptoms of Attention Deficit/Hyperactivity Disorder
Authors: Irene M. Arora
Abstract:
Hypothesis: Attention Deficit Hyperactivity Disorder is the result of an underdeveloped prefrontal cortex which is the primary cause for the signs and symptoms seen as defining features of ADHD. Methods: Through ‘PubMed’, ‘Wiley’ and ‘Google Scholar’ studies published between 2011-2018 were evaluated, determining if a dysfunctional prefrontal cortex caused the characteristic symptoms associated with ADHD. The search terms "prefrontal cortex", "Attention-Deficit/Hyperactivity Disorder", "cognitive control", "frontostriatal tract" among others, were used to maximize the assortment of relevant studies. Excluded papers were systematic reviews, meta-analyses and publications published before 2010 to ensure clinical relevance. Results: Nine publications were analyzed in this review, all of which were non-randomized matched control studies. Three studies found a decrease in the functional integrity of the frontostriatal tract fibers in conjunction with four studies finding impaired frontal cortex stimulation. Prefrontal dysfunction, specifically medial and orbitofrontal areas, displayed abnormal functionality of reward processing in ADHD patients when compared to their normal counterparts. A total of 807 subjects were studied in this review, yielding that a little over half (54%) presented with remission of symptoms in adulthood. Conclusion: While the prefrontal cortex shows the highest consistency of impaired activity and thinner volumes in patients with ADHD, this is a heterogenous disorder implicating its pathophysiology to the dysfunction of other neural structures as well. However, remission of ADHD symptomatology in adulthood was found to be attributable to increased prefrontal functional connectivity and integration, suggesting a key role for the prefrontal cortex in the development of ADHD.Keywords: prefrontal cortex, ADHD, inattentive, impulsivity, reward processing
Procedia PDF Downloads 119661 Road Accidents Bigdata Mining and Visualization Using Support Vector Machines
Authors: Usha Lokala, Srinivas Nowduri, Prabhakar K. Sharma
Abstract:
Useful information has been extracted from the road accident data in United Kingdom (UK), using data analytics method, for avoiding possible accidents in rural and urban areas. This analysis make use of several methodologies such as data integration, support vector machines (SVM), correlation machines and multinomial goodness. The entire datasets have been imported from the traffic department of UK with due permission. The information extracted from these huge datasets forms a basis for several predictions, which in turn avoid unnecessary memory lapses. Since data is expected to grow continuously over a period of time, this work primarily proposes a new framework model which can be trained and adapt itself to new data and make accurate predictions. This work also throws some light on use of SVM’s methodology for text classifiers from the obtained traffic data. Finally, it emphasizes the uniqueness and adaptability of SVMs methodology appropriate for this kind of research work.Keywords: support vector mechanism (SVM), machine learning (ML), support vector machines (SVM), department of transportation (DFT)
Procedia PDF Downloads 274660 Text Based Shuffling Algorithm on Graphics Processing Unit for Digital Watermarking
Authors: Zayar Phyo, Ei Chaw Htoon
Abstract:
In a New-LSB based Steganography method, the Fisher-Yates algorithm is used to permute an existing array randomly. However, that algorithm performance became slower and occurred memory overflow problem while processing the large dimension of images. Therefore, the Text-Based Shuffling algorithm aimed to select only necessary pixels as hiding characters at the specific position of an image according to the length of the input text. In this paper, the enhanced text-based shuffling algorithm is presented with the powered of GPU to improve more excellent performance. The proposed algorithm employs the OpenCL Aparapi framework, along with XORShift Kernel including the Pseudo-Random Number Generator (PRNG) Kernel. PRNG is applied to produce random numbers inside the kernel of OpenCL. The experiment of the proposed algorithm is carried out by practicing GPU that it can perform faster-processing speed and better efficiency without getting the disruption of unnecessary operating system tasks.Keywords: LSB based steganography, Fisher-Yates algorithm, text-based shuffling algorithm, OpenCL, XORShiftKernel
Procedia PDF Downloads 149659 IL-33 Production in Murine Macrophages via PGE2-E Prostanoid Receptor 2/4 Signaling
Authors: Sachin K. Samuchiwal, Barbara Balestrieri, Amanda Paskavitz, Hannah Raff, Joshua A. Boyce
Abstract:
IL-33, a recently discovered member of the IL-1 cytokine family, binds to the TLR/IL1R super family receptor ST2 and induces type 2 immune responses. IL-33 is constitutively expressed in structural cells at barrier sites such as skin, lung, and intestine, and also inducibly expressed by hematopoietic cells including macrophages. Stimulation of macrophages by Lipopolysaccharide (LPS) can induce de novo IL-33 expression, and also causes the production of prostaglandin-E2 (PGE2) via cyclooxygenase (COX)-2 and microsomal PGE2 synthase-1 (mPGES-1). Because PGE2 can regulate macrophage functions through both autocrine and paracrine mechanisms, the potential interplay of endogenous PGE2 on IL-33 production was explored. Bone-marrow derived murine macrophages (bmMF) that lack either mPGES-1 or EP2 receptor expression were stimulated with LPS in the absence or presence of exogenous PGE2 along with pharmacological agonists and antagonists. The study results demonstrate that endogenous PGE2 markedly enhances LPS-induced IL-33 production by bmMFs via EP2 receptors. Moreover, exogenous PGE2 can amplify LPS-induced IL-33 expression dominantly by EP2 and partly by EP4 receptors by a pathway involving cAMP and exchange protein activated by cAMP (EPAC), but not protein kinase A (PKA). Though both IL-33 production and PGE2 generation in response to LPS require activation of both p38 MAPK and NF-κB, PGE2 did not influence this activation. In conclusion, it is demonstrated that endogenous PGE2 signaling through EP2 and EP4 receptors is a prerequisite for LPS-induced IL-33 production in bmMFs and the underlying cAMP mediated pathway involves EPAC. Since IL-33 is a critical pro-inflammatory cytokine in various pathological disorders, this PGE2-EP2/EP4-cAMP mediated pathway can be exploited to intervene in IL-33 driven pathologies.Keywords: bone marrow macrophages, EPAC, IL-33, PGE2
Procedia PDF Downloads 187658 A Memetic Algorithm Approach to Clustering in Mobile Wireless Sensor Networks
Authors: Masood Ahmad, Ataul Aziz Ikram, Ishtiaq Wahid
Abstract:
Wireless sensor network (WSN) is the interconnection of mobile wireless nodes with limited energy and memory. These networks can be deployed formany critical applications like military operations, rescue management, fire detection and so on. In flat routing structure, every node plays an equal role of sensor and router. The topology may change very frequently due to the mobile nature of nodes in WSNs. The topology maintenance may produce more overhead messages. To avoid topology maintenance overhead messages, an optimized cluster based mobile wireless sensor network using memetic algorithm is proposed in this paper. The nodes in this network are first divided into clusters. The cluster leaders then transmit data to that base station. The network is validated through extensive simulation study. The results show that the proposed technique has superior results compared to existing techniques.Keywords: WSN, routing, cluster based, meme, memetic algorithm
Procedia PDF Downloads 481657 DNA PLA: A Nano-Biotechnological Programmable Device
Authors: Hafiz Md. HasanBabu, Khandaker Mohammad Mohi Uddin, Md. IstiakJaman Ami, Rahat Hossain Faisal
Abstract:
Computing in biomolecular programming performs through the different types of reactions. Proteins and nucleic acids are used to store the information generated by biomolecular programming. DNA (Deoxyribose Nucleic Acid) can be used to build a molecular computing system and operating system for its predictable molecular behavior property. The DNA device has clear advantages over conventional devices when applied to problems that can be divided into separate, non-sequential tasks. The reason is that DNA strands can hold so much data in memory and conduct multiple operations at once, thus solving decomposable problems much faster. Programmable Logic Array, abbreviated as PLA is a programmable device having programmable AND operations and OR operations. In this paper, a DNA PLA is designed by different molecular operations using DNA molecules with the proposed algorithms. The molecular PLA could take advantage of DNA's physical properties to store information and perform calculations. These include extremely dense information storage, enormous parallelism, and extraordinary energy efficiency.Keywords: biological systems, DNA computing, parallel computing, programmable logic array, PLA, DNA
Procedia PDF Downloads 129656 On an Approach for Rule Generation in Association Rule Mining
Authors: B. Chandra
Abstract:
In Association Rule Mining, much attention has been paid for developing algorithms for large (frequent/closed/maximal) itemsets but very little attention has been paid to improve the performance of rule generation algorithms. Rule generation is an important part of Association Rule Mining. In this paper, a novel approach named NARG (Association Rule using Antecedent Support) has been proposed for rule generation that uses memory resident data structure named FCET (Frequent Closed Enumeration Tree) to find frequent/closed itemsets. In addition, the computational speed of NARG is enhanced by giving importance to the rules that have lower antecedent support. Comparative performance evaluation of NARG with fast association rule mining algorithm for rule generation has been done on synthetic datasets and real life datasets (taken from UCI Machine Learning Repository). Performance analysis shows that NARG is computationally faster in comparison to the existing algorithms for rule generation.Keywords: knowledge discovery, association rule mining, antecedent support, rule generation
Procedia PDF Downloads 324655 Tracing Economic Policies to Ancient Indian Economic Thought
Authors: Satish Y. Deodhar
Abstract:
Science without history is like a man without memory. The colossal history of India stores many ideas on economic ethics and public policy, which have been forgotten in the course of time. This paper is an attempt to bring to the fore contributions from ancient Indian treatises. In this context, the paper briefly summarizes alternative economic ideas such as communism, capitalism, and the holistic approach of ancient Indian writings. Thereafter, the idea of a welfare brick for an individual consisting of three dimensions -Purusharthas, Ashramas, and Varnas is discussed. Given the contours of the welfare brick, the concept of the state, its economic policies, markets, prices, interest rates, and credit are covered next. This is followed by delving into the treatment of land, property rights, guilds, and labour relations. The penultimate section summarises the economic advice offered to the head of a household in the treatise Shukranitisara. Finally, in concluding comments, the relevance of ancient Indian writings for modern times is discussed -both for pedagogy and economic policies.Keywords: ancient Indian treatises, history of economic thought, science of political economy, Sanskrit
Procedia PDF Downloads 97654 Neural Networks and Genetic Algorithms Approach for Word Correction and Prediction
Authors: Rodrigo S. Fonseca, Antônio C. P. Veiga
Abstract:
Aiming at helping people with some movement limitation that makes typing and communication difficult, there is a need to customize an assistive tool with a learning environment that helps the user in order to optimize text input, identifying the error and providing the correction and possibilities of choice in the Portuguese language. The work presents an Orthographic and Grammatical System that can be incorporated into writing environments, improving and facilitating the use of an alphanumeric keyboard, using a prototype built using a genetic algorithm in addition to carrying out the prediction, which can occur based on the quantity and position of the inserted letters and even placement in the sentence, ensuring the sequence of ideas using a Long Short Term Memory (LSTM) neural network. The prototype optimizes data entry, being a component of assistive technology for the textual formulation, detecting errors, seeking solutions and informing the user of accurate predictions quickly and effectively through machine learning.Keywords: genetic algorithm, neural networks, word prediction, machine learning
Procedia PDF Downloads 194653 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities
Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun
Abstract:
The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids
Procedia PDF Downloads 64652 Flexible and Color Tunable Inorganic Light Emitting Diode Array for High Resolution Optogenetic Devices
Authors: Keundong Lee, Dongha Yoo, Youngbin Tchoe, Gyu-Chul Yi
Abstract:
Light emitting diode (LED) array is an ideal optical stimulation tool for optogenetics, which controls inhibition and excitation of specific neurons with light-sensitive ion channels or pumps. Although a fiber-optic cable with an external light source, either a laser or LED mechanically connected to the end of the fiber-optic cable has widely been used for illumination on neural tissue, a new approach to use micro LEDs (µLEDs) has recently been demonstrated. The LEDs can be placed directly either on the cortical surface or within the deep brain using a penetrating depth probe. Accordingly, this method would not need a permanent opening in the skull if the LEDs are integrated with miniature electrical power source and wireless communication. In addition, multiple color generation from single µLED cell would enable to excite and/or inhibit neurons in localized regions. Here, we demonstrate flexible and color tunable µLEDs for the optogenetic device applications. The flexible and color tunable LEDs was fabricated using multifaceted gallium nitride (GaN) nanorod arrays with GaN nanorods grown on InxGa1−xN/GaN single quantum well structures (SQW) anisotropically formed on the nanorod tips and sidewalls. For various electroluminescence (EL) colors, current injection paths were controlled through a continuous p-GaN layer depending on the applied bias voltage. The electric current was injected through different thickness and composition, thus changing the color of light from red to blue that the LED emits. We believe that the flexible and color tunable µLEDs enable us to control activities of the neuron by emitting various colors from the single µLED cell.Keywords: light emitting diode, optogenetics, graphene, flexible optoelectronics
Procedia PDF Downloads 211651 Determining the Effect of Tdcs in Pain and Quality of Life in Patients with Fibromyalgia
Authors: Farid Rezaei, Zahra Reza Soltani, Behrouz Tavana, Afsaneh Dadarkhah, Masoume Bahrami Asl, S. Alireza Mirghasemi
Abstract:
Introduction: Fibromyalgia is a syndrome comprised of a group of symptoms. The primary symptom of fibromyalgia is pain propagation is associated by Secondary symptoms include fatigue, cognitive disorders, sleep disorders and hypersensitivity to painful stimuli. Recent studies have shown that there is a direct relationship between fibromyalgia and certain changes in brain activity. Aim: The aim of this study is determining the effect of tDCS in pain and quality of life in patients with fibromyalgia. Method: 68 patients with fibromyalgia who had inclusion criterias were randomly divided into two groups of case and control. Groups were matched in terms of gender, age, education, duration of pain and PMS. Patient groups treated with tDCS device manufacture by Enraf company made in Netherlands (M1 anodal stimulation, 2 mA constant current, 20 minutes, for 10 sessions (3 days a week)). Also the protocol was done for control group, in sham mode of tDCS device that had no current, for 10 sessions of 20 minutes. Before treatment, immediately after the end of 10 sessions treatment (short-term) and 10 week later (long-term effect), pain intensity questionnaires (VAS) and quality of life in fibromyalgia patients questionnaire was completed by the patient. Results: Pain intensity were significantly lower in the treatment group than the sham group 2 weeks and 10 weeks after treatment than before treatment (P < 0.001). Although the quality of life of patients 2 weeks after treatment showed no significant change, but ten weeks after treatment were more than sham group (P < 0.0001). Conclusion: Our results suggest that tDCS is a safe and effective in treating fibromyalgia patients and an important effect in reducing pain and increasing quality of their life.Keywords: fibromyalgia, tDCS, quality of life, VAS score
Procedia PDF Downloads 341650 Reminiscence Therapy for Alzheimer’s Disease Restrained on Logistic Regression Based Linear Bootstrap Aggregating
Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Xianpei Li, Yanmin Yuan, Tracy Lin Huan
Abstract:
Researchers are doing enchanting research into the inherited features of Alzheimer’s disease and probable consistent therapies. In Alzheimer’s, memories are extinct in reverse order; memories formed lately are more transitory than those from formerly. Reminiscence therapy includes the conversation of past actions, trials and knowledges with another individual or set of people, frequently with the help of perceptible reminders such as photos, household and other acquainted matters from the past, music and collection of tapes. In this manuscript, the competence of reminiscence therapy for Alzheimer’s disease is measured using logistic regression based linear bootstrap aggregating. Logistic regression is used to envisage the experiential features of the patient’s memory through various therapies. Linear bootstrap aggregating shows better stability and accuracy of reminiscence therapy used in statistical classification and regression of memories related to validation therapy, supportive psychotherapy, sensory integration and simulated presence therapy.Keywords: Alzheimer’s disease, linear bootstrap aggregating, logistic regression, reminiscence therapy
Procedia PDF Downloads 309649 Analysis of Financial Time Series by Using Ornstein-Uhlenbeck Type Models
Authors: Md Al Masum Bhuiyan, Maria C. Mariani, Osei K. Tweneboah
Abstract:
In the present work, we develop a technique for estimating the volatility of financial time series by using stochastic differential equation. Taking the daily closing prices from developed and emergent stock markets as the basis, we argue that the incorporation of stochastic volatility into the time-varying parameter estimation significantly improves the forecasting performance via Maximum Likelihood Estimation. While using the technique, we see the long-memory behavior of data sets and one-step-ahead-predicted log-volatility with ±2 standard errors despite the variation of the observed noise from a Normal mixture distribution, because the financial data studied is not fully Gaussian. Also, the Ornstein-Uhlenbeck process followed in this work simulates well the financial time series, which aligns our estimation algorithm with large data sets due to the fact that this algorithm has good convergence properties.Keywords: financial time series, maximum likelihood estimation, Ornstein-Uhlenbeck type models, stochastic volatility model
Procedia PDF Downloads 241648 Efficient Layout-Aware Pretraining for Multimodal Form Understanding
Authors: Armineh Nourbakhsh, Sameena Shah, Carolyn Rose
Abstract:
Layout-aware language models have been used to create multimodal representations for documents that are in image form, achieving relatively high accuracy in document understanding tasks. However, the large number of parameters in the resulting models makes building and using them prohibitive without access to high-performing processing units with large memory capacity. We propose an alternative approach that can create efficient representations without the need for a neural visual backbone. This leads to an 80% reduction in the number of parameters compared to the smallest SOTA model, widely expanding applicability. In addition, our layout embeddings are pre-trained on spatial and visual cues alone and only fused with text embeddings in downstream tasks, which can facilitate applicability to low-resource of multi-lingual domains. Despite using 2.5% of training data, we show competitive performance on two form understanding tasks: semantic labeling and link prediction.Keywords: layout understanding, form understanding, multimodal document understanding, bias-augmented attention
Procedia PDF Downloads 148647 A Novel NRIS Index to Evaluate Brain Activity in Prefrontal Regions While Listening to First and Second Languages for Long Time Periods
Authors: Kensho Takahashi, Ko Watanabe, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara
Abstract:
Near-infrared spectroscopy (NIRS) has been widely used as a non-invasive method to measure brain activity, but it is corrupted by baseline drift noise. Here we present a method to measure regional cerebral blood flow as a derivative of NIRS output. We investigate whether, when listening to languages, blood flow can reasonably localize and represent regional brain activity or not. The prefrontal blood flow distribution pattern when advanced second-language listeners listened to a second language (L2) was most similar to that when listening to their first language (L1) among the patterns of mean and standard deviation. In experiments with 25 healthy subjects, the maximum blood flow was localized to the left BA46 of advanced listeners. The blood flow presented is robust to baseline drift and stably localizes regional brain activity.Keywords: NIRS, oxy-hemoglobin, baseline drift, blood flow, working memory, BA46, first language, second language
Procedia PDF Downloads 558646 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory
Authors: Yang Zhang, Jian He
Abstract:
Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window
Procedia PDF Downloads 89645 Equation to an Unknown (1980): Visibility, Community, and Rendering Queer Utopia
Authors: Ted Silva
Abstract:
Dietrich de Velsa's Équation à un inconnu / Equation to an Unknown hybridizes art cinema style with the sexually explicit aesthetics of pornography to envision a uniquely queer world unmoored by heteronormative influence. This stylization evokes the memory of a queer history that once approximated such a prospect. With this historical and political context in mind, this paper utilizes formal analysis to assess how the film frames queer sexual encounters as tender acts of care, sometimes literally mending physical wounds. However, Equation to Unknown also highlights the transience of these sexual exchanges. By emphasizing the homogeneity of the protagonist’s sexual conquests, the film reveals that these practices have a darker meaning when the men reject the individualized connection to pursue purely visceral gratification. Given the lack of diversity or even recognizable identifying factors, the men become more anonymous to each other the more they pair up. Ultimately, Equation to an Unknown both celebrates and problematizes its vision of a queer utopia, highlighting areas in the community wherein intimacy and care flourish and locating those spots in which they are neglected.Keywords: pornography studies, queer cinema, French cinema, history
Procedia PDF Downloads 135644 CPU Architecture Based on Static Hardware Scheduler Engine and Multiple Pipeline Registers
Authors: Ionel Zagan, Vasile Gheorghita Gaitan
Abstract:
The development of CPUs and of real-time systems based on them made it possible to use time at increasingly low resolutions. Together with the scheduling methods and algorithms, time organizing has been improved so as to respond positively to the need for optimization and to the way in which the CPU is used. This presentation contains both a detailed theoretical description and the results obtained from research on improving the performances of the nMPRA (Multi Pipeline Register Architecture) processor by implementing specific functions in hardware. The proposed CPU architecture has been developed, simulated and validated by using the FPGA Virtex-7 circuit, via a SoC project. Although the nMPRA processor hardware structure with five pipeline stages is very complex, the present paper presents and analyzes the tests dedicated to the implementation of the CPU and of the memory on-chip for instructions and data. In order to practically implement and test the entire SoC project, various tests have been performed. These tests have been performed in order to verify the drivers for peripherals and the boot module named Bootloader.Keywords: hardware scheduler, nMPRA processor, real-time systems, scheduling methods
Procedia PDF Downloads 267643 Design and Development of a Platform for Analyzing Spatio-Temporal Data from Wireless Sensor Networks
Authors: Walid Fantazi
Abstract:
The development of sensor technology (such as microelectromechanical systems (MEMS), wireless communications, embedded systems, distributed processing and wireless sensor applications) has contributed to a broad range of WSN applications which are capable of collecting a large amount of spatiotemporal data in real time. These systems require real-time data processing to manage storage in real time and query the data they process. In order to cover these needs, we propose in this paper a Snapshot spatiotemporal data model based on object-oriented concepts. This model allows saving storing and reducing data redundancy which makes it easier to execute spatiotemporal queries and save analyzes time. Further, to ensure the robustness of the system as well as the elimination of congestion from the main access memory we propose a spatiotemporal indexing technique in RAM called Captree *. As a result, we offer an RIA (Rich Internet Application) -based SOA application architecture which allows the remote monitoring and control.Keywords: WSN, indexing data, SOA, RIA, geographic information system
Procedia PDF Downloads 253642 Development of an Artificial Neural Network to Measure Science Literacy Leveraging Neuroscience
Authors: Amanda Kavner, Richard Lamb
Abstract:
Faster growth in science and technology of other nations may make staying globally competitive more difficult without shifting focus on how science is taught in US classes. An integral part of learning science involves visual and spatial thinking since complex, and real-world phenomena are often expressed in visual, symbolic, and concrete modes. The primary barrier to spatial thinking and visual literacy in Science, Technology, Engineering, and Math (STEM) fields is representational competence, which includes the ability to generate, transform, analyze and explain representations, as opposed to generic spatial ability. Although the relationship is known between the foundational visual literacy and the domain-specific science literacy, science literacy as a function of science learning is still not well understood. Moreover, the need for a more reliable measure is necessary to design resources which enhance the fundamental visuospatial cognitive processes behind scientific literacy. To support the improvement of students’ representational competence, first visualization skills necessary to process these science representations needed to be identified, which necessitates the development of an instrument to quantitatively measure visual literacy. With such a measure, schools, teachers, and curriculum designers can target the individual skills necessary to improve students’ visual literacy, thereby increasing science achievement. This project details the development of an artificial neural network capable of measuring science literacy using functional Near-Infrared Spectroscopy (fNIR) data. This data was previously collected by Project LENS standing for Leveraging Expertise in Neurotechnologies, a Science of Learning Collaborative Network (SL-CN) of scholars of STEM Education from three US universities (NSF award 1540888), utilizing mental rotation tasks, to assess student visual literacy. Hemodynamic response data from fNIRsoft was exported as an Excel file, with 80 of both 2D Wedge and Dash models (dash) and 3D Stick and Ball models (BL). Complexity data were in an Excel workbook separated by the participant (ID), containing information for both types of tasks. After changing strings to numbers for analysis, spreadsheets with measurement data and complexity data were uploaded to RapidMiner’s TurboPrep and merged. Using RapidMiner Studio, a Gradient Boosted Trees artificial neural network (ANN) consisting of 140 trees with a maximum depth of 7 branches was developed, and 99.7% of the ANN predictions are accurate. The ANN determined the biggest predictors to a successful mental rotation are the individual problem number, the response time and fNIR optode #16, located along the right prefrontal cortex important in processing visuospatial working memory and episodic memory retrieval; both vital for science literacy. With an unbiased measurement of science literacy provided by psychophysiological measurements with an ANN for analysis, educators and curriculum designers will be able to create targeted classroom resources to help improve student visuospatial literacy, therefore improving science literacy.Keywords: artificial intelligence, artificial neural network, machine learning, science literacy, neuroscience
Procedia PDF Downloads 119641 Field-observed Thermal Fractures during Reinjection and Its Numerical Simulation
Authors: Wen Luo, Phil J. Vardon, Anne-Catherine Dieudonne
Abstract:
One key process that partly controls the success of geothermal projects is fluid reinjection, which benefits in dealing with waste water, maintaining reservoir pressure, and supplying heat-exchange media, etc. Thus, sustaining the injectivity is of great importance for the efficiency and sustainability of geothermal production. However, the injectivity is sensitive to the reinjection process. Field experiences have illustrated that the injectivity can be damaged or improved. In this paper, the focus is on how the injectivity is improved. Since the injection pressure is far below the formation fracture pressure, hydraulic fracturing cannot be the mechanism contributing to the increase in injectivity. Instead, thermal stimulation has been identified as the main contributor to improving the injectivity. For low-enthalpy geothermal reservoirs, which are not fracture-controlled, thermal fracturing, instead of thermal shearing, is expected to be the mechanism for increasing injectivity. In this paper, field data from the sedimentary low-enthalpy geothermal reservoirs in the Netherlands were analysed to show the occurrence of thermal fracturing due to the cooling shock during reinjection. Injection data were collected and compared to show the effects of the thermal fractures on injectivity. Then, a thermo-hydro-mechanical (THM) model for the near field formation was developed and solved by finite element method to simulate the observed thermal fractures. It was then compared with the HM model, decomposed from the THM model, to illustrate the thermal effects on thermal fracturing. Finally, the effects of operational parameters, i.e. injection temperature and pressure, on the changes in injectivity were studied on the basis of the THM model. The field data analysis and simulation results illustrate that the thermal fracturing occurred during reinjection and contributed to the increase in injectivity. The injection temperature was identified as a key parameter that contributes to thermal fracturing.Keywords: injectivity, reinjection, thermal fracturing, thermo-hydro-mechanical model
Procedia PDF Downloads 217640 Protein Feeding Pattern, Casein Feeding, or Milk-Soluble Protein Feeding did not Change the Evolution of Body Composition during a Short-Term Weight Loss Program
Authors: Solange Adechian, Michèle Balage, Didier Remond, Carole Migné, Annie Quignard-Boulangé, Agnès Marset-Baglieri, Sylvie Rousset, Yves Boirie, Claire Gaudichon, Dominique Dardevet, Laurent Mosoni
Abstract:
Studies have shown that timing of protein intake, leucine content, and speed of digestion significantly affect postprandial protein utilization. Our aim was to determine if one can spare lean body mass during energy restriction by varying the quality and the timing of protein intake. Obese volunteers followed a 6-wk restricted energy diet. Four groups were compared: casein pulse, casein spread, milk-soluble protein (MSP, = whey) pulse, and MSP spread (n = 10-11 per group). In casein groups, caseins were the only protein source; it was MSP in MSP groups. Proteins were distributed in four meals per day in the proportion 8:80:4:8% in the pulse groups; it was 25:25:25:25% in the spread groups. We measured weight, body composition, nitrogen balance, 3-methylhistidine excretion, perception of hunger, plasma parameters, adipose tissue metabolism, and whole body protein metabolism. Volunteers lost 7.5 ± 0.4 kg of weight, 5.1 ± 0.2 kg of fat, and 2.2 ± 0.2 kg of lean mass, with no difference between groups. In adipose tissue, cell size and mRNA expression of various genes were reduced with no difference between groups. Hunger perception was also never different between groups. In the last week, due to a higher inhibition of protein degradation and despite a lower stimulation of protein synthesis, postprandial balance between whole body protein synthesis and degradation was better with caseins than with MSP. It seems likely that the positive effect of caseins on protein balance occurred only at the end of the experiment.Keywords: lean body mass, fat mass, casein, whey, protein metabolism
Procedia PDF Downloads 72639 The National Idea and Selthindentification of Nation is the Foundation of the Society’s Development
Authors: K. Aisultanova, O. Abdimanuly
Abstract:
The article is told about the factors influencing the formation of the national idea and national identity. Paying attention to the idea and purpose of 'Eternal county', historical dates and examples are given. The structure of the idea 'The eternal country' by ancient Turks is discussed and the history of the legend prevalent among the Kazakh people, the image of the mythical historical figures are analyzed. Al-Farabi’s philosophical work 'Honest city', Zhysip Balasagun’s poem 'Happy Knowledge' are told, the opinions of scholars researching the nation's history, literature, and culture are given. As international experience shows, the idea of a new stage in the development of the country's great national society and the state for the purpose of political, social, economic, cultural, spiritual, and the other efforts are consolidated. The idea of the national, ethnic, religious, cultural and other communities united by a group of people sharing a collective memory, goals, ideas and dreams and , world view, a complex set of beliefs and values are expressed.Keywords: independence, historical process, national idea, the national ideology, society, state
Procedia PDF Downloads 303638 Rice Serine/Threonine Kinase 1 Is Required for the Stimulation of OsNug2 GTPase Activity
Authors: Jae Bok Heo, Yun Mi Lee, Hee Rang Yun
Abstract:
Several GTPases are required for ribosome biogenesis and assembly. We recently characterized rice (Oryza sativa) nuclear/nucleolar GTPase 2 (OsNug2), belonging to the YlqF/YawG family of GTPases, as playing a role in pre-60S ribosomal subunit maturation. To investigate the potential factors involved in regulating the function of OsNug2, yeast two-hybrid screens were carried out using OsNug2 as bait. Rice serine/threonine kinase 1 (OsSTK1) was identified as a potential interacting protein candidate. In vitro pull down and bimolecular fluorescence complementation assays confirmed the interaction between OsNug2 and OsSTK1, and like green fluorescent protein-tagged OsNug2, green fluorescent protein-tagged OsSTK1 was targeted to the nucleus of Arabidopsis protoplasts. OsSTK1 was not found to affect the GTP-binding activity of OsNug2; however, when recombinant OsSTK1 was included in OsNug2 assay reaction mixtures, OsSTK1 increased the GTPase activity of OsNug2. To test whether OsSTK1 phosphorylates OsNug2 in vitro, a kinase assay was performed. OsSTK1 was found to have weak autophosphorylation activity and strongly phosphorylated serine 209 of OsNug2. Yeast complementation testing resulted in a GAL::OsNug2(S209N) mutant-harboring yeast strain exhibiting a growth-defective phenotype on galactose medium at 39°C, divergent from that of a yeast strain harboring GAL::OsNug2. The intrinsic GTPase activity of mutant OsNug2(S209N) was found to be similar to that of OsNug2, was not fully enhanced upon weak binding of OsSTK1. Our findings reported here indicate that OsSTK1 functions as a positive regulator protein of OsNug2 by enhancing the GTPase activity of OsNug2, and that the phosphorylation of serine 209 of OsNug2 is essential for the complete function of OsNug2 in ribosome biogenesis.Keywords: OsSTK1, OsNug2, GTPase activity, GTP binding activity, phosphorylation
Procedia PDF Downloads 371637 Scenario Based Reaction Time Analysis for Seafarers
Authors: Umut Tac, Leyla Tavacioglu, Pelin Bolat
Abstract:
Human factor has been one of the elements that cause vulnerabilities which can be resulted with accidents in maritime transportation. When the roots of human factor based accidents are analyzed, gaps in performing cognitive abilities (reaction time, attention, memory…) are faced as the main reasons for the vulnerabilities in complex environment of maritime systems. Thus cognitive processes in maritime systems have arisen important subject that should be investigated comprehensively. At this point, neurocognitive tests such as reaction time analysis tests have been used as coherent tools that enable us to make valid assessments for cognitive status. In this respect, the aim of this study is to evaluate the reaction time (response time or latency) of seafarers due to their occupational experience and age. For this study, reaction time for different maneuverers has been taken while the participants were performing a sea voyage through a simulator which was run up with a certain scenario. After collecting the data for reaction time, a statistical analyze has been done to understand the relation between occupational experience and cognitive abilities.Keywords: cognitive abilities, human factor, neurocognitive test battery, reaction time
Procedia PDF Downloads 298636 Analysis of Motor Nerve Conduction Velocity (MNCV) of Selected Nerves in Athletics
Authors: Jogbinder Singh Soodan, Ashok Kumar, Gobind Singh
Abstract:
Background: This study aims to describe the motor nerve conduction velocity of selected nerves of both the upper and lower extremities in athletes. Thirty high-level sprinters (100 mts and 200 mts) and thirty high level distance runners (3000 mts) were volunteered to participate in the study. Method: Motor nerve conduction velocities (MNCV) of radial and sural nerves were recorded with the help of computerized equipment, NEUROPERFECT (MEDICAID SYSTEMS, India), with standard techniques of supramaximal percutaneus stimulation. The anthropometric measurements taken were body height (cms), age (yrs) and body weight (kgs). The neurophysiological parameters taken were MNCV of radial nerve (upper extremity) and sural nerve (lower extremity) of both sides (i.e. dominant and non-dominant) of the body. The room temperature was maintained at 37 degree Celsius. Results: Significant differences in motor nerve conduction velocities were found between dominant and non-dominant limbs in each group. The MNCV of radial nerve was obtained was significantly higher in the sprinters than long distance runners. The MNCV of sural nerve recorded was significantly higher in sprinters as compared to distance runners. Conclusion: The motor nerve conduction velocity of radial nerve was found to be higher in sprinters as compared to the distance runners and also, the MNCV for sural nerve was found to be higher in sprinters as compared to distance runners. In case of sprinters, the MNCV of radial and sural nerves were higher in dominant limbs (i.e. arms and legs) of both sides of the body. But, in case of distance runners, the MNCV of radial and sural nerves is higher in non dominant limbs.Keywords: motor nerve conduction velocity, radial nerve, sural nerve, sprinters
Procedia PDF Downloads 564