Search results for: energy and production data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 50234

Search results for: energy and production data analysis

49364 Assessment of Tidal Current Energy Potential at LAMU and Mombasa in Kenya

Authors: Lucy Patricia Onundo, Wilfred Njoroge Mwema

Abstract:

The tidal power potential available for electricity generation from Mombasa and Lamu sites in Kenya will be examined. Several African countries in the Western Indian Ocean endure insufficiencies in the power sector, including both generation and distribution. One important step towards increasing energy security and availability is to intensify the use of renewable energy sources. The access to cost-efficient hydropower is low in Mombasa and Lamu hence Ocean energy will play an important role. Global-Level resource assessments and oceanographic literature and data have been compiled in an analysis between technology-specific requirements for ocean energy technologies (salinity, tide, tidal current, wave, Ocean thermal energy conversion, wind and solar) and the physical resources in Lamu and Mombasa. The potential for tide and tidal current power is more restricted but may be of interest at some locations. The theoretical maximum power produced over a tidal cycle is determined by the product of the forcing tide and the undisturbed volumetric flow-rate. The extraction of the maximum power reduces the flow-rate, but a significant portion of the maximum power can be extracted with little change to the tidal dynamics. Two-dimensional finite-element, numerical simulations designed and developed agree with the theory. Temporal variations in resource intensity, as well as the differences between small-scale and large-scale applications, are considered.

Keywords: energy assessment, marine tidal power, renewable energy, tidal dynamics

Procedia PDF Downloads 577
49363 Characteristics of Pore Pressure and Effective Stress Changes in Sandstone Reservoir Due to Hydrocarbon Production

Authors: Kurniawan Adha, Wan Ismail Wan Yusoff, Luluan Almanna Lubis

Abstract:

Preventing hazardous events during oil and gas operation is an important contribution of accurate pore pressure data. The availability of pore pressure data also contribute in reducing the operation cost. Suggested methods in pore pressure estimation were mostly complex by the many assumptions and hypothesis used. Basic properties which may have significant impact on estimation model are somehow being neglected. To date, most of pore pressure determinations are estimated by data model analysis and rarely include laboratory analysis, stratigraphy study or core check measurement. Basically, this study developed a model that might be applied to investigate the changes of pore pressure and effective stress due to hydrocarbon production. In general, this paper focused velocity model effect of pore pressure and effective stress changes due to hydrocarbon production with illustrated by changes in saturation. The core samples from Miri field from Sarawak Malaysia ware used in this study, where the formation consists of sandstone reservoir. The study area is divided into sixteen (16) layers and encompassed six facies (A-F) from the outcrop that is used for stratigraphy sequence model. The experimental work was firstly involving data collection through field study and developing stratigraphy sequence model based on outcrop study. Porosity and permeability measurements were then performed after samples were cut into 1.5 inch diameter core samples. Next, velocity was analyzed using SONIC OYO and AutoLab 500. Three (3) scenarios of saturation were also conducted to exhibit the production history of the samples used. Results from this study show the alterations of velocity for different saturation with different actions of effective stress and pore pressure. It was observed that sample with water saturation has the highest velocity while dry sample has the lowest value. In comparison with oil to samples with oil saturation, water saturated sample still leads with the highest value since water has higher fluid density than oil. Furthermore, water saturated sample exhibits velocity derived parameters, such as poisson’s ratio and P-wave velocity over S-wave velocity (Vp/Vs) The result shows that pore pressure value ware reduced due to the decreasing of fluid content. The decreasing of pore pressure result may soften the elastic mineral frame and have tendency to possess high velocity. The alteration of pore pressure by the changes in fluid content or saturation resulted in alteration of velocity value that has proportionate trend with the effective stress.

Keywords: pore pressure, effective stress, production, miri formation

Procedia PDF Downloads 290
49362 Energy Efficient Building Design in Nigeria: An Assessment of the Effect of the Sun on Energy Consumption in Residential Buildings

Authors: Ekele T. Ochedi, Ahmad H. Taki, Birgit Painter

Abstract:

The effect of the sun and its path on thermal comfort and energy consumption in residential buildings in tropical climates constitute a serious concern for designers, building owners, and users. Passive design approaches based on the sun and its path have been identified as a means of reducing energy consumption as well as enhancing thermal comfort in buildings worldwide. Hence, a thorough understanding regarding the sun path is key to achieving this. This is necessary due to energy need, poor energy supply, and distribution, energy poverty, and over-dependence on electric generators for power supply in Nigeria. These challenges call for a change in the approach to energy-related issues, especially in terms of buildings. The aim of this study is to explore the influence of building orientation, glazing and the use of shading devices on residential buildings in Nigeria. This is intended to provide data that will guide designers in the design of energy-efficient residential buildings. The paper used EnergyPlus to analyze a typical semi-detached residential building in Lokoja, Nigeria using hourly weather data for a period of 10 years. Building performance was studied as well as possible improvement regarding different orientations, glazing types and shading devices. The simulation results show some reductions in energy consumption in response to changes in building orientation, types of glazing and the use of shading devices. The results indicate 29.45% reduction in solar gains and 1.90% in annual operative temperature using natural ventilation only. This shows a huge potential to reduce energy consumption and improve people’s well-being through the use of proper building orientation, glazing and appropriate shading devices on building envelope. The study concludes that for a significant reduction in total energy consumption by residential buildings, the design should focus on multiple design options rather than concentrating on one or few building elements. Moreover, the investigation confirms that energy performance modeling can be used by building designers to take advantage of the sun and to evaluate various design options.

Keywords: energy consumption, energy-efficient buildings, glazing, thermal comfort, shading devices, solar gains

Procedia PDF Downloads 212
49361 A Counter-flow Vortex Tube With Energy Separation: An Experimental Study and CFD Analysis

Authors: Li̇zan Mahmood Khorsheed Zangana

Abstract:

Experimental and numerical investigations have been carried out to study the mechanism of separation energy and flow phenomena in the counter-flow vortex tube. This manuscript presents a complete comparison between the experimental investigation and CFD analysis. The experimental model tested under different inlet pressures. Three-dimensional numerical modelling using the k-ε model. The results show any increase in both cold mass fraction and inlet pressure caused to increase ΔTc, and the maximum ΔTc value occurs at P = 6 bar. The coefficient of performance (COP) of two important factors in the vortex tube have been evaluated, which ranged from 0.25 to 0.74. The maximum axial velocity is 93, where it occurs at the tube axis close the inlet exit (Z/L=0.2). The results showed a good agreement for experimental and numerical analysis.

Keywords: counter flow, vortex tube, computational fluid dynamics analysis, energy separation, experimental study

Procedia PDF Downloads 79
49360 Gas Sweetening Process Simulation: Investigation on Recovering Waste Hydraulic Energy

Authors: Meisam Moghadasi, Hassan Ali Ozgoli, Foad Farhani

Abstract:

In this research, firstly, a commercial gas sweetening unit with methyl-di-ethanol-amine (MDEA) solution is simulated and comprised in an integrated model in accordance with Aspen HYSYS software. For evaluation purposes, in the second step, the results of the simulation are compared with operating data gathered from South Pars Gas Complex (SPGC). According to the simulation results, the considerable energy potential contributed to the pressure difference between absorber and regenerator columns causes this energy driving force to be applied in power recovery turbine (PRT). In the last step, the amount of waste hydraulic energy is calculated, and its recovery methods are investigated.

Keywords: gas sweetening unit, simulation, MDEA, power recovery turbine, waste-to-energy

Procedia PDF Downloads 178
49359 Analysis of a Multiejector Cooling System in a Truck at Different Loads

Authors: Leonardo E. Pacheco, Carlos A. Díaz

Abstract:

An alternative way of addressing the difficult to recover the useless heat is through an ejector refrigeration cycle for vehicles applications. A group of thermo-compressor supply the mechanical compressor function at conventional refrigeration compression system. The thermo-compressor group recovers the thermal energy from waste streams (exhaust gases product in internal combustion motors, gases burned in wellhead among others) to eliminate the power consumption of the mechanical compressor. These types of alternative cooling system (air-conditioners) present a kind of advantages in both the increase in energy efficiency and the improvement of the COP of the system being studied from their its mechanical simplicity (decrease of moving parts). An ejector refrigeration cycle represents a significant step forward in the optimization of the efficient use of energy in the process of air conditioning and an alternative to reduce the environmental impacts. On one side, with the energy recycling decreases the temperature of the gases thrown into the atmosphere, which contributes to the principal beneficiaries of the average temperature of the planet. In parallel, mitigating the environmental impact caused by the production and handling of conventional cooling fluids commonly available in the market, causing the destruction of the ozone layer. This work had studied the operation of the multiejector cooling system for a truck with a 420 HP engine at different rotation speed. The operation condition limits and the COP of multi-ejector cooling systems applied in a truck are analyzed for a variable rpm range from to 800–1800 rpm.

Keywords: ejector system, exhaust gas, multiejector cooling system, recovery energy

Procedia PDF Downloads 260
49358 Solutions to Reduce CO2 Emissions in Autonomous Robotics

Authors: Antoni Grau, Yolanda Bolea, Alberto Sanfeliu

Abstract:

Mobile robots can be used in many different applications, including mapping, search, rescue, reconnaissance, hazard detection, and carpet cleaning, exploration, etc. However, they are limited due to their reliance on traditional energy sources such as electricity and oil which cannot always provide a convenient energy source in all situations. In an ever more eco-conscious world, solar energy offers the most environmentally clean option of all energy sources. Electricity presents threats of pollution resulting from its production process, and oil poses a huge threat to the environment. Not only does it pose harm by the toxic emissions (for instance CO2 emissions), it produces the combustion process necessary to produce energy, but there is the ever present risk of oil spillages and damages to ecosystems. Solar energy can help to mitigate carbon emissions by replacing more carbon intensive sources of heat and power. The challenge of this work is to propose the design and the implementation of electric battery recharge stations. Those recharge docks are based on the use of renewable energy such as solar energy (with photovoltaic panels) with the object to reduce the CO2 emissions. In this paper, a comparative study of the CO2 emission productions (from the use of different energy sources: natural gas, gas oil, fuel and solar panels) in the charging process of the Segway PT batteries is carried out. To make the study with solar energy, a photovoltaic panel, and a Buck-Boost DC/DC block has been used. Specifically, the STP005S-12/Db solar panel has been used to carry out our experiments. This module is a 5Wp-photovoltaic (PV) module, configured with 36 monocrystalline cells serially connected. With those elements, a battery recharge station is made to recharge the robot batteries. For the energy storage DC/DC block, a series of ultracapacitors have been used. Due to the variation of the PV panel with the temperature and irradiation, and the non-integer behavior of the ultracapacitors as well as the non-linearities of the whole system, authors have been used a fractional control method to achieve that solar panels supply the maximum allowed power to recharge the robots in the lesser time. Greenhouse gas emissions for production of electricity vary due to regional differences in source fuel. The impact of an energy technology on the climate can be characterised by its carbon emission intensity, a measure of the amount of CO2, or CO2 equivalent emitted by unit of energy generated. In our work, the coal is the fossil energy more hazardous, providing a 53% more of gas emissions than natural gas and a 30% more than fuel. Moreover, it is remarkable that existing fossil fuel technologies produce high carbon emission intensity through the combustion of carbon-rich fuels, whilst renewable technologies such as solar produce little or no emissions during operation, but may incur emissions during manufacture. The solar energy thus can help to mitigate carbon emissions.

Keywords: autonomous robots, CO2 emissions, DC/DC buck-boost, solar energy

Procedia PDF Downloads 422
49357 An Evaluation of a Prototype System for Harvesting Energy from Pressurized Pipeline Networks

Authors: Nicholas Aerne, John P. Parmigiani

Abstract:

There is an increasing desire for renewable and sustainable energy sources to replace fossil fuels. This desire is the result of several factors. First, is the role of fossil fuels in climate change. Scientific data clearly shows that global warming is occurring. It has also been concluded that it is highly likely human activity; specifically, the combustion of fossil fuels, is a major cause of this warming. Second, despite the current surplus of petroleum, fossil fuels are a finite resource and will eventually become scarce and alternatives, such as clean or renewable energy will be needed. Third, operations to obtain fossil fuels such as fracking, off-shore oil drilling, and strip mining are expensive and harmful to the environment. Given these environmental impacts, there is a need to replace fossil fuels with renewable energy sources as a primary energy source. Various sources of renewable energy exist. Many familiar sources obtain renewable energy from the sun and natural environments of the earth. Common examples include solar, hydropower, geothermal heat, ocean waves and tides, and wind energy. Often obtaining significant energy from these sources requires physically-large, sophisticated, and expensive equipment (e.g., wind turbines, dams, solar panels, etc.). Other sources of renewable energy are from the man-made environment. An example is municipal water distribution systems. The movement of water through the pipelines of these systems typically requires the reduction of hydraulic pressure through the use of pressure reducing valves. These valves are needed to reduce upstream supply-line pressures to levels suitable downstream users. The energy associated with this reduction of pressure is significant but is currently not harvested and is simply lost. While the integrity of municipal water supplies is of paramount importance, one can certainly envision means by which this lost energy source could be safely accessed. This paper provides a technical description and analysis of one such means by the technology company InPipe Energy to generate hydroelectricity by harvesting energy from municipal water distribution pressure reducing valve stations. Specifically, InPipe Energy proposes to install hydropower turbines in parallel with existing pressure reducing valves in municipal water distribution systems. InPipe Energy in partnership with Oregon State University has evaluated this approach and built a prototype system at the O. H. Hinsdale Wave Research Lab. The Oregon State University evaluation showed that the prototype system rapidly and safely initiates, maintains, and ceases power production as directed. The outgoing water pressure remained constant at the specified set point throughout all testing. The system replicates the functionality of the pressure reducing valve and ensures accurate control of down-stream pressure. At a typical water-distribution-system pressure drop of 60 psi the prototype, operating at an efficiency 64%, produced approximately 5 kW of electricity. Based on the results of this study, this proposed method appears to offer a viable means of producing significant amounts of clean renewable energy from existing pressure reducing valves.

Keywords: pressure reducing valve, renewable energy, sustainable energy, water supply

Procedia PDF Downloads 204
49356 Research on Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System

Authors: Zhou Mo, Dennis Chow

Abstract:

In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing pro-tocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turns out to reduce the energy consumption of nodes and increase the efficiency of data delivery.

Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols

Procedia PDF Downloads 467
49355 Renewable Energy System Eolic-Photovoltaic for the Touristic Center La Tranca-Chordeleg in Ecuador

Authors: Christian Castro Samaniego, Daniel Icaza Alvarez, Juan Portoviejo Brito

Abstract:

For this research work, hybrid wind-photovoltaic (SHEF) systems were considered as renewable energy sources that take advantage of wind energy and solar radiation to transform into electrical energy. In the present research work, the feasibility of a wind-photovoltaic hybrid generation system was analyzed for the La Tranca tourist viewpoint of the Chordeleg canton in Ecuador. The research process consisted of the collection of data on solar radiation, temperature, wind speed among others by means of a meteorological station. Simulations were carried out in MATLAB/Simulink based on a mathematical model. In the end, we compared the theoretical radiation-power curves and the measurements made at the site.

Keywords: hybrid system, wind turbine, modeling, simulation, validation, experimental data, panel, Ecuador

Procedia PDF Downloads 244
49354 Methane Production from Biomedical Waste (Blood)

Authors: Fatima M. Kabbashi, Abdalla M. Abdalla, Hussam K. Hamad, Elias S. Hassan

Abstract:

This study investigates the production of renewable energy (biogas) from biomedical hazard waste (blood) and eco-friendly disposal. Biogas is produced by the bacterial anaerobic digestion of biomaterial (blood). During digestion process bacterial feeding result in breaking down chemical bonds of the biomaterial and changing its features, by the end of the digestion (biogas production) the remains become manure as known. That has led to the economic and eco-friendly disposal of hazard biomedical waste (blood). The samples (Whole blood, Red blood cells 'RBCs', Blood platelet and Fresh Frozen Plasma ‘FFP’) are collected and measured in terms of carbon to nitrogen C/N ratio and total solid, then filled in connected flasks (three flasks) using water displacement method. The results of trails showed that the platelet and FFP failed to produce flammable gas, but via a gas analyzer, it showed the presence of the following gases: CO, HC, CO₂, and NOX. Otherwise, the blood and RBCs produced flammable gases: Methane-nitrous CH₃NO (99.45%), which has a blue color flame and carbon dioxide CO₂ (0.55%), which has red/yellow color flame. Methane-nitrous is sometimes used as fuel for rockets, some aircraft and racing cars.

Keywords: renewable energy, biogas, biomedical waste, blood, anaerobic digestion, eco-friendly disposal

Procedia PDF Downloads 302
49353 Processing of Input Material as a Way to Improve the Efficiency of the Glass Production Process

Authors: Joanna Rybicka-Łada, Magda Kosmal, Anna Kuśnierz

Abstract:

One of the main problems of the glass industry is the still high consumption of energy needed to produce glass mass, as well as the increase in prices, fuels, and raw materials. Therefore, comprehensive actions are taken to improve the entire production process. The key element of these activities, starting from filling the set to receiving the finished product, is the melting process, whose task is, among others, dissolving the components of the set, removing bubbles from the resulting melt, and obtaining a chemically homogeneous glass melt. This solution avoids dust formation during filling and is available on the market. This process consumes over 90% of the total energy needed in the production process. The processes occurring in the set during its conversion have a significant impact on the further stages and speed of the melting process and, thus, on its overall effectiveness. The speed of the reactions occurring and their course depend on the chemical nature of the raw materials, the degree of their fragmentation, thermal treatment as well as the form of the introduced set. An opportunity to minimize segregation and accelerate the conversion of glass sets may be the development of new technologies for preparing and dosing sets. The previously preferred traditional method of melting the set, based on mixing all glass raw materials together in loose form, can be replaced with a set in a thickened form. The aim of the project was to develop a glass set in a selectively or completely densified form and to examine the influence of set processing on the melting process and the properties of the glass.

Keywords: glass, melting process, glass set, raw materials

Procedia PDF Downloads 60
49352 Exploring the Energy Model of Cumulative Grief

Authors: Masica Jordan Alston, Angela N. Bullock, Angela S. Henderson, Stephanie Strianse, Sade Dunn, Joseph Hackett, Alaysia Black Hackett, Marcus Mason

Abstract:

The Energy Model of Cumulative Grief was created in 2018. The Energy Model of Cumulative Grief utilizes historic models of grief stage theories. The innovative model is additionally unique due to its focus on cultural responsiveness. The Energy Model of Cumulative Grief helps to train practitioners who work with clients dealing with grief and loss. This paper assists in introducing the world to this innovative model and exploring how this model positively impacted a convenience sample of 140 practitioners and individuals experiencing grief and loss. Respondents participated in Webinars provided by the National Grief and Loss Center of America (NGLCA). Participants in this cross-sectional research design study completed one of three Grief and Loss Surveys created by the Grief and Loss Centers of America. Data analysis for this study was conducted via SPSS and Survey Hero to examine survey results for respondents. Results indicate that the Energy Model of Cumulative Grief was an effective resource for participants in addressing grief and loss. The majority of participants found the Webinars to be helpful and a conduit to providing them with higher levels of hope. The findings suggest that using The Energy Model of Cumulative Grief is effective in providing culturally responsive grief and loss resources to practitioners and clients. There are far reaching implications with the use of technology to provide hope to those suffering from grief and loss worldwide through The Energy Model of Cumulative Grief.

Keywords: grief, loss, grief energy, grieving brain

Procedia PDF Downloads 85
49351 Energy Management Techniques in Mobile Robots

Authors: G. Gurguze, I. Turkoglu

Abstract:

Today, the developing features of technological tools with limited energy resources have made it necessary to use energy efficiently. Energy management techniques have emerged for this purpose. As with every field, energy management is vital for robots that are being used in many areas from industry to daily life and that are thought to take up more spaces in the future. Particularly, effective power management in autonomous and multi robots, which are getting more complicated and increasing day by day, will improve the performance and success. In this study, robot management algorithms, usage of renewable and hybrid energy sources, robot motion patterns, robot designs, sharing strategies of workloads in multiple robots, road and mission planning algorithms are discussed for efficient use of energy resources by mobile robots. These techniques have been evaluated in terms of efficient use of existing energy resources and energy management in robots.

Keywords: energy management, mobile robot, robot administration, robot management, robot planning

Procedia PDF Downloads 266
49350 The Evaluation of Costs and Greenhouse Gas Reduction by Using Technologies for Energy from Sewage Sludge

Authors: Futoshi Kakuta, Takashi Ishida

Abstract:

Sewage sludge is a biomass resource that can create a solid fuel and electricity. Utilizing sewage sludge as a renewable energy can contribute to the reduction of greenhouse gasses. In Japan, 'The National Plan for the Promotion of Biomass Utilization' and 'The Priority Plan for Social Infrastructure Development' were approved at cabinet meetings in December 2010 and August 2012, respectively, to promote the energy utilization of sewage sludge. This study investigated costs and greenhouse gas emission in different sewage sludge treatments with technologies for energy from sewage sludge. Costs were estimated on capital costs and O&M costs including energy consumption of solid fuel plants and biogas power generation plants for sewage sludge. Results showed that cost of sludge digestion treatment with solid fuel technologies was 8% lower than landfill disposal. Greenhouse gas emission of sludge digestion treatment with solid fuel technologies was also 6,390t as CO2 smaller than landfill disposal. Biogas power generation reduced the electricity of a wastewater treatment plant by 30% and the cost by 5%.

Keywords: global warming countermeasure, energy technology, solid fuel production, biogas

Procedia PDF Downloads 386
49349 A Concept for Flexible Battery Cell Manufacturing from Low to Medium Volumes

Authors: Tim Giesen, Raphael Adamietz, Pablo Mayer, Philipp Stiefel, Patrick Alle, Dirk Schlenker

Abstract:

The competitiveness and success of new electrical energy storages such as battery cells are significantly dependent on a short time-to-market. Producers who decide to supply new battery cells to the market need to be easily adaptable in manufacturing with respect to the early customers’ needs in terms of cell size, materials, delivery time and quantity. In the initial state, the required output rates do not yet allow the producers to have a fully automated manufacturing line nor to supply handmade battery cells. Yet there was no solution for manufacturing battery cells in low to medium volumes in a reproducible way. Thus, in terms of cell format and output quantity, a concept for the flexible assembly of battery cells was developed by the Fraunhofer-Institute for Manufacturing Engineering and Automation. Based on clustered processes, the modular system platform can be modified, enlarged or retrofitted in a short time frame according to the ordered product. The paper shows the analysis of the production steps from a conventional battery cell assembly line. Process solutions were found by using I/O-analysis, functional structures, and morphological boxes. The identified elementary functions were subsequently clustered by functional coherences for automation solutions and thus the single process cluster was generated. The result presented in this paper enables to manufacture different cell products on the same production system using seven process clusters. The paper shows the solution for a batch-wise flexible battery cell production using advanced process control. Further, the performed tests and benefits by using the process clusters as cyber-physical systems for an integrated production and value chain are discussed. The solution lowers the hurdles for SMEs to launch innovative cell products on the global market.

Keywords: automation, battery production, carrier, advanced process control, cyber-physical system

Procedia PDF Downloads 338
49348 Automatic Adjustment of Thresholds via Closed-Loop Feedback Mechanism for Solder Paste Inspection

Authors: Chia-Chen Wei, Pack Hsieh, Jeffrey Chen

Abstract:

Surface Mount Technology (SMT) is widely used in the area of the electronic assembly in which the electronic components are mounted to the surface of the printed circuit board (PCB). Most of the defects in the SMT process are mainly related to the quality of solder paste printing. These defects lead to considerable manufacturing costs in the electronics assembly industry. Therefore, the solder paste inspection (SPI) machine for controlling and monitoring the amount of solder paste printing has become an important part of the production process. So far, the setting of the SPI threshold is based on statistical analysis and experts’ experiences to determine the appropriate threshold settings. Because the production data are not normal distribution and there are various variations in the production processes, defects related to solder paste printing still occur. In order to solve this problem, this paper proposes an online machine learning algorithm, called the automatic threshold adjustment (ATA) algorithm, and closed-loop architecture in the SMT process to determine the best threshold settings. Simulation experiments prove that our proposed threshold settings improve the accuracy from 99.85% to 100%.

Keywords: big data analytics, Industry 4.0, SPI threshold setting, surface mount technology

Procedia PDF Downloads 116
49347 The Use of Solar Energy for Cold Production

Authors: Nadia Allouache, Mohamed Belmedani

Abstract:

—It is imperative today to further explore alternatives to fossil fuels by promoting in particular renewable sources such as solar energy to produce cold. It is also important to carefully examine its current state as well as its future prospects in order to identify the best conditions to support its optimal development. Technologies linked to this alternative source fascinate their users because they seem magical in their ability to directly transform solar energy into cooling without resorting to polluting fuels such as those derived from hydrocarbons or other toxic substances. In addition, these not only allow significant savings in electricity, but can also help reduce the costs of electrical energy production when applied on a large scale. In this context, our study aims to analyze the performance of solar adsorption cooling systems by selecting the appropriate pair Adsorbent/Adsorbat. This paper presents a model describing the heat and mass transfer in tubular finned adsorber of solar adsorption refrigerating machine. The modelisation of the solar reactor take into account the heat and mass transfers phenomena. The reactor pressure is assumed to be uniform, the reactive reactor is characterized by an equivalent thermal conductivity and assumed to be at chemical and thermodynamic equilibrium. The numerical model is controlled by heat, mass and sorption equilibrium equations. Under the action of solar radiation, the mixture of adsorbent–adsorbate has a transitory behavior. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analyzed and discussed. The results show that, The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions. For the used working pairs, the increase of the fins number corresponds to the decreasing of the heat losses towards environmental and the increasing of heat transfer inside the adsorber. The system performances are sensitive to the evaporator and condenser temperatures. For the considered data measured for clear type days of may and july 2023 in Algeria and Tunisia, the performances of the cooling system are very significant in Algeria compared to Tunisia.

Keywords: adsorption, adsorbent-adsorbate pair, finned reactor, numerical modeling, solar energy

Procedia PDF Downloads 19
49346 Exploration of Industrial Symbiosis Opportunities with an Energy Perspective

Authors: Selman Cagman

Abstract:

A detailed analysis is made within an organized industrial zone (OIZ) that has 1165 production facilities such as manufacturing of furniture, fabricated metal products (machinery and equipment), food products, plastic and rubber products, machinery and equipment, non-metallic mineral products, electrical equipment, textile products, and manufacture of wood and cork products. In this OIZ, a field study is done by choosing some facilities that can represent the whole OIZ sectoral distribution. In this manner, there are 207 facilities included to the site visit, and there is a 17 questioned survey carried out with each of them to assess their inputs, outputs, and waste amounts during manufacturing processes. The survey result identify that MDF/Particleboard and chipboard particles, textile, food, foam rubber, sludge (treatment sludge, phosphate-paint sludge, etc.), plastic, paper and packaging, scrap metal (aluminum shavings, steel shavings, iron scrap, profile scrap, etc.), slag (coal slag), ceramic fracture, ash from the fluidized bed are the wastes come from these facilities. As a result, there are 5 industrial symbiosis projects established with this study. One of the projects is a 2.840 kW capacity Integrated Biomass Based Waste Incineration-Energy Production Facility running on 35.000 tons/year of MDF particles and chipboard waste. Another project is a biogas plant with 225 tons/year whey, 100 tons/year of sesame husk, 40 tons/year of burnt wafer dough, and 2.000 tons/year biscuit waste. These two plants investment costs and operational costs are given in detail. The payback time of the 2.840 kW plant is almost 4 years and the biogas plant is around 6 years.

Keywords: industrial symbiosis, energy, biogas, waste to incineration

Procedia PDF Downloads 107
49345 Using RASCAL Code to Analyze the Postulated UF6 Fire Accident

Authors: J. R. Wang, Y. Chiang, W. S. Hsu, S. H. Chen, J. H. Yang, S. W. Chen, C. Shih, Y. F. Chang, Y. H. Huang, B. R. Shen

Abstract:

In this research, the RASCAL code was used to simulate and analyze the postulated UF6 fire accident which may occur in the Institute of Nuclear Energy Research (INER). There are four main steps in this research. In the first step, the UF6 data of INER were collected. In the second step, the RASCAL analysis methodology and model was established by using these data. Third, this RASCAL model was used to perform the simulation and analysis of the postulated UF6 fire accident. Three cases were simulated and analyzed in this step. Finally, the analysis results of RASCAL were compared with the hazardous levels of the chemicals. According to the compared results of three cases, Case 3 has the maximum danger in human health.

Keywords: RASCAL, UF₆, safety, hydrogen fluoride

Procedia PDF Downloads 222
49344 Development and Characterization of Acoustic Energy Harvesters for Low Power Wireless Sensor Network

Authors: Waheed Gul, Muhammad Zeeshan, Ahmad Raza Khan, Muhammad Khurram

Abstract:

Wireless Sensor Nodes (WSNs) have developed significantly over the years and have significant potential in diverse applications in the fields of science and technology. The inadequate energy accompanying WSNs is a key constraint of WSN skills. To overcome this main restraint, the development and expansion of effective and reliable energy harvesting systems for WSN atmospheres are being discovered. In this research, low-power acoustic energy harvesters are designed and developed by applying different techniques of energy transduction from the sound available in the surroundings. Three acoustic energy harvesters were developed based on the piezoelectric phenomenon, electromagnetic transduction, and hybrid, respectively. The CAD modelling, lumped modelling and Finite Element Analysis of the harvesters were carried out. The voltages were obtained using FEA for each Acoustic Harvester. Characterization of all three harvesters was carried out and the power generated by the piezoelectric harvester, electromagnetic harvester and Hybrid Acoustic Energy harvester are 2.25x10-9W, 0.0533W and 0.0232W, respectively.

Keywords: energy harvesting, WSNs, piezoelectric, electromagnetic, power

Procedia PDF Downloads 71
49343 Reconfigurable Ubiquitous Computing Infrastructure for Load Balancing

Authors: Khaled Sellami, Lynda Sellami, Pierre F. Tiako

Abstract:

Ubiquitous computing helps make data and services available to users anytime and anywhere. This makes the cooperation of devices a crucial need. In return, such cooperation causes an overload of the devices and/or networks, resulting in network malfunction and suspension of its activities. Our goal in this paper is to propose an approach of devices reconfiguration in order to help to reduce the energy consumption in ubiquitous environments. The idea is that when high-energy consumption is detected, we proceed to a change in component distribution on the devices to reduce and/or balance the energy consumption. We also investigate the possibility to detect high-energy consumption of devices/network based on devices abilities. As a result, our idea realizes a reconfiguration of devices aimed at reducing the consumption of energy and/or load balancing in ubiquitous environments.

Keywords: ubiquitous computing, load balancing, device energy consumption, reconfiguration

Procedia PDF Downloads 275
49342 Bio Ethanol Production From the Co-Mixture of Jatropha Carcus L. Kernel Cake and Rice Straw

Authors: Felix U. Asoiro, Daniel I. Eleazar, Peter O. Offor

Abstract:

As a result of increasing energy demands, research in bioethanol has increased in recent years all through the world, in abide to partially or totally replace renewable energy supplies. The first and third generation feedstocks used for biofuel production have fundamental drawbacks. Waste rice straw and cake from second generation feedstock like Jatropha curcas l. kernel (JC) is seen as non-food feedstock and promising candidates for the industrial production of bioethanol. In this study, JC and rice husk (RH) wastes were characterized for proximate composition. Bioethanol was produced from the residual polysaccharides present in rice husk (RH) and Jatropha seed cake by sequential hydrolytic and fermentative processes at varying mixing proportions (50 g JC/50 g RH, 100 g JC/10 g RH, 100 g JC/20 g RH, 100 g JC/50 g RH, 100 g JC/100 g RH, 100 g JC/200 g RH and 200 g JC/100 g RH) and particle sizes (0.25, 0.5 and 1.00 mm). Mixing proportions and particle size significantly affected both bioethanol yield and some bioethanol properties. Bioethanol yield (%) increased with an increase in particle size. The highest bioethanol (8.67%) was produced at a mixing proportion of 100 g JC/50g RH at 0.25 mm particle size. The bioethanol had the lowest values of specific gravity and density of 1.25 and 0.92 g cm-3 and the highest values of 1.57 and 0.97 g cm-3 respectively. The highest values of viscosity (4.64 cSt) were obtained with 200 g JC/100 g RH, at 1.00 mm particle size. The maximum flash point and cloud point values were 139.9 oC and 23.7oC (100 g JC/200 g RH) at 1 mm and 0.5 mm particle sizes respectively. The maximum pour point value recorded was 3.85oC (100 g JC/50 g RH) at 1 mm particle size. The paper concludes that bioethanol can be recovered from JC and RH wastes. JC and RH blending proportions as well as particle sizes are important factors in bioethanol production.

Keywords: bioethanol, hydrolysis, Jatropha curcas l. kernel, rice husk, fermentation, proximate composition

Procedia PDF Downloads 96
49341 Combination of Modelling and Environmental Life Cycle Assessment Approach for Demand Driven Biogas Production

Authors: Juan A. Arzate, Funda C. Ertem, M. Nicolas Cruz-Bournazou, Peter Neubauer, Stefan Junne

Abstract:

— One of the biggest challenges the world faces today is global warming that is caused by greenhouse gases (GHGs) coming from the combustion of fossil fuels for energy generation. In order to mitigate climate change, the European Union has committed to reducing GHG emissions to 80–95% below the level of the 1990s by the year 2050. Renewable technologies are vital to diminish energy-related GHG emissions. Since water and biomass are limited resources, the largest contributions to renewable energy (RE) systems will have to come from wind and solar power. Nevertheless, high proportions of fluctuating RE will present a number of challenges, especially regarding the need to balance the variable energy demand with the weather dependent fluctuation of energy supply. Therefore, biogas plants in this content would play an important role, since they are easily adaptable. Feedstock availability varies locally or seasonally; however there is a lack of knowledge in how biogas plants should be operated in a stable manner by local feedstock. This problem may be prevented through suitable control strategies. Such strategies require the development of convenient mathematical models, which fairly describe the main processes. Modelling allows us to predict the system behavior of biogas plants when different feedstocks are used with different loading rates. Life cycle assessment (LCA) is a technique for analyzing several sides from evolution of a product till its disposal in an environmental point of view. It is highly recommend to use as a decision making tool. In order to achieve suitable strategies, the combination of a flexible energy generation provided by biogas plants, a secure production process and the maximization of the environmental benefits can be obtained by the combination of process modelling and LCA approaches. For this reason, this study focuses on the biogas plant which flexibly generates required energy from the co-digestion of maize, grass and cattle manure, while emitting the lowest amount of GHG´s. To achieve this goal AMOCO model was combined with LCA. The program was structured in Matlab to simulate any biogas process based on the AMOCO model and combined with the equations necessary to obtain climate change, acidification and eutrophication potentials of the whole production system based on ReCiPe midpoint v.1.06 methodology. Developed simulation was optimized based on real data from operating biogas plants and existing literature research. The results prove that AMOCO model can successfully imitate the system behavior of biogas plants and the necessary time required for the process to adapt in order to generate demanded energy from available feedstock. Combination with LCA approach provided opportunity to keep the resulting emissions from operation at the lowest possible level. This would allow for a prediction of the process, when the feedstock utilization supports the establishment of closed material circles within a smart bio-production grid – under the constraint of minimal drawbacks for the environment and maximal sustainability.

Keywords: AMOCO model, GHG emissions, life cycle assessment, modelling

Procedia PDF Downloads 188
49340 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: building energy management, machine learning, operation planning, simulation-based optimization

Procedia PDF Downloads 323
49339 Improving Productivity in a Glass Production Line through Applying Principles of Total Productive Maintenance (TPM)

Authors: Omar Bataineh

Abstract:

Total productive maintenance (TPM) is a principle-based method that aims to get a high-level production with no breakdowns, no slow running and no defects. Key principles of TPM were applied in this work to improve the performance of the glass production line at United Beverage Company in Kuwait, which is producing bottles of soft drinks. Principles such as 5S as a foundation for TPM implementation, developing a program for equipment management, Cause and Effect Analysis (CEA), quality improvement, training and education of employees were employed. After the completion of TPM implementation, it was possible to increase the Overall Equipment Effectiveness (OEE) from 23% to 40%.

Keywords: OEE, TPM, FMEA, CEA

Procedia PDF Downloads 337
49338 Optimization and Evaluation of Different Pathways to Produce Biofuel from Biomass

Authors: Xiang Zheng, Zhaoping Zhong

Abstract:

In this study, Aspen Plus was used to simulate the whole process of biomass conversion to liquid fuel in different ways, and the main results of material and energy flow were obtained. The process optimization and evaluation were carried out on the four routes of cellulosic biomass pyrolysis gasification low-carbon olefin synthesis olefin oligomerization, biomass water pyrolysis and polymerization to jet fuel, biomass fermentation to ethanol, and biomass pyrolysis to liquid fuel. The environmental impacts of three biomass species (poplar wood, corn stover, and rice husk) were compared by the gasification synthesis pathway. The global warming potential, acidification potential, and eutrophication potential of the three biomasses were the same as those of rice husk > poplar wood > corn stover. In terms of human health hazard potential and solid waste potential, the results were poplar > rice husk > corn stover. In the popular pathway, 100 kg of poplar biomass was input to obtain 11.9 kg of aviation coal fraction and 6.3 kg of gasoline fraction. The energy conversion rate of the system was 31.6% when the output product energy included only the aviation coal product. In the basic process of hydrothermal depolymerization process, 14.41 kg aviation kerosene was produced per 100 kg biomass. The energy conversion rate of the basic process was 33.09%, which can be increased to 38.47% after the optimal utilization of lignin gasification and steam reforming for hydrogen production. The total exergy efficiency of the system increased from 30.48% to 34.43% after optimization, and the exergy loss mainly came from the concentration of precursor dilute solution. Global warming potential in environmental impact is mostly affected by the production process. Poplar wood was used as raw material in the process of ethanol production from cellulosic biomass. The simulation results showed that 827.4 kg of pretreatment mixture, 450.6 kg of fermentation broth, and 24.8 kg of ethanol were produced per 100 kg of biomass. The power output of boiler combustion reached 94.1 MJ, the unit power consumption in the process was 174.9 MJ, and the energy conversion rate was 33.5%. The environmental impact was mainly concentrated in the production process and agricultural processes. On the basis of the original biomass pyrolysis to liquid fuel, the enzymatic hydrolysis lignin residue produced by cellulose fermentation to produce ethanol was used as the pyrolysis raw material, and the fermentation and pyrolysis processes were coupled. In the coupled process, 24.8 kg ethanol and 4.78 kg upgraded liquid fuel were produced per 100 kg biomass with an energy conversion rate of 35.13%.

Keywords: biomass conversion, biofuel, process optimization, life cycle assessment

Procedia PDF Downloads 70
49337 Valuing Social Sustainability in Agriculture: An Approach Based on Social Outputs’ Shadow Prices

Authors: Amer Ait Sidhoum

Abstract:

Interest in sustainability has gained ground among practitioners, academics and policy-makers due to growing stakeholders’ awareness of environmental and social concerns. This is particularly true for agriculture. However, relatively little research has been conducted on the quantification of social sustainability and the contribution of social issues to the agricultural production efficiency. This research's main objective is to propose a method for evaluating prices of social outputs, more precisely shadow prices, by allowing for the stochastic nature of agricultural production that is to say for production uncertainty. In this article, the assessment of social outputs’ shadow prices is conducted within the methodological framework of nonparametric Data Envelopment Analysis (DEA). An output-oriented directional distance function (DDF) is implemented to represent the technology of a sample of Catalan arable crop farms and derive the efficiency scores the overall production technology of our sample is assumed to be the intersection of two different sub-technologies. The first sub-technology models the production of random desirable agricultural outputs, while the second sub-technology reflects the social outcomes from agricultural activities. Once a nonparametric production technology has been represented, the DDF primal approach can be used for efficiency measurement, while shadow prices are drawn from the dual representation of the DDF. Computing shadow prices is a method to assign an economic value to non-marketed social outcomes. Our research uses cross sectional, farm-level data collected in 2015 from a sample of 180 Catalan arable crop farms specialized in the production of cereals, oilseeds and protein (COP) crops. Our results suggest that our sample farms show high performance scores, from 85% for the bad state of nature to 88% for the normal and ideal crop growing conditions. This suggests that farm performance is increasing with an improvement in crop growth conditions. Results also show that average shadow prices of desirable state-contingent output and social outcomes for efficient and inefficient farms are positive, suggesting that the production of desirable marketable outputs and of non-marketable outputs makes a positive contribution to the farm production efficiency. Results also indicate that social outputs’ shadow prices are contingent upon the growing conditions. The shadow prices follow an upward trend as crop-growing conditions improve. This finding suggests that these efficient farms prefer to allocate more resources in the production of desirable outputs than of social outcomes. To our knowledge, this study represents the first attempt to compute shadow prices of social outcomes while accounting for the stochastic nature of the production technology. Our findings suggest that the decision-making process of the efficient farms in dealing with social issues are stochastic and strongly dependent on the growth conditions. This implies that policy-makers should adjust their instruments according to the stochastic environmental conditions. An optimal redistribution of rural development support, by increasing the public payment with the improvement in crop growth conditions, would likely enhance the effectiveness of public policies.

Keywords: data envelopment analysis, shadow prices, social sustainability, sustainable farming

Procedia PDF Downloads 127
49336 Energy States of Some Diatomic Molecules: Exact Quantization Rule Approach

Authors: Babatunde J. Falaye

Abstract:

In this study, we obtain the approximate analytical solutions of the radial Schrödinger equation for the Deng-Fan diatomic molecular potential by using exact quantization rule approach. The wave functions have been expressed by hypergeometric functions via the functional analysis approach. An extension to rotational-vibrational energy eigenvalues of some diatomic molecules are also presented. It is shown that the calculated energy levels are in good agreement with the ones obtained previously E_nl-D (shifted Deng-Fan).

Keywords: Schrödinger equation, exact quantization rule, functional analysis, Deng-Fan potential

Procedia PDF Downloads 500
49335 Application of New Sprouted Wheat Brine for Delicatessen Products From Horse Meat, Beef and Pork

Authors: Gulmira Kenenbay, Urishbay Chomanov, Aruzhan Shoman, Rabiga Kassimbek

Abstract:

The main task of the meat-processing industry is the production of meat products as the main source of animal protein, ensuring the vital activity of the human body, in the required volumes, high quality, diverse assortment. Providing the population with high-quality food products what are biologically full, balanced in composition of basic nutrients and enriched by targeted physiologically active components, is one of the highest priority scientific and technical problems to be solved. In this regard, the formulation of a new brine from sprouted wheat for meat delicacies from horse meat, beef and pork has been developed. The new brine contains flavored aromatic ingredients, juice of the germinated wheat and vegetable juice. The viscosity of meat of horse meat, beef and pork were studied during massaging. Thermodynamic indices, water activity and binding energy of horse meat, beef and pork with application of new brine are investigated. A recipe for meat products with vegetable additives has been developed. Organoleptic evaluation of meat products was carried out. Physicochemical parameters of meat products with vegetable additives are carried out. Analysis of the obtained data shows that the values of the index aw (water activity) and the binding energy of moisture in the experimental samples of meat products are higher than in the control samples. It has been established by investigations that with increasing water activity and the binding energy of moisture, the tenderness of ready meat delicacies increases with the use of a new brine.

Keywords: compounding, functional products, delicatessen products, brine, vegetable additives

Procedia PDF Downloads 178