Search results for: hierarchical text classification models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10058

Search results for: hierarchical text classification models

9188 Machine Learning-Enabled Classification of Climbing Using Small Data

Authors: Nicholas Milburn, Yu Liang, Dalei Wu

Abstract:

Athlete performance scoring within the climbing do-main presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.

Keywords: classification, climbing, data imbalance, data scarcity, machine learning, time sequence

Procedia PDF Downloads 142
9187 Digital Marketing Maturity Models: Overview and Comparison

Authors: Elina Bakhtieva

Abstract:

The variety of available digital tools, strategies and activities might confuse and disorient even an experienced marketer. This applies in particular to B2B companies, which are usually less flexible in uptaking of digital technology than B2C companies. B2B companies are lacking a framework that corresponds to the specifics of the B2B business, and which helps to evaluate a company’s capabilities and to choose an appropriate path. A B2B digital marketing maturity model helps to fill this gap. However, modern marketing offers no widely approved digital marketing maturity model, and thus, some marketing institutions provide their own tools. The purpose of this paper is building an optimized B2B digital marketing maturity model based on a SWOT (strengths, weaknesses, opportunities, and threats) analysis of existing models. The current study provides an analytical review of the existing digital marketing maturity models with open access. The results of the research are twofold. First, the provided SWOT analysis outlines the main advantages and disadvantages of existing models. Secondly, the strengths of existing digital marketing maturity models, helps to identify the main characteristics and the structure of an optimized B2B digital marketing maturity model. The research findings indicate that only one out of three analyzed models could be used as a separate tool. This study is among the first examining the use of maturity models in digital marketing. It helps businesses to choose between the existing digital marketing models, the most effective one. Moreover, it creates a base for future research on digital marketing maturity models. This study contributes to the emerging B2B digital marketing literature by providing a SWOT analysis of the existing digital marketing maturity models and suggesting a structure and main characteristics of an optimized B2B digital marketing maturity model.

Keywords: B2B digital marketing strategy, digital marketing, digital marketing maturity model, SWOT analysis

Procedia PDF Downloads 344
9186 Presence and Absence: The Use of Photographs in Paris, Texas

Authors: Yi-Ting Wang, Wen-Shu Lai

Abstract:

The subject of this paper is the photography in the 1983 film Paris, Texas, directed by Wim Wenders. Wenders is well known as a film director as well as a photographer. We have found that photography is shown as a photographic element in many of his films. Some of these photographs serve as details within the films, while others play important roles that are relevant to the story. This paper aims to consider photographs in film as a specific type of text, which is the output of both still photography and the film itself. In the film Paris, Texas, three sets of important photographs appear whose symbolic meanings are as dialectical as their text types. The relationship between the existence of these photos and the storyline is both dependent and isolated. The film’s images fly by and progress into other images, while the photos in the film serve a unique narrative function by stopping the continuously flowing images thus provide the viewer a space for imagination and contemplation. They are more than just artistic forms; they also contained multiple meanings. The photographs in Paris, Texas play the role of both presence and absence according to their shifting meanings. There are references to their presence: photographs exist between film time and narrative time, so in terms of the interaction between the characters in the film, photographs are a common symbol of the beginning and end of the characters’ journeys. In terms of the audience, the film’s photographs are a link in the viewing frame structure, through which the creative motivation of the film director can be explored. Photographs also point to the absence of certain objects: the scenes in the photos represent an imaginary map of emotion. The town of Paris, Texas is therefore isolated from the physical presence of the photograph, and is far more abstract than the reality in the film. This paper embraces the ambiguous nature of photography and demonstrates its presence and absence in film with regard to the meaning of text. However, it is worth reflecting that the temporary nature of the interpretation of the film’s photographs is far greater than any other type of photographic text: the characteristics of the text cause the interpretation results to change along with the variations in the interpretation process, which makes their meaning a dynamic process. The photographs’ presence or absence in the context of Paris, Texas also demonstrates the presence and absence of the creator, time, the truth, and the imagination. The film becomes more complete as a result of the revelation of the photographs, while the intertextual connection between these two forms simultaneously provides multiple possibilities for the interpretation of the photographs in the film.

Keywords: film, Paris, Texas, photography, Wim Wenders

Procedia PDF Downloads 318
9185 Understanding Music through the Framework of Feminist Confessional Literary Criticism: Heightening Audience Identification and Prioritising the Female Voice

Authors: Katharine Pollock

Abstract:

Feminist scholars assert that a defining aspect of feminist confessional literature is that it expresses both an individual and communal identity, one which is predicated on the commonly-shared aspects of female experience. Reading feminist confessional literature in this way accommodates a plurality of readerly experiences and textual interpretations. It affirms the individual whilst acknowledging those experiences which bind women together, and refuses traditional objective criticism. It invites readers to see themselves reflected in the text, and encourages them to share their own stories. Similarly, music which communicates women’s personal experience, fictive or not, expresses a dual identity. There is an inherent risk of imposing a confessional reading upon a musical or literary text. Understanding music as being multivocal in the same way as confessional literature negates this patriarchal tendency, and allows listeners to engage with both the subjective and collective aspects of a text. By hearing their own stories reflected in the music, listeners engage in an ongoing dialogic process in which female stories are prioritised. This refuses patriarchal silencing and ensures a diversity of female voices. To demonstrate the veracity of these claims, literary criticism is applied to Lily Allen’s music, and memoir My Thoughts Exactly.

Keywords: confession, female, feminist, literature, music

Procedia PDF Downloads 154
9184 Energy Models for Analyzing the Economic Wide Impact of the Environmental Policies

Authors: Majdi M. Alomari, Nafesah I. Alshdaifat, Mohammad S. Widyan

Abstract:

Different countries have introduced different schemes and policies to counter global warming. The rationale behind the proposed policies and the potential barriers to successful implementation of the policies adopted by the countries were analyzed and estimated based on different models. It is argued that these models enhance the transparency and provide a better understanding to the policy makers. However, these models are underpinned with several structural and baseline assumptions. These assumptions, modeling features and future prediction of emission reductions and other implication such as cost and benefits of a transition to a low-carbon economy and its economy wide impacts were discussed. On the other hand, there are potential barriers in the form political, financial, and cultural and many others that pose a threat to the mitigation options.

Keywords: energy models, environmental policy instruments, mitigating CO2 emission, economic wide impact

Procedia PDF Downloads 524
9183 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing

Authors: Aleksandra Zysk, Pawel Badura

Abstract:

Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.

Keywords: classification, singing, spectral analysis, vocal emission, vocal register

Procedia PDF Downloads 304
9182 Use of Fractal Geometry in Machine Learning

Authors: Fuad M. Alkoot

Abstract:

The main component of a machine learning system is the classifier. Classifiers are mathematical models that can perform classification tasks for a specific application area. Additionally, many classifiers are combined using any of the available methods to reduce the classifier error rate. The benefits gained from the combination of multiple classifier designs has motivated the development of diverse approaches to multiple classifiers. We aim to investigate using fractal geometry to develop an improved classifier combiner. Initially we experiment with measuring the fractal dimension of data and use the results in the development of a combiner strategy.

Keywords: fractal geometry, machine learning, classifier, fractal dimension

Procedia PDF Downloads 216
9181 Document-level Sentiment Analysis: An Exploratory Case Study of Low-resource Language Urdu

Authors: Ammarah Irum, Muhammad Ali Tahir

Abstract:

Document-level sentiment analysis in Urdu is a challenging Natural Language Processing (NLP) task due to the difficulty of working with lengthy texts in a language with constrained resources. Deep learning models, which are complex neural network architectures, are well-suited to text-based applications in addition to data formats like audio, image, and video. To investigate the potential of deep learning for Urdu sentiment analysis, we implemented five different deep learning models, including Bidirectional Long Short Term Memory (BiLSTM), Convolutional Neural Network (CNN), Convolutional Neural Network with Bidirectional Long Short Term Memory (CNN-BiLSTM), and Bidirectional Encoder Representation from Transformer (BERT). In this study, we developed a hybrid deep learning model called BiLSTM-Single Layer Multi Filter Convolutional Neural Network (BiLSTM-SLMFCNN) by fusing BiLSTM and CNN architecture. The proposed and baseline techniques are applied on Urdu Customer Support data set and IMDB Urdu movie review data set by using pre-trained Urdu word embedding that are suitable for sentiment analysis at the document level. Results of these techniques are evaluated and our proposed model outperforms all other deep learning techniques for Urdu sentiment analysis. BiLSTM-SLMFCNN outperformed the baseline deep learning models and achieved 83%, 79%, 83% and 94% accuracy on small, medium and large sized IMDB Urdu movie review data set and Urdu Customer Support data set respectively.

Keywords: urdu sentiment analysis, deep learning, natural language processing, opinion mining, low-resource language

Procedia PDF Downloads 72
9180 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision

Procedia PDF Downloads 125
9179 Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: transformers, generative ai, gene expression design, classification

Procedia PDF Downloads 59
9178 Operating Speed Models on Tangent Sections of Two-Lane Rural Roads

Authors: Dražen Cvitanić, Biljana Maljković

Abstract:

This paper presents models for predicting operating speeds on tangent sections of two-lane rural roads developed on continuous speed data. The data corresponds to 20 drivers of different ages and driving experiences, driving their own cars along an 18 km long section of a state road. The data were first used for determination of maximum operating speeds on tangents and their comparison with speeds in the middle of tangents i.e. speed data used in most of operating speed studies. Analysis of continuous speed data indicated that the spot speed data are not reliable indicators of relevant speeds. After that, operating speed models for tangent sections were developed. There was no significant difference between models developed using speed data in the middle of tangent sections and models developed using maximum operating speeds on tangent sections. All developed models have higher coefficient of determination then models developed on spot speed data. Thus, it can be concluded that the method of measuring has more significant impact on the quality of operating speed model than the location of measurement.

Keywords: operating speed, continuous speed data, tangent sections, spot speed, consistency

Procedia PDF Downloads 452
9177 Control-Oriented Enhanced Zero-Dimensional Two-Zone Combustion Modelling of Internal Combustion Engines

Authors: Razieh Arian, Hadi Adibi-Asl

Abstract:

This paper investigates an efficient combustion modeling for cycle simulation of internal combustion engine (ICE) studies. The term “efficient model” means that the models must generate desired simulation results while having fast simulation time. In other words, the efficient model is defined based on the application of the model. The objective of this study is to develop math-based models for control applications or shortly control-oriented models. This study compares different modeling approaches used to model the ICEs such as mean-value models, zero dimensional, quasi-dimensional, and multi-dimensional models for control applications. Mean-value models have been widely used for model-based control applications, but recently by developing advanced simulation tools (e.g. Maple/MapleSim) the higher order models (more complex) could be considered as control-oriented models. This paper presents the enhanced zero-dimensional cycle-by-cycle modeling and simulation of a spark ignition engine with a two-zone combustion model. The simulation results are cross-validated against the simulation results from GT-Power package and show a good agreement in terms of trends and values.

Keywords: Two-zone combustion, control-oriented model, wiebe function, internal combustion engine

Procedia PDF Downloads 340
9176 Feminist Perspective: Negotiating Subverted Feminine Self in Moth Smoke by Mohsin Hamid

Authors: Sumaira Mukhtar

Abstract:

The present research aims at the discussion of the subversion of the hegemony of the feminine self in the text Moth Smoke by a Pakistani novelist Mohsin Hamid. It presents the notion of the subversion of the grand narratives of the ‘positioning’ of feminine identity in Pakistani patriarchal society by presenting a de-stereotyped personality of Mumtaz, the protagonist in Moth Smoke. The dominant masculine traits in Mumtaz’s personality have been negotiated since she is an untraditional female character in the novel. In this regard, the researcher has taken a feministic stance in this study by presenting the proposition that subaltern can also speak. Mumtaz’s character reminds one of Hedda from Henrik Ibsen’s play Hedda Gabler. So, the masculine traits in Mumtaz’s personality have also been compared with Hedda’s. Besides, the research study will also bring into notice that how that in the postmodern scenario, marginalization of the women have been responded back by women and hereby Mumtaz by uplifting her social status and class. Her de-stereotyped feminine self has been reinforced by the dialogues and incidents in the text. This research is qualitative in design and is based on the textual analysis. An interpretive research method has also been utilized since the researcher has tried to decode the text in supporting the notion of de-stereotyping of feminine self. This research would add to the body of Pakistani literature and Feministic theory.

Keywords: de-stereotyped, feminine identity, marginalization, masculine traits

Procedia PDF Downloads 172
9175 Harmonic Data Preparation for Clustering and Classification

Authors: Ali Asheibi

Abstract:

The rapid increase in the size of databases required to store power quality monitoring data has demanded new techniques for analysing and understanding the data. One suggested technique to assist in analysis is data mining. Preparing raw data to be ready for data mining exploration take up most of the effort and time spent in the whole data mining process. Clustering is an important technique in data mining and machine learning in which underlying and meaningful groups of data are discovered. Large amounts of harmonic data have been collected from an actual harmonic monitoring system in a distribution system in Australia for three years. This amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. In this paper, harmonic data preparation processes to better understanding of the data have been presented. Underlying classes in this data has then been identified using clustering technique based on the Minimum Message Length (MML) method. The underlying operational information contained within the clusters can be rapidly visualised by the engineers. The C5.0 algorithm was used for classification and interpretation of the generated clusters.

Keywords: data mining, harmonic data, clustering, classification

Procedia PDF Downloads 247
9174 Improving Reading Comprehension Skills of Elementary School Students through Cooperative Integrated Reading and Composition Model Using Padlet

Authors: Neneng Hayatul Milah

Abstract:

The most important reading skill for students is comprehension. Understanding the reading text will have an impact on learning outcomes. However, reading comprehension instruction in Indonesian elementary schools is lacking. A more effective learning model is needed to enhance students' reading comprehension. This study aimed to evaluate the effectiveness of the CIRC (Cooperative Integrated Reading and Composition) model with Padlet integration in improving the reading comprehension skills of grade IV students in elementary schools in Cimahi City, Indonesia. This research methodology was quantitative with a pre-experiment research type and one group pretest-posttest research design. The sample of this study consisted of 30 students. The results of statistical analysis showed that there was a significant effect of using the CIRC learning model using Padlet on improving students' reading comprehension skills of narrative text. The mean score of students' pretest was 67.41, while the mean score of the posttest increased to 84.82. The paired sample t-test resulted in a t-count score of -13.706 with a significance score of <0.001, which is smaller than α = 0.05. This research is expected to provide useful insights for educational practitioners on how the use of the CIRC model using Padlet can improve the reading comprehension skills of elementary school students.

Keywords: reading comprehension skills, CIRC, Padlet, narrative text

Procedia PDF Downloads 32
9173 Unravelling the Knot: Towards a Definition of ‘Digital Labor’

Authors: Marta D'Onofrio

Abstract:

The debate on the digitalization of the economy has raised questions about how both labor and the regulation of work processes are changing due to the introduction of digital technologies in the productive system. Within the literature, the term ‘digital labor’ is commonly used to identify the impact of digitalization on labor. Despite the wide use of this term, it is still not available an unambiguous definition of it, and this could create confusion in the use of terminology and in the attempts of classification. As a consequence, the purpose of this paper is to provide for a definition and to propose a classification of ‘digital labor’, resorting to the theoretical approach of organizational studies.

Keywords: digital labor, digitalization, data-driven algorithms, big data, organizational studies

Procedia PDF Downloads 153
9172 Structures and Analytical Crucibles in Nigerian Indigenous Art Music

Authors: Albert Oluwole Uzodimma Authority

Abstract:

Nigeria is a diverse nation with a rich cultural heritage that has produced numerous art musicians and a vast range of art songs. The compositional styles, tonal rhythm, text rhythm, word painting, and text-tone relationship vary extensively from one dialect to another, indicating the need for standardized tools for the structural and analytical deconstruction of Nigerian indigenous art music. The purpose of this research is to examine the structures of Nigerian indigenous art music and outline some crucibles for analyzing it, by investigating how dialectical inflection influences the choice of text tone, scale mode, tonal rhythm, and the general ambiance of Nigerian art music. The research used a structured questionnaire to collect data from 50 musicologists, out of which 41 responded. The study's focus was on the works of two prominent twentieth-century composers, Stephen Olusoji, and Nwamara Alvan-Ikoku, titled "Oyigiyigi" and "O Chineke, Inozikwa omee," respectively. The data collected was presented in percentages using pie charts and tables. The study shows that in Nigerian Indigenous music, several aspects are to be considered for proper analysis, such as linguistic sensitivity, dialectical inflection influences text-tone relationship, text rhythm and tonal rhythm, which help to convey the proper meanings of messages in songs. It also highlights the lack of standardized rubrics for analysis, which necessitated the proposal of robust criteria for analyzing African music, known as Neo-Eclectic-Crucibles. Hinging on eclectic approach, this research makes significant contributions to music scholarship by addressing the need for standardized tools and crucibles for the structural and analytical deconstruction of Nigerian indigenous art music. It provides a template for further studies leading to standardized rubrics for analyzing African music. This research collected data through a structured questionnaire and analyzed it using pie charts and tables to present the findings accurately. The analysis focused on the respondents' perspectives on the research objectives and structural analysis of two indigenous music compositions by Olusoji and Nwamara. This research answers the questions on the structures and analytical crucibles used in Nigerian indigenous art music, how dialectical inflection influences text-tone relationship, scale mode, tonal rhythm, and the general ambiance of Nigerian art music. This paper demonstrates the need for standardized tools and crucibles for the structural and analytical deconstruction of Nigerian indigenous art music. It highlights several aspects that are crucial to analyzing Nigerian indigenous music and proposes the Neo-Eclectic-Crucibles criteria for analyzing African music. The contribution of this research to music scholarship is significant, providing a template for further studies and research in the field.

Keywords: art-music, crucibles, dialectical inflections, indigenous, text-tone, tonal rhythm, word-painting

Procedia PDF Downloads 100
9171 Classification of Tropical Semi-Modules

Authors: Wagneur Edouard

Abstract:

Tropical algebra is the algebra constructed over an idempotent semifield S. We show here that every m-dimensional tropical module M over S with strongly independent basis can be embedded into Sm, and provide an algebraic invariant -the Γ-matrix of M- which characterises the isomorphy class of M. The strong independence condition also yields a significant improvement to the Whitney embedding for tropical torsion modules published earlier We also show that the strong independence of the basis of M is equivalent to the unique representation of elements of M. Numerous examples illustrate our results.

Keywords: classification, idempotent semi-modules, strong independence, tropical algebra

Procedia PDF Downloads 370
9170 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining

Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride

Abstract:

In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.

Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning

Procedia PDF Downloads 134
9169 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.

Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning

Procedia PDF Downloads 243
9168 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network

Procedia PDF Downloads 135
9167 Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks

Authors: Tesfaye Mengistu

Abstract:

Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids.

Keywords: artificial intelligence, computer vision, defect detection, convolutional neural net

Procedia PDF Downloads 112
9166 Engineering Parameters and Classification of Marly Soils of Tabriz

Authors: Amirali Mahouti, Hooshang Katebi

Abstract:

Enlargement of Tabriz metropolis to the east and north-east caused urban construction to be built on Marl layers and because of increase in excavations depth, further information of this layer is inescapable. Looking at geotechnical investigation shows there is not enough information about Tabriz Marl and this soil has been classified only by color. Tabriz Marl is lacustrine carbonate sediment outcrops, surrounds eastern, northern and southern region of city in the East Azerbaijan Province of Iran and is known as bed rock of city under alluvium sediments. This investigation aims to characterize geotechnical parameters of this soil to identify and set it in classification system of carbonated soils. For this purpose, specimens obtained from 80 locations over the city and subjected to physical and mechanical tests, such as Atterberg limits, density, moisture content, unconfined compression, direct shear and consolidation. CaCO3 content, organic content, PH, XRD, XRF, TGA and geophysical downhole tests also have been done on some of them.

Keywords: carbonated soils, classification of soils, mineralogy, physical and mechanical tests for Marls, Tabriz Marl

Procedia PDF Downloads 317
9165 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High Speed Streams

Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous

Abstract:

Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of solar wind using mathematical models, MHD models, and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulates the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar cycles (sc) 21, 22, 23, and most of 24.

Keywords: artificial neural network, coronal hole area, feed-forward neural network models, solar high speed streams

Procedia PDF Downloads 88
9164 Using New Machine Algorithms to Classify Iranian Musical Instruments According to Temporal, Spectral and Coefficient Features

Authors: Ronak Khosravi, Mahmood Abbasi Layegh, Siamak Haghipour, Avin Esmaili

Abstract:

In this paper, a study on classification of musical woodwind instruments using a small set of features selected from a broad range of extracted ones by the sequential forward selection method was carried out. Firstly, we extract 42 features for each record in the music database of 402 sound files belonging to five different groups of Flutes (end blown and internal duct), Single –reed, Double –reed (exposed and capped), Triple reed and Quadruple reed. Then, the sequential forward selection method is adopted to choose the best feature set in order to achieve very high classification accuracy. Two different classification techniques of support vector machines and relevance vector machines have been tested out and an accuracy of up to 96% can be achieved by using 21 time, frequency and coefficient features and relevance vector machine with the Gaussian kernel function.

Keywords: coefficient features, relevance vector machines, spectral features, support vector machines, temporal features

Procedia PDF Downloads 320
9163 The Determinants of Country Corruption: Unobserved Heterogeneity and Individual Choice- An empirical Application with Finite Mixture Models

Authors: Alessandra Marcelletti, Giovanni Trovato

Abstract:

Corruption in public offices is found to be the reflection of country-specific features, however, the exact magnitude and the statistical significance of its determinants effect has not yet been identified. The paper aims to propose an estimation method to measure the impact of country fundamentals on corruption, showing that covariates could differently affect the extent of corruption across countries. Thus, we exploit a model able to take into account different factors affecting the incentive to ask or to be asked for a bribe, coherently with the use of the Corruption Perception Index. We assume that discordant results achieved in literature may be explained by omitted hidden factors affecting the agents' decision process. Moreover, assuming homogeneous covariates effect may lead to unreliable conclusions since the country-specific environment is not accounted for. We apply a Finite Mixture Model with concomitant variables to 129 countries from 1995 to 2006, accounting for the impact of the initial conditions in the socio-economic structure on the corruption patterns. Our findings confirm the hypothesis of the decision process of accepting or asking for a bribe varies with specific country fundamental features.

Keywords: Corruption, Finite Mixture Models, Concomitant Variables, Countries Classification

Procedia PDF Downloads 263
9162 Stabilization of Clay Soil Using A-3 Soil

Authors: Mohammed Mustapha Alhaji, Sadiku Salawu

Abstract:

A clay soil which classified under A-7-6 soil according to AASHTO soil classification system and CH according to the unified soil classification system was stabilized using A-3 soil (AASHTO soil classification system). The clay soil was replaced with 0%, 10%, 20% to 100% A-3 soil, compacted at both the BSL and BSH compaction energy level and using unconfined compressive strength as evaluation criteria. The MDD of the compactions at both the BSL and BSH compaction energy levels showed increase in MDD from 0% A-3 soil replacement to 40% A-3 soil replacement after which the values reduced to 100% A-3 soil replacement. The trend of the OMC with varied A-3 soil replacement is similar to that of MDD but in a reversed order. The OMC reduced from 0% A-3 soil replacement to 40% A-3 soil replacement after which the values increased to 100% A-3 soil replacement. This trend was attributed to the observed reduction in the void ratio from 0% A-3 soil replacement to 40% A-3 soil replacement after which the void ratio increased to 100% A-3 soil replacement. The maximum UCS for clay at varied A-3 soil replacement increased from 272 and 770kN/m2 for BSL and BSH compaction energy level at 0% A-3 soil replacement to 295 and 795kN/m2 for BSL and BSH compaction energy level respectively at 10% A-3 soil replacement after which the values reduced to 22 and 60kN/m2 for BSL and BSH compaction energy level respectively at 70% A-3 soil replacement. Beyond 70% A-3 soil replacement, the mixture cannot be moulded for UCS test.

Keywords: A-3 soil, clay minerals, pozzolanic action, stabilization

Procedia PDF Downloads 444
9161 Aviation versus Aerospace: A Differential Analysis of Workforce Jobs via Text Mining

Authors: Sarah Werner, Michael J. Pritchard

Abstract:

From pilots to engineers, the skills development within the aerospace industry is exceptionally broad. Employers often struggle with finding the right mixture of qualified skills to fill their organizational demands. This effort to find qualified talent is further complicated by the industrial delineation between two key areas: aviation and aerospace. In a broad sense, the aerospace industry overlaps with the aviation industry. In turn, the aviation industry is a smaller sector segment within the context of the broader definition of the aerospace industry. Furthermore, it could be conceptually argued that -in practice- there is little distinction between these two sectors (i.e., aviation and aerospace). However, through our unstructured text analysis of over 6,000 job listings captured, our team found a clear delineation between aviation-related jobs and aerospace-related jobs. Using techniques in natural language processing, our research identifies an integrated workforce skill pattern that clearly breaks between these two sectors. While the aviation sector has largely maintained its need for pilots, mechanics, and associated support personnel, the staffing needs of the aerospace industry are being progressively driven by integrative engineering needs. Increasingly, this is leading many aerospace-based organizations towards the acquisition of 'system level' staffing requirements. This research helps to better align higher educational institutions with the current industrial staffing complexities within the broader aerospace sector.

Keywords: aerospace industry, job demand, text mining, workforce development

Procedia PDF Downloads 272
9160 Superiority of High Frequency Based Volatility Models: Empirical Evidence from an Emerging Market

Authors: Sibel Celik, Hüseyin Ergin

Abstract:

The paper aims to find the best volatility forecasting model for stock markets in Turkey. For this purpose, we compare performance of different volatility models-both traditional GARCH model and high frequency based volatility models- and conclude that both in pre-crisis and crisis period, the performance of high frequency based volatility models are better than traditional GARCH model. The findings of paper are important for policy makers, financial institutions and investors.

Keywords: volatility, GARCH model, realized volatility, high frequency data

Procedia PDF Downloads 486
9159 Effect of Self-Questioning Strategy on the Improvement of Reading Comprehension of ESL Learners

Authors: Muhammad Hamza

Abstract:

This research is based on the effect of self-questioning strategy on reading comprehension of second language learners at medium level. This research is conducted to find out the effects of self-questioning strategy and how self-questioning strategy helps English learners to improve their reading comprehension. In this research study the researcher has analyzed that how much self-questioning is effective in the field of learning second language and how much it helps second language learners to improve their reading comprehension. For this purpose, the researcher has studied different reading strategies, analyzed, collected data from certificate level class at NUML, Peshawar campus and then found out the effects of self-questioning strategy on reading comprehension of ESL learners. The researcher has randomly selected the participants from certificate class. The data was analyzed through pre-test and post-test and then in the final stage the results of both tests were compared. After the pre-test and post-test, the result of both pre-test and post-test indicated that if the learners start to use self-questioning strategy before reading a text, while reading a text and after reading a particular text there’ll be improvement in comprehension level of ESL learners. The present research has addressed the benefits of self-questioning strategy by taking two tests (pre and post-test).After the result of post-test it is revealed that the use of the self-questioning strategy has a significant effect on the readers’ comprehension thus, they can improve their reading comprehension by using self-questioning strategy.

Keywords: strategy, self-questioning, comprehension, intermediate level ESL learner

Procedia PDF Downloads 66