Search results for: intermodal transport network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6418

Search results for: intermodal transport network

5548 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection

Authors: Ashkan Zakaryazad, Ekrem Duman

Abstract:

A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.

Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent

Procedia PDF Downloads 475
5547 A Summary-Based Text Classification Model for Graph Attention Networks

Authors: Shuo Liu

Abstract:

In Chinese text classification tasks, redundant words and phrases can interfere with the formation of extracted and analyzed text information, leading to a decrease in the accuracy of the classification model. To reduce irrelevant elements, extract and utilize text content information more efficiently and improve the accuracy of text classification models. In this paper, the text in the corpus is first extracted using the TextRank algorithm for abstraction, the words in the abstract are used as nodes to construct a text graph, and then the graph attention network (GAT) is used to complete the task of classifying the text. Testing on a Chinese dataset from the network, the classification accuracy was improved over the direct method of generating graph structures using text.

Keywords: Chinese natural language processing, text classification, abstract extraction, graph attention network

Procedia PDF Downloads 100
5546 A Type-2 Fuzzy Model for Link Prediction in Social Network

Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi

Abstract:

Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.

Keywords: social network, link prediction, granular computing, type-2 fuzzy sets

Procedia PDF Downloads 326
5545 Fault Detection of Pipeline in Water Distribution Network System

Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee

Abstract:

Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.

Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform

Procedia PDF Downloads 512
5544 A General Iterative Nonlinear Programming Method to Synthesize Heat Exchanger Network

Authors: Rupu Yang, Cong Toan Tran, Assaad Zoughaib

Abstract:

The work provides an iterative nonlinear programming method to synthesize a heat exchanger network by manipulating the trade-offs between the heat load of process heat exchangers (HEs) and utilities. We consider for the synthesis problem two cases, the first one without fixed cost for HEs, and the second one with fixed cost. For the no fixed cost problem, the nonlinear programming (NLP) model with all the potential HEs is optimized to obtain the global optimum. For the case with fixed cost, the NLP model is iterated through adding/removing HEs. The method was applied in five case studies and illustrated quite well effectiveness. Among which, the approach reaches the lowest TAC (2,904,026$/year) compared with the best record for the famous Aromatic plants problem. It also locates a slightly better design than records in literature for a 10 streams case without fixed cost with only 1/9 computational time. Moreover, compared to the traditional mixed-integer nonlinear programming approach, the iterative NLP method opens a possibility to consider constraints (such as controllability or dynamic performances) that require knowing the structure of the network to be calculated.

Keywords: heat exchanger network, synthesis, NLP, optimization

Procedia PDF Downloads 162
5543 Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging

Authors: Jinan Fiaidhi, Sabah Mohammed

Abstract:

Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning.

Keywords: Siamese neural network, few-shot learning, meta-learning, metric-based learning, thick data transformation and analytics

Procedia PDF Downloads 56
5542 Optimization of a Convolutional Neural Network for the Automated Diagnosis of Melanoma

Authors: Kemka C. Ihemelandu, Chukwuemeka U. Ihemelandu

Abstract:

The incidence of melanoma has been increasing rapidly over the past two decades, making melanoma a current public health crisis. Unfortunately, even as screening efforts continue to expand in an effort to ameliorate the death rate from melanoma, there is a need to improve diagnostic accuracy to decrease misdiagnosis. Artificial intelligence (AI) a new frontier in patient care has the ability to improve the accuracy of melanoma diagnosis. Convolutional neural network (CNN) a form of deep neural network, most commonly applied to analyze visual imagery, has been shown to outperform the human brain in pattern recognition. However, there are noted limitations with the accuracy of the CNN models. Our aim in this study was the optimization of convolutional neural network algorithms for the automated diagnosis of melanoma. We hypothesized that Optimal selection of the momentum and batch hyperparameter increases model accuracy. Our most successful model developed during this study, showed that optimal selection of momentum of 0.25, batch size of 2, led to a superior performance and a faster model training time, with an accuracy of ~ 83% after nine hours of training. We did notice a lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone. Training set image transformations did not result in a superior model performance in our study.

Keywords: melanoma, convolutional neural network, momentum, batch hyperparameter

Procedia PDF Downloads 101
5541 A Neural Network Control for Voltage Balancing in Three-Phase Electric Power System

Authors: Dana M. Ragab, Jasim A. Ghaeb

Abstract:

The three-phase power system suffers from different challenging problems, e.g. voltage unbalance conditions at the load side. The voltage unbalance usually degrades the power quality of the electric power system. Several techniques can be considered for load balancing including load reconfiguration, static synchronous compensator and static reactive power compensator. In this work an efficient neural network is designed to control the unbalanced condition in the Aqaba-Qatrana-South Amman (AQSA) electric power system. It is designed for highly enhanced response time of the reactive compensator for voltage balancing. The neural network is developed to determine the appropriate set of firing angles required for the thyristor-controlled reactor to balance the three load voltages accurately and quickly. The parameters of AQSA power system are considered in the laboratory model, and several test cases have been conducted to test and validate the proposed technique capabilities. The results have shown a high performance of the proposed Neural Network Control (NNC) technique for correcting the voltage unbalance conditions at three-phase load based on accuracy and response time.

Keywords: three-phase power system, reactive power control, voltage unbalance factor, neural network, power quality

Procedia PDF Downloads 195
5540 Nigeria’s Tempestuous Voyage to DB2023 via the Multimodal Route: Adjusting the Sails to Contemporary Trade Winds and Policies

Authors: Dike Ibegbulem

Abstract:

This paper interrogates the chances of Nigeria achieving its target of making the list of the first 70 countries in World Bank’s Ease of Doing Business (EoDB) rankings by the year 2023. That is, in light of existing conflicts in policies relating to the door-to-door carriage of goods and multimodal transport operations (MTOs) in the country. Drawing on the famed Legal Origins theory plus data from World Bank; and using Singapore as a touchstone, the paper unveils how amongst the top-ranked Commonwealth jurisdictions, positive correlations have been recorded over the past years between certainty in their policies on MTOs on the one hand; and their Enforcing Contracts (EC) and Doing Business (DB) indices on the other. The paper postulates that to increase Nigeria’s chances of achieving her DB2023 objective, legislative and curial policies on MTOs and door-to-door carriage of goods have to be realigned in line with prevailing policies in highly-ranked Commonwealth jurisdictions of the Global North. Her appellate courts, in particular, will need some unshackling from English pedigrees which still delimit admiralty jurisdiction to port-to-port shipping, to the exclusion of door-to-door carriage of goods beyond navigable waters. The paper identifies continental and domestic instruments, plus judicial precedents, which provide bases for expanding admiralty jurisdiction to adjudication of claims derived from door-to-door or multimodal transport contracts and other allied maritime-plus contracts. It prescribes synergy between legislative and curial policies on MTOs and door-to-door carriage of goods as species of admiralty – an emerging trend in top-ranked Commonwealth jurisdictions of the Global North.

Keywords: admiralty jurisdiction, legal origins, world bank, ease of doing business, enforcing contracts, multimodal transport operation, door-to-door, carriage of goods by sea, combined transport shipping

Procedia PDF Downloads 78
5539 Path Planning for Collision Detection between two Polyhedra

Authors: M. Khouil, N. Saber, M. Mestari

Abstract:

This study aimed to propose, a different architecture of a Path Planning using the NECMOP. where several nonlinear objective functions must be optimized in a conflicting situation. The ability to detect and avoid collision is very important for mobile intelligent machines. However, many artificial vision systems are not yet able to quickly and cheaply extract the wealth information. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons linear and threshold logic, which simplified the actual implementation of all the networks proposed. This article represents a comprehensive algorithm that determine through the AMAXNET network a measure (a mini-maximum point) in a fixed time, which allows us to detect the presence of a potential collision.

Keywords: path planning, collision detection, convex polyhedron, neural network

Procedia PDF Downloads 438
5538 Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory

Authors: Danilo López, Nelson Vera, Luis Pedraza

Abstract:

This paper analyzes fundamental ideas and concepts related to neural networks, which provide the reader a theoretical explanation of Long Short-Term Memory (LSTM) networks operation classified as Deep Learning Systems, and to explicitly present the mathematical development of Backward Pass equations of the LSTM network model. This mathematical modeling associated with software development will provide the necessary tools to develop an intelligent system capable of predicting the behavior of licensed users in wireless cognitive radio networks.

Keywords: neural networks, multilayer perceptron, long short-term memory, recurrent neuronal network, mathematical analysis

Procedia PDF Downloads 420
5537 Wastewater Treatment Using Sodom Apple Tree in Arid Regions

Authors: D. Oulhaci, M. Zehah, S. Meguellati

Abstract:

Collected by the sewerage network, the wastewater contains many polluting elements, coming from the population, commercial, industrial and agricultural activities. These waters are collected and discharged into the natural environment and pollute it. Hence the need to transport them before discharge to a treatment plant to undergo several treatment phases. The objective of this study is to highlight the purification performance of the "Sodom apple tree" which is a very common shrub in the region of Djanet and Illizi in Algeria. As material, we used small buckets filled with sand with a gravel substrate. We sowed seeds that we let grow a few weeks. The water supply is under a horizontal flow regime under-ground. The urban wastewater used is preceded by preliminary treatment. The water obtained after purification is collected using a tap in a container placed under the seal. The comparison between the inlet and the outlet waters showed that the presence of the Sodom apple tree contributes to reducing their pollutant parameters with significant rates: 81% for COD, 84%, for BOD , 95% for SM , 82% for NO⁻² , and 85% for NO⁻³ and can be released into the environment without risk of pollution

Keywords: arid zone, pollution, purification, re-use, wastewater.

Procedia PDF Downloads 80
5536 Oil Logistics for Refining to Northern Europe

Authors: Vladimir Klepikov

Abstract:

To develop the programs to supply crude oil to North European refineries, it is necessary to take into account the refineries’ location, crude refining capacity, and the transport infrastructure capacity. Among the countries of the region, we include those having a marine boundary along the Northern Sea and the Baltic Sea (from France in the west to Finland in the east). The paper envisages the geographic allocation of the refineries and contains the evaluation of the refineries’ capacities for the region under review. The sustainable operations of refineries in the region are determined by the transportation system capacity to supply crude oil to them. The assessment of capacity of crude oil transportation to the refineries is conducted. The research is performed for the period of 2005/2015, using the quantitative analysis method. The countries are classified by the refineries’ aggregate capacities and the crude oil output on their territory. The crude oil output capacities in the region in the period under review are determined. The capacities of the region’s transportation system to supply crude oil produced in the region to the refineries are revealed. The analysis suggested that imported raw materials are the main source of oil for the refineries in the region. The main sources of crude oil supplies to North European refineries are reviewed. The change in the refineries’ capacities in the group of countries and each particular country, as well as the utilization of the refineries' capacities in the region in the period under review, was studied. The input suggests that the bulk of crude oil is supplied by marine and pipeline transport. The paper contains the assessment of the crude oil transportation by pipeline transport in the overall crude oil cargo flow. The refineries’ production rate for the groups of countries under the review and for each particular country was the subject of study. Our study yielded the trend towards the increase in the crude oil refining at the refineries of the region and reduction in the crude oil output. If this trend persists in the near future, the cargo flow of imported crude oil and the utilization of the North European logistics infrastructure may increase. According to the study, the existing transport infrastructure in the region is able to handle the increasing imported crude oil flow.

Keywords: European region, infrastructure, oil terminal capacity, pipeline capacity, tanker draft

Procedia PDF Downloads 172
5535 On Dialogue Systems Based on Deep Learning

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.

Keywords: dialogue management, response generation, deep learning, evaluation

Procedia PDF Downloads 167
5534 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation Using Physics-Informed Neural Network

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics-informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on a strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary conditions to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of the Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful in studying various optical phenomena.

Keywords: deep learning, optical soliton, physics informed neural network, partial differential equation

Procedia PDF Downloads 70
5533 Two Day Ahead Short Term Load Forecasting Neural Network Based

Authors: Firas M. Tuaimah

Abstract:

This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity. The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.

Keywords: short-term load forecasting, artificial neural networks, back propagation learning, hourly load demand

Procedia PDF Downloads 464
5532 Magnetofluidics for Mass Transfer and Mixing Enhancement in a Micro Scale Device

Authors: Majid Hejazian, Nam-Trung Nguyen

Abstract:

Over the past few years, microfluidic devices have generated significant attention from industry and academia due to advantages such as small sample volume, low cost and high efficiency. Microfluidic devices have applications in chemical, biological and industry analysis and can facilitate assay of bio-materials and chemical reactions, separation, and sensing. Micromixers are one of the important microfluidic concepts. Micromixers can work as stand-alone devices or be integrated in a more complex microfluidic system such as a lab on a chip (LOC). Micromixers are categorized as passive and active types. Passive micromixers rely only on the arrangement of the phases to be mixed and contain no moving parts and require no energy. Active micromixers require external fields such as pressure, temperature, electric and acoustic fields. Rapid and efficient mixing is important for many applications such as biological, chemical and biochemical analysis. Achieving fast and homogenous mixing of multiple samples in the microfluidic devices has been studied and discussed in the literature recently. Improvement in mixing rely on effective mass transport in microscale, but are currently limited to molecular diffusion due to the predominant laminar flow in this size scale. Using magnetic field to elevate mass transport is an effective solution for mixing enhancement in microfluidics. The use of a non-uniform magnetic field to improve mass transfer performance in a microfluidic device is demonstrated in this work. The phenomenon of mixing ferrofluid and DI-water streams has been reported before, but mass transfer enhancement for other non-magnetic species through magnetic field have not been studied and evaluated extensively. In the present work, permanent magnets were used in a simple microfluidic device to create a non-uniform magnetic field. Two streams are introduced into the microchannel: one contains fluorescent dye mixed with diluted ferrofluid to induce enhanced mass transport of the dye, and the other one is a non-magnetic DI-water stream. Mass transport enhancement of fluorescent dye is evaluated using fluorescent measurement techniques. The concentration field is measured for different flow rates. Due to effect of magnetic field, a body force is exerted on the paramagnetic stream and expands the ferrofluid stream into non-magnetic DI-water flow. The experimental results demonstrate that without a magnetic field, both magnetic nanoparticles of the ferrofluid and the fluorescent dye solely rely on molecular diffusion to spread. The non-uniform magnetic field, created by the permanent magnets around the microchannel, and diluted ferrofluid can improve mass transport of non-magnetic solutes in a microfluidic device. The susceptibility mismatch between the fluids results in a magnetoconvective secondary flow towards the magnets and subsequently the mass transport of the non-magnetic fluorescent dye. A significant enhancement in mass transport of the fluorescent dye was observed. The platform presented here could be used as a microfluidics-based micromixer for chemical and biological applications.

Keywords: ferrofluid, mass transfer, micromixer, microfluidics, magnetic

Procedia PDF Downloads 225
5531 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism

Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li

Abstract:

Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.

Keywords: keypoint detection, feature fusion, attention, semantic segmentation

Procedia PDF Downloads 119
5530 The Effect of Raindrop Kinetic Energy on Soil Erodibility

Authors: A. Moussouni, L. Mouzai, M. Bouhadef

Abstract:

Soil erosion is a very complex phenomenon, resulting from detachment and transport of soil particles by erosion agents. The kinetic energy of raindrop is the energy available for detachment and transport by splashing rain. The soil erodibility is defined as the ability of soil to resist to erosion. For this purpose, an experimental study was conducted in the laboratory using rainfall simulator to study the effect of the kinetic energy of rain (Ec) on the soil erodibility (K). The soil used was a sandy agricultural soil of 62.08% coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and 7.21% clay. The obtained results show that the kinetic energy of raindrops evolves as a power law with soil erodibility.

Keywords: erosion, runoff, raindrop kinetic energy, soil erodibility, rainfall intensity, raindrop fall velocity

Procedia PDF Downloads 505
5529 Particle Filter Supported with the Neural Network for Aircraft Tracking Based on Kernel and Active Contour

Authors: Mohammad Izadkhah, Mojtaba Hoseini, Alireza Khalili Tehrani

Abstract:

In this paper we presented a new method for tracking flying targets in color video sequences based on contour and kernel. The aim of this work is to overcome the problem of losing target in changing light, large displacement, changing speed, and occlusion. The proposed method is made in three steps, estimate the target location by particle filter, segmentation target region using neural network and find the exact contours by greedy snake algorithm. In the proposed method we have used both region and contour information to create target candidate model and this model is dynamically updated during tracking. To avoid the accumulation of errors when updating, target region given to a perceptron neural network to separate the target from background. Then its output used for exact calculation of size and center of the target. Also it is used as the initial contour for the greedy snake algorithm to find the exact target's edge. The proposed algorithm has been tested on a database which contains a lot of challenges such as high speed and agility of aircrafts, background clutter, occlusions, camera movement, and so on. The experimental results show that the use of neural network increases the accuracy of tracking and segmentation.

Keywords: video tracking, particle filter, greedy snake, neural network

Procedia PDF Downloads 342
5528 Dynamic Performance Analysis of Distribution/ Sub-Transmission Networks with High Penetration of PV Generation

Authors: Cristian F.T. Montenegro, Luís F. N. Lourenço, Maurício B. C. Salles, Renato M. Monaro

Abstract:

More PV systems have been connected to the electrical network each year. As the number of PV systems increases, some issues affecting grid operations have been identified. This paper studied the impacts related to changes in solar irradiance on a distribution/sub-transmission network, considering variations due to moving clouds and daily cycles. Using MATLAB/Simulink software, a solar farm of 30 MWp was built and then implemented to a test network. From simulations, it has been determined that irradiance changes can have a significant impact on the grid by causing voltage fluctuations outside the allowable thresholds. This work discussed some local control strategies and grid reinforcements to mitigate the negative effects of the irradiance changes on the grid.

Keywords: reactive power control, solar irradiance, utility-scale PV systems, voltage fluctuations

Procedia PDF Downloads 460
5527 Estimation of State of Charge, State of Health and Power Status for the Li-Ion Battery On-Board Vehicle

Authors: S. Sabatino, V. Calderaro, V. Galdi, G. Graber, L. Ippolito

Abstract:

Climate change is a rapidly growing global threat caused mainly by increased emissions of carbon dioxide (CO₂) into the atmosphere. These emissions come from multiple sources, including industry, power generation, and the transport sector. The need to tackle climate change and reduce CO₂ emissions is indisputable. A crucial solution to achieving decarbonization in the transport sector is the adoption of electric vehicles (EVs). These vehicles use lithium (Li-Ion) batteries as an energy source, making them extremely efficient and with low direct emissions. However, Li-Ion batteries are not without problems, including the risk of overheating and performance degradation. To ensure its safety and longevity, it is essential to use a battery management system (BMS). The BMS constantly monitors battery status, adjusts temperature and cell balance, ensuring optimal performance and preventing dangerous situations. From the monitoring carried out, it is also able to optimally manage the battery to increase its life. Among the parameters monitored by the BMS, the main ones are State of Charge (SoC), State of Health (SoH), and State of Power (SoP). The evaluation of these parameters can be carried out in two ways: offline, using benchtop batteries tested in the laboratory, or online, using batteries installed in moving vehicles. Online estimation is the preferred approach, as it relies on capturing real-time data from batteries while operating in real-life situations, such as in everyday EV use. Actual battery usage conditions are highly variable. Moving vehicles are exposed to a wide range of factors, including temperature variations, different driving styles, and complex charge/discharge cycles. This variability is difficult to replicate in a controlled laboratory environment and can greatly affect performance and battery life. Online estimation captures this variety of conditions, providing a more accurate assessment of battery behavior in real-world situations. In this article, a hybrid approach based on a neural network and a statistical method for real-time estimation of SoC, SoH, and SoP parameters of interest is proposed. These parameters are estimated from the analysis of a one-day driving profile of an electric vehicle, assumed to be divided into the following four phases: (i) Partial discharge (SoC 100% - SoC 50%), (ii) Partial discharge (SoC 50% - SoC 80%), (iii) Deep Discharge (SoC 80% - SoC 30%) (iv) Full charge (SoC 30% - SoC 100%). The neural network predicts the values of ohmic resistance and incremental capacity, while the statistical method is used to estimate the parameters of interest. This reduces the complexity of the model and improves its prediction accuracy. The effectiveness of the proposed model is evaluated by analyzing its performance in terms of square mean error (RMSE) and percentage error (MAPE) and comparing it with the reference method found in the literature.

Keywords: electric vehicle, Li-Ion battery, BMS, state-of-charge, state-of-health, state-of-power, artificial neural networks

Procedia PDF Downloads 67
5526 Policy Views of Sustainable Integrated Solution for Increased Synergy between Light Railways and Electrical Distribution Network

Authors: Mansoureh Zangiabadi, Shamil Velji, Rajendra Kelkar, Neal Wade, Volker Pickert

Abstract:

The EU has set itself a long-term goal of reducing greenhouse gas emissions by 80-95% of the 1990 levels by 2050 as set in the Energy Roadmap 2050. This paper reports on the European Union H2020 funded E-Lobster project which demonstrates tools and technologies, software and hardware in integrating the grid distribution, and the railway power systems with power electronics technologies (Smart Soft Open Point - sSOP) and local energy storage. In this context this paper describes the existing policies and regulatory frameworks of the energy market at European level with a special focus then at National level, on the countries where the members of the consortium are located, and where the demonstration activities will be implemented. By taking into account the disciplinary approach of E-Lobster, the main policy areas investigated includes electricity, energy market, energy efficiency, transport and smart cities. Energy storage will play a key role in enabling the EU to develop a low-carbon electricity system. In recent years, Energy Storage System (ESSs) are gaining importance due to emerging applications, especially electrification of the transportation sector and grid integration of volatile renewables. The need for storage systems led to ESS technologies performance improvements and significant price decline. This allows for opening a new market where ESSs can be a reliable and economical solution. One such emerging market for ESS is R+G management which will be investigated and demonstrated within E-Lobster project. The surplus of energy in one type of power system (e.g., due to metro braking) might be directly transferred to the other power system (or vice versa). However, it would usually happen at unfavourable instances when the recipient does not need additional power. Thus, the role of ESS is to enhance advantages coming from interconnection of the railway power systems and distribution grids by offering additional energy buffer. Consequently, the surplus/deficit of energy in, e.g. railway power systems, is not to be immediately transferred to/from the distribution grid but it could be stored and used when it is really needed. This will assure better energy management exchange between the railway power systems and distribution grids and lead to more efficient loss reduction. In this framework, to identify the existing policies and regulatory frameworks is crucial for the project activities and for the future development of business models for the E-Lobster solutions. The projections carried out by the European Commission, the Member States and stakeholders and their analysis indicated some trends, challenges, opportunities and structural changes needed to design the policy measures to provide the appropriate framework for investors. This study will be used as reference for the discussion in the envisaged workshops with stakeholders (DSOs and Transport Managers) in the E-Lobster project.

Keywords: light railway, electrical distribution network, Electrical Energy Storage, policy

Procedia PDF Downloads 135
5525 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling

Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed

Abstract:

The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.

Keywords: streamflow, neural network, optimisation, algorithm

Procedia PDF Downloads 152
5524 Anomaly Detection with ANN and SVM for Telemedicine Networks

Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos

Abstract:

In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.

Keywords: anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines

Procedia PDF Downloads 357
5523 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags

Authors: Zhang Shuqi, Liu Dan

Abstract:

For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.

Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation

Procedia PDF Downloads 104
5522 Artificial Neural Network Speed Controller for Excited DC Motor

Authors: Elabed Saud

Abstract:

This paper introduces the new ability of Artificial Neural Networks (ANNs) in estimating speed and controlling the separately excited DC motor. The neural control scheme consists of two parts. One is the neural estimator which is used to estimate the motor speed. The other is the neural controller which is used to generate a control signal for a converter. These two neutrals are training by Levenberg-Marquardt back-propagation algorithm. ANNs are the standard three layers feed-forward neural network with sigmoid activation functions in the input and hidden layers and purelin in the output layer. Simulation results are presented to demonstrate the effectiveness of this neural and advantage of the control system DC motor with ANNs in comparison with the conventional scheme without ANNs.

Keywords: Artificial Neural Network (ANNs), excited DC motor, convenional controller, speed Controller

Procedia PDF Downloads 726
5521 Integration Network ASI in Lab Automation and Networks Industrial in IFCE

Authors: Jorge Fernandes Teixeira Filho, André Oliveira Alcantara Fontenele, Érick Aragão Ribeiro

Abstract:

The constant emergence of new technologies used in automated processes makes it necessary for teachers and traders to apply new technologies in their classes. This paper presents an application of a new technology that will be employed in a didactic plant, which represents an effluent treatment process located in a laboratory of a federal educational institution. At work were studied in the first place, all components to be placed on automation laboratory in order to determine ways to program, parameterize and organize the plant. New technologies that have been implemented to the process are basically an AS-i network and a Profinet network, a SCADA system, which represented a major innovation in the laboratory. The project makes it possible to carry out in the laboratory various practices of industrial networks and SCADA systems.

Keywords: automation, industrial networks, SCADA systems, lab automation

Procedia PDF Downloads 544
5520 Alloy Design of Single Crystal Ni-base Superalloys by Combined Method of Neural Network and CALPHAD

Authors: Mehdi Montakhabrazlighi, Ercan Balikci

Abstract:

The neural network (NN) method is applied to alloy development of single crystal Ni-base Superalloys with low density and improved mechanical strength. A set of 1200 dataset which includes chemical composition of the alloys, applied stress and temperature as inputs and density and time to rupture as outputs is used for training and testing the network. Thermodynamic phase diagram modeling of the screened alloys is performed with Thermocalc software to model the equilibrium phases and also microsegregation in solidification processing. The model is first trained by 80% of the data and the 20% rest is used to test it. Comparing the predicted values and the experimental ones showed that a well-trained network is capable of accurately predicting the density and time to rupture strength of the Ni-base superalloys. Modeling results is used to determine the effect of alloying elements, stress, temperature and gamma-prime phase volume fraction on rupture strength of the Ni-base superalloys. This approach is in line with the materials genome initiative and integrated computed materials engineering approaches promoted recently with the aim of reducing the cost and time for development of new alloys for critical aerospace components. This work has been funded by TUBITAK under grant number 112M783.

Keywords: neural network, rupture strength, superalloy, thermocalc

Procedia PDF Downloads 313
5519 Analyzing Keyword Networks for the Identification of Correlated Research Topics

Authors: Thiago M. R. Dias, Patrícia M. Dias, Gray F. Moita

Abstract:

The production and publication of scientific works have increased significantly in the last years, being the Internet the main factor of access and distribution of these works. Faced with this, there is a growing interest in understanding how scientific research has evolved, in order to explore this knowledge to encourage research groups to become more productive. Therefore, the objective of this work is to explore repositories containing data from scientific publications and to characterize keyword networks of these publications, in order to identify the most relevant keywords, and to highlight those that have the greatest impact on the network. To do this, each article in the study repository has its keywords extracted and in this way the network is  characterized, after which several metrics for social network analysis are applied for the identification of the highlighted keywords.

Keywords: bibliometrics, data analysis, extraction and data integration, scientometrics

Procedia PDF Downloads 257