Search results for: edge scanning
1997 Decoration of Multi-Walled Carbon Nanotubes by CdS Nanoparticles Using Magnetron Sputtering Method
Authors: Z. Ghorannevis, E. Akbarnejad, B. Aghazadeh, M. Ghoranneviss
Abstract:
Carbon nanotubes (CNTs) modified with semiconductor nanocrystalline particles may find wide applications due to their unique properties. Here Cadmium Sulfide (CdS) nanoparticles were successfully grown on Multi-Walled Carbon Nanotubes (MWNTs) via a magnetron sputtering method for the first time. The CdS/MWNTs sample was characterized with X-ray diffraction (XRD), Field Emission Scanning and High Resolution Transmission Electron Microscopies (SEM/TEM) and four point probe. The obtained images show clearly the decoration of the MWNTs by the CdS nanoparticles, and the XRD measurements indicate the CdS structure as hexagonal type. Moreover, the physical properties of the CdS/MWNTs were compared with the physical properties of the CdS nanoparticles grown on the silicon. Electrical measurements of CdS and CdS/MWNTs reveal that CdS/MWNTs has lower resistivity than the CdS sample which may be due to the higher carrier concentrations.Keywords: CdS, MWNTs, HRTEM, magnetron sputtering
Procedia PDF Downloads 4051996 Traffic Density Measurement by Automatic Detection of the Vehicles Using Gradient Vectors from Aerial Images
Authors: Saman Ghaffarian, Ilgin Gökaşar
Abstract:
This paper presents a new automatic vehicle detection method from very high resolution aerial images to measure traffic density. The proposed method starts by extracting road regions from image using road vector data. Then, the road image is divided into equal sections considering resolution of the images. Gradient vectors of the road image are computed from edge map of the corresponding image. Gradient vectors on the each boundary of the sections are divided where the gradient vectors significantly change their directions. Finally, number of vehicles in each section is carried out by calculating the standard deviation of the gradient vectors in each group and accepting the group as vehicle that has standard deviation above predefined threshold value. The proposed method was tested in four very high resolution aerial images acquired from Istanbul, Turkey which illustrate roads and vehicles with diverse characteristics. The results show the reliability of the proposed method in detecting vehicles by producing 86% overall F1 accuracy value.Keywords: aerial images, intelligent transportation systems, traffic density measurement, vehicle detection
Procedia PDF Downloads 3791995 Study of Nano Clay Based on Pet
Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachoura
Abstract:
A (PET)/clay nano composites has been successfully performed in one step by reactive melt extrusion. The PEN was first mixed in the melt state with different amounts of functionalized clay. It was observed that the composition PET/4 wt% clay showed total exfoliation. These completely exfoliated composition called nPET, was used to prepare new nPET nano composites in the same mixing batch. The nPEN was compared to neat PET. The nanocomposites were characterized by different techniques: differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS). The micro and nanostructure/properties relationships were investigated. From the different WAXS patterns, it is seen that all samples are amorphous phase. In addition, nPET blends present lower Tc values and higher Tm values than the corresponding neat PET. The present study allowed establishing good correlations between the different measured properties.Keywords: PET, montmorillonite, nanocomposites, exfoliation, reactive melt-mixing
Procedia PDF Downloads 4031994 Mechanical Properties of the Sugarcane Bagasse Reinforced Polypropylene Composites
Authors: R. L. M. Paiva, M. R. Capri, D. R. Mulinari, C. F. Bandeira, S. R. Montoro
Abstract:
Natural fibers are used in polymer composites to improve mechanical properties, substituting inorganic reinforcing agents produced by non renewable resources. The present study investigates the tensile, flexural and impact behaviors of sugarcane bagasse fibers-polypropylene composite as a function of volume fraction. The surface of the fibers was modified by mercerization treatments to improve the wetting behavior of the apolar polypropylene. The treatment characterization was obtained by infrared spectroscopy and scanning electron microscopy. Results evidence that a good adhesion interfacial between fibers-matrix causing an increase strength and modulus flexural as well as impact strength in the modified fibers/PP composites when compared to the pure PP and unmodified fibers reinforced composites.Keywords: sugarcane bagasse, polymer composites, mechanical properties, fibers
Procedia PDF Downloads 6201993 Sintering Properties of Mechanically Alloyed Ti-5Al-2.5Fe
Authors: Ridvan Yamanoglu, Erdinc Efendi, Ismail Daoud
Abstract:
In this study, Ti-5Al-2.5Fe alloy was prepared by powder metallurgy. The elemental titanium, aluminum, and iron powders were mechanically alloyed for 10 h in a vacuum atmosphere. A stainless steel jar and stainless steel balls were used for mechanical alloying. The alloyed powders were then sintered by vacuum hot pressing at 950 °C for a soaking time of 30 minutes. Pure titanium was also sintered at the same conditions for comparison of mechanical properties and microstructural behavior. The samples were investigated by scanning electron microscopy, XRD analysis, and optical microscopy. Results showed that, after mechanical alloying, a homogeneous distribution of the elements was obtained, and desired a-b structure was determined. Ti-5Al-2.5Fe alloy was successfully produced, and the alloy showed enhanced mechanical properties compared to the commercial pure titanium.Keywords: Ti5Al-2.5Fe, mechanical alloying, hot pressing, sintering
Procedia PDF Downloads 2801992 Influence of Hydrolytic Degradation on Properties of Moisture Membranes Used in Fire-Protective Clothing
Authors: Rachid El Aidani, Phuong Nguyen-Tri, Toan Vu-Khanh
Abstract:
This study intends to show the influence of the hydrolytic degradation on the properties of the e-PTFE/NOMEX® membranes used in fire-protective clothing. The modification of water vapour permeability, morphology and chemical structure was examined by MOCON Permatran, electron microscopy scanning (SEM), and ATR-FTIR, respectively. A decrease in permeability to water vapour of the aged samples was observed following closure of transpiration pores. Analysis of fiber morphology indicates the appearance of defects at the fibers surface with the presence of micro cavities as well as the of fibrils. ATR-FTIR analysis reveals the presence of a new absorption band attributed to carboxylic acid terminal groups generated during the amide bond hydrolysis.Keywords: hydrolytic ageing, moisture membrane, water vapor permeability, morphology
Procedia PDF Downloads 3151991 Highly Transparent, Hydrophobic and Self-Cleaning ZnO-Durazane Based Hybrid Organic-Inorganic Coatings
Authors: Abderrahmane Hamdi, Julie Chalon, Benoit Dodin, Philippe Champagne
Abstract:
In this report, we present a simple route to realize robust, hydrophobic, and highly transparent coatings using organic polysilazane (durazane) and zinc oxide nanoparticles (ZnO). These coatings were deposited by spraying the mixture solution on glass slides. Thus, the properties of the films were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), UV–vis-NIR spectrophotometer, and water contact angle method. This sprayable polymer mixed with ZnO nanoparticles shows high transparency for visible light > 90%, a hydrophobic character (CA > 90°), and good mechanical and chemical stability. The coating also demonstrates excellent self-cleaning properties, which makes it a promising candidate for commercial use.Keywords: coatings, durability, hydrophobicity, organic polysilazane, self-cleaning, transparence, zinc oxide nanoparticles
Procedia PDF Downloads 1701990 Dry High Speed Orthogonal Turning of Ti-6Al-4V Titanium Alloy
Authors: M. Benghersallah, G. List, G. Sutter
Abstract:
The present work is an experimental study on the dry high speed turning of Ti-6Al-4V titanium alloy. The objective of this study is to see for high cutting speeds, how wear occurs on the face of insert and how to evolve cutting forces and chip formation. Cutting speeds tested is 600, 800, 1000, and 1200 m/min in orthogonal turning with a carbide insert tool H13A uncoated on a cylindrical titanium alloy part. Investigation on the wear inserts with 3D scanning microscope revered the crater formation is instantaneous and a chip adhesion (welded chip) causes detachment of carbide particles. Cutting forces increase and stabilize before removing the tool. The chip reaches a very high temperature.Keywords: titanium alloy, dry hjgh speed turning, wear insert, MQL technique
Procedia PDF Downloads 5551989 Influence of Synergistic Modification with Tung Oil and Heat Treatment on Physicochemical Properties of Wood
Authors: Luxi He, Tianfang Zhang, Zhengbin He, Songlin Yi
Abstract:
Heat treatment has been widely recognized for its effectiveness in enhancing the physicochemical properties of wood, including hygroscopicity and dimensional stability. Nonetheless, the non-negligible volumetric shrinkage and loss of mechanical strength resulting from heat treatment may diminish the wood recovery and its product value. In this study, tung oil was used to alleviate heat-induced shrinkage and reduction in mechanical properties of wood during heat treatment. Tung oil was chosen as a modifier because it is a traditional Chinese plant oil that has been widely used for over a thousand years to protect wooden furniture and buildings due to its biodegradable and non-toxic properties. The effects of different heating media (air, tung oil) and their effective treatment parameters (temperature, duration) on the changes in the physical properties (morphological characteristics, pore structures, micromechanical properties), and chemical properties (chemical structures, chemical composition) of wood were investigated by using scanning electron microscopy, confocal laser scanning microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and dynamic vapor sorption. Meanwhile, the correlation between the mass changes and the color change, volumetric shrinkage, and hygroscopicity was also investigated. The results showed that the thermal degradation of wood cell wall components was the most important factor contributing to the changes in heat-induced shrinkage, color, and moisture adsorption of wood. In air-heat-treated wood samples, there was a significant correlation between mass change and heat-induced shrinkage, brightness, and moisture adsorption. However, the presence of impregnated tung oil in oil-heat-treated wood appears to disrupt these correlations among physical properties. The results of micromechanical properties demonstrated a significant decrease in elastic modulus following high-temperature heat treatment, which was mitigated by tung oil treatment. Chemical structure and compositional analyses indicated that the changes in chemical structure primarily stem from the degradation of hemicellulose and cellulose, and the presence of tung oil created an oxygen-insulating environment that slowed down this degradation process. Morphological observation results showed that tung oil permeated the wood structure and penetrated the cell walls through transportation channels, altering the micro-morphology of the cell wall surface, obstructing primary water passages (e.g., vessels and pits), and impeding the release of volatile degradation products as well as the infiltration and diffusion of water. In summary, tung oil treatment represents an environmentally friendly and efficient method for maximizing wood recovery and increasing product value. This approach holds significant potential for industrial applications in wood heat treatment.Keywords: tung oil, heat treatment, physicochemical properties, wood cell walls
Procedia PDF Downloads 691988 The Use of Geographic Information System Technologies for Geotechnical Monitoring of Pipeline Systems
Authors: A. G. Akhundov
Abstract:
Issues of obtaining unbiased data on the status of pipeline systems of oil- and oil product transportation become especially important when laying and operating pipelines under severe nature and climatic conditions. The essential attention is paid here to researching exogenous processes and their impact on linear facilities of the pipeline system. Reliable operation of pipelines under severe nature and climatic conditions, timely planning and implementation of compensating measures are only possible if operation conditions of pipeline systems are regularly monitored, and changes of permafrost soil and hydrological operation conditions are accounted for. One of the main reasons for emergency situations to appear is the geodynamic factor. Emergency situations are proved by the experience to occur within areas characterized by certain conditions of the environment and to develop according to similar scenarios depending on active processes. The analysis of natural and technical systems of main pipelines at different stages of monitoring gives a possibility of making a forecast of the change dynamics. The integration of GIS technologies, traditional means of geotechnical monitoring (in-line inspection, geodetic methods, field observations), and remote methods (aero-visual inspection, aero photo shooting, air and ground laser scanning) provides the most efficient solution of the problem. The united environment of geo information system (GIS) is a comfortable way to implement the monitoring system on the main pipelines since it provides means to describe a complex natural and technical system and every element thereof with any set of parameters. Such GIS enables a comfortable simulation of main pipelines (both in 2D and 3D), the analysis of situations and selection of recommendations to prevent negative natural or man-made processes and to mitigate their consequences. The specifics of such systems include: a multi-dimensions simulation of facilities in the pipeline system, math modelling of the processes to be observed, and the use of efficient numeric algorithms and software packets for forecasting and analyzing. We see one of the most interesting possibilities of using the monitoring results as generating of up-to-date 3D models of a facility and the surrounding area on the basis of aero laser scanning, data of aerophotoshooting, and data of in-line inspection and instrument measurements. The resulting 3D model shall be the basis of the information system providing means to store and process data of geotechnical observations with references to the facilities of the main pipeline; to plan compensating measures, and to control their implementation. The use of GISs for geotechnical monitoring of pipeline systems is aimed at improving the reliability of their operation, reducing the probability of negative events (accidents and disasters), and at mitigation of consequences thereof if they still are to occur.Keywords: databases, 3D GIS, geotechnical monitoring, pipelines, laser scaning
Procedia PDF Downloads 1891987 Intelligent Rheumatoid Arthritis Identification System Based Image Processing and Neural Classifier
Authors: Abdulkader Helwan
Abstract:
Rheumatoid joint inflammation is characterized as a perpetual incendiary issue which influences the joints by hurting body tissues Therefore, there is an urgent need for an effective intelligent identification system of knee Rheumatoid arthritis especially in its early stages. This paper is to develop a new intelligent system for the identification of Rheumatoid arthritis of the knee utilizing image processing techniques and neural classifier. The system involves two principle stages. The first one is the image processing stage in which the images are processed using some techniques such as RGB to gryascale conversion, rescaling, median filtering, background extracting, images subtracting, segmentation using canny edge detection, and features extraction using pattern averaging. The extracted features are used then as inputs for the neural network which classifies the X-ray knee images as normal or abnormal (arthritic) based on a backpropagation learning algorithm which involves training of the network on 400 X-ray normal and abnormal knee images. The system was tested on 400 x-ray images and the network shows good performance during that phase, resulting in a good identification rate 97%.Keywords: rheumatoid arthritis, intelligent identification, neural classifier, segmentation, backpropoagation
Procedia PDF Downloads 5321986 Structural and Optical Characterization of Silica@PbS Core–Shell Nanoparticles
Authors: A. Pourahmad, Sh. Gharipour
Abstract:
The present work describes the preparation and characterization of nanosized SiO2@PbS core-shell particles by using a simple wet chemical route. This method utilizes silica spheres formation followed by successive ionic layer adsorption and reaction method assisted lead sulphide shell layer formation. The final product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis spectroscopic, infrared spectroscopy (IR) and transmission electron microscopy (TEM) experiments. The morphological studies revealed the uniformity in size distribution with core size of 250 nm and shell thickness of 18 nm. The electron microscopic images also indicate the irregular morphology of lead sulphide shell layer. The structural studies indicate the face-centered cubic system of PbS shell with no other trace for impurities in the crystal structure.Keywords: core-shell, nanostructure, semiconductor, optical property, XRD
Procedia PDF Downloads 2991985 Production of Chromium Matrix Composite Reinforced by WC by Powder Metallurgy
Authors: Ahmet Yonetken, Ayhan Erol
Abstract:
Intermetallic materials advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of %80Cr-%10Ti and %10WC powders were investigated using specimens produced by tube furnace sintering at 1000-1400°C temperature. A composite consisting of ternary additions, a metallic phase, Ti,Cr and WC have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition %80Cr-%10Ti and %10WC at 1400°C suggest that the best properties as 292HV and 5,34g/cm3 density were obtained at 1400°C.Keywords: ceramic-metal, composites, powder metallurgy, sintering
Procedia PDF Downloads 4711984 The Strength and Metallography of a Bimetallic Friction Stir Bonded Joint between AA6061 and High Hardness Steel
Authors: Richard E. Miller
Abstract:
12.7-mm thick plates of 6061-T6511 aluminum alloy and high hardness steel (528 HV) were successfully joined by a friction stir bonding process using a tungsten-rhenium stir tool. Process parameter variation experiments, which included tool design geometry, plunge and traverse rates, tool offset, spindle tilt, and rotation speed, were conducted to develop a parameter set which yielded a defect free joint. Laboratory tensile tests exhibited yield stresses which exceed the strengths of comparable AA6061-to-AA6061 fusion and friction stir weld joints. Scanning electron microscopy and energy dispersive X-ray spectroscopy analysis also show atomic diffusion at the material interface region.Keywords: dissimilar materials, friction stir, welding, materials science
Procedia PDF Downloads 2691983 Investigation on Dry Sliding Wear for Laser Cladding of Stellite 6 Produced on a P91 Steel Substrate
Authors: Alain Kusmoko, Druce Dunne, Huijun Li
Abstract:
Stellite 6 was deposited by laser cladding on a chromium bearing substrate (P91) with energy inputs of 1 kW (P91-1) and 1.8 kW (P91-1.8). The chemical compositions and microstructures of these coatings were characterized by atomic absorption spectroscopy, optical microscopy and scanning electron microscopy. The microhardness of the coatings was measured and the wear mechanism of the coatings was assessed using a pin-on-plate (reciprocating) wear testing machine. The results showed less cracking and pore development for Stellite 6 coatings applied to the P91 steel substrate with the lower heat input (P91-1). Further, the Stellite coating for P91-1 was significantly harder than that obtained for P91-1.8. The wear test results indicated that the weight loss for P91-1 was much lower than for P91-1.8. It is concluded that the lower hardness of the coating for P91-1.8, together with the softer underlying substrate structure, markedly reduced the wear resistance of the Stellite 6 coating.Keywords: friction and wear, laser cladding, P91 steel, Stellite 6 coating
Procedia PDF Downloads 4411982 A Futuristic Look at American Indian Nationhood: Zits in Sherman Alexie’s Flight
Authors: Shaimaa Alobaidi
Abstract:
The presentation examines how urbanization opens possibilities for American Indian characters like Zits in Alexie’s Flightto explore new definitionsoftheirtribal self-identification. Zits travels in time and views the world from different bodies, ages, and races; his journeys end with different perspectives on the idea of nationhood as an American Indian. He is an example of Vine Deloria’s statementthat “urban Indians have become the cutting edge of the new Indian nationalism” (248). Flight is chosen because the momentZits leaves the real world for time-traveling adventures is very critical; it is a moment of rage that ends in the mass murder of many Anglo-Americans. The paper focus on the turning point when he returns into his body with new opportunities towards his existence among the majority of anglo-Americans who cannot help but see him American Indian minority in need of help and assistance. Characters, such as Zits, attempt to outlive alienation, and Alexie gives new definitionsof their ethnic nationhood. Futuristicdoes not mean the very far unpredictable future; it is rather a nearpotential future for teenagers of American Indians, like Zits, Arnold, andCoyoteSprings- the band in ReservationBlues; all revolutionary personalitiesin Alexie’s works. They will be analyzed as Gerald Vizenor’s “postindianwarriors” who have the ability to identify Indigenous nationalism in a post-colonial context.Keywords: alienation, self-identification, nationhood, urbanization, postindian
Procedia PDF Downloads 1661981 Effect of the Hardness of Spacer Agent on Structural Properties of Metallic Scaffolds
Authors: Mohammad Khodaei, Mahmood Meratien, Alireza Valanezhad, Serdar Pazarlioglu, Serdar Salman, Ikuya Watanabe
Abstract:
Pore size and morphology plays a crucial role on mechanical properties of porous scaffolds. In this research, titanium scaffold was prepared using space holder technique. Sodium chloride and ammonium bicarbonate were utilized as spacer agent separately. The effect of the hardness of spacer on the cell morphology was investigated using scanning electron microscopy (SEM) and optical stereo microscopy. Image analyzing software was used to interpret the microscopic images quantitatively. It was shown that sodium chloride, due to its higher hardness, maintain its morphology during cold compaction, and cause better replication in porous scaffolds.Keywords: Spacer, Titanium Scaffold, Pore Morphology, Space Holder Technique
Procedia PDF Downloads 2901980 Self-Assembled Tin Particles Made by Plasma-Induced Dewetting
Authors: Han Joo Choe, Soon-Ho Kwon, Jung-Joong Lee
Abstract:
Tin particles of various size and distribution were self-assembled by plasma treating tin film deposited on silicon oxide substrates. Plasma treatment was conducted using an inductively coupled plasma (ICP) source. A range of ICP power and topographic templated substrates were evaluated to observe changes in particle size and particle distribution. Scanning electron microscopy images of the particles were analyzed using computer software. The evolution of tin film dewetting into particles initiated from the hole nucleation in grain boundaries. Increasing ICP power during plasma treatment produced larger number of particles per area and smaller particle size and particle-size distribution. Topographic templates were also effective in positioning and controlling the size of the particles. By combining the effects of ICP power and topographic templates, particles of similar size and well-ordered distribution were obtained.Keywords: dewetting, particles, plasma, tin
Procedia PDF Downloads 2561979 Algorithmic Generation of Carbon Nanochimneys
Authors: Sorin Muraru
Abstract:
Computational generation of carbon nanostructures is still a very demanding process. This work provides an alternative to manual molecular modeling through an algorithm meant to automate the design of such structures. Specifically, carbon nanochimneys are obtained through the bonding of a carbon nanotube with the smaller edge of an open carbon nanocone. The methods of connection rely on mathematical, geometrical and chemical properties. Non-hexagonal rings are used in order to perform the correct bonding of dangling bonds. Once obtained, they are useful for thermal transport, gas storage or other applications such as gas separation. The carbon nanochimneys are meant to produce a less steep connection between structures such as the carbon nanotube and graphene sheet, as in the pillared graphene, but can also provide functionality on its own. The method relies on connecting dangling bonds at the edges of the two carbon nanostructures, employing the use of two different types of auxiliary structures on a case-by-case basis. The code is implemented in Python 3.7 and generates an output file in the .pdb format containing all the system’s coordinates. Acknowledgment: This work was supported by a grant of the Executive Agency for Higher Education, Research, Development and innovation funding (UEFISCDI), project number PN-III-P1-1.1-TE-2016-24-2, contract TE 122/2018.Keywords: carbon nanochimneys, computational, carbon nanotube, carbon nanocone, molecular modeling, carbon nanostructures
Procedia PDF Downloads 1701978 Piezoelectric and Dielectric Properties of Poly(Vinylideneflouride-Hexafluoropropylene)/ZnO Nanocomposites
Authors: P. Hemalatha, Deepalekshmi Ponnamma, Mariam Al Ali Al-Maadeed
Abstract:
The Poly(vinylideneflouride-hexafluoropropylene) (PVDF-HFP)/ zinc oxide (ZnO) nanocomposites films were successfully prepared by mixing the fine ZnO particles into PVDF-HFP solution followed by film casting and sandwich techniques. Zinc oxide nanoparticles were synthesized by hydrothermal method. Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the structure and properties of the obtained nanocomposites. The dielectric properties of the PVDF-HFP/ZnO nanocomposites were analyzed in detail. In comparison with pure PVDF-HFP, the dielectric constant of the nanocomposite (1wt% ZnO) was significantly improved. The piezoelectric co-efficients of the nanocomposites films were measured. Experimental results revealed the influence of filler on the properties of PVDF-HFP and enhancement in the output performance and dielectric properties reflects the ability for energy storage capabilities.Keywords: dielectric constant, hydrothermal, nanoflowers, organic compounds
Procedia PDF Downloads 2861977 Study of Mechanical Properties of Aluminium Alloys on Normal Friction Stir Welding and Underwater Friction Stir Welding for Structural Applications
Authors: Lingaraju Dumpala, Laxmi Mohan Kumar Chintada, Devadas Deepu, Pravin Kumar Yadav
Abstract:
Friction stir welding is the new-fangled and cutting-edge technique in welding applications; it is widely used in the fields of transportation, aerospace, defense, etc. For thriving significant welding joints and properties of friction stir welded components, it is essential to carry out this advanced process in a prescribed systematic procedure. At this moment, Underwater Friction Stir Welding (UFSW) Process is the field of interest to do research work. In the continuous assessment, the study of UFSW process is to comprehend problems occurred in the past and the structure through which the mechanical properties of the welded joints can be value-added and contributes to conclude results an acceptable and resourceful joint. A meticulous criticism is given on how to modify the experimental setup from NFSW to UFSW. It can discern the influence of tool materials, feeds, spindle angle, load, rotational speeds and mechanical properties. By expending the DEFORM-3D simulation software, the achieved outcomes are validated.Keywords: Underwater Friction Stir Welding(UFSW), Al alloys, mechanical properties, Normal Friction Stir Welding(NFSW)
Procedia PDF Downloads 2881976 Tetracycline as Chemosensor for Simultaneous Recognition of Al³⁺: Application to Bio-Imaging for Living Cells
Authors: Jesus Alfredo Ortega Granados, Pandiyan Thangarasu
Abstract:
Antibiotic tetracycline presents as a micro-contaminant in fresh water, wastewater and soils, causing environmental and health problems. In this work, tetracycline (TC) has been employed as chemo-sensor for the recognition of Al³⁺ without interring other ions, and the results show that it enhances the fluorescence intensity for Al³⁺ and there is no interference from other coexisting cation ions (Cd²⁺, Ni²⁺, Co²⁺, Sr²⁺, Mg²⁺, Fe³⁺, K⁺, Sm³⁺, Ag⁺, Na⁺, Ba²⁺, Zn²⁺, and Mn²⁺). For the addition of Cu²⁺ to [TET-Al³⁺], it appears that the intensity of fluorescence has been quenched. Other combinations of metal ions in addition to TC do not change the fluorescence behavior. The stoichiometry determined by Job´s plot for the interaction of TC with Al³⁺ was found to be 1:1. Importantly, the detection of Al³⁺⁺ successfully employed in the real samples like living cells, and it was found that TC efficiently performs as a fluorescent probe for Al³⁺ ion in living systems, especially in Saccharomyces cerevisiae; this is confirmed by confocal laser scanning microscopy.Keywords: chemo-sensor, recognition of Al³⁺ ion, Saccharomyces cerevisiae, tetracycline,
Procedia PDF Downloads 1891975 A Unified Approach for Naval Telecommunication Architectures
Authors: Y. Lacroix, J.-F. Malbranque
Abstract:
We present a chronological evolution for naval telecommunication networks. We distinguish periods: with or without multiplexers, with switch systems, with federative systems, with medium switching, and with medium switching with wireless networks. This highlights the introduction of new layers and technology in the architecture. These architectures are presented using layer models of transmission, in a unified way, which enables us to integrate pre-existing models. A ship of a naval fleet has internal communications (i.e. applications' networks of the edge) and external communications (i.e. the use of the means of transmission between edges). We propose architectures, deduced from the layer model, which are the point of convergence between the networks on board and the HF, UHF radio, and satellite resources. This modelling allows to consider end-to-end naval communications, and in a more global way, that is from the user on board towards the user on shore, including transmission and networks on the shore side. The new architectures need take care of quality of services for end-to-end communications, the more remote control develops a lot and will do so in the future. Naval telecommunications will be more and more complex and will use more and more advanced technologies, it will thus be necessary to establish clear global communication schemes to grant consistency of the architectures. Our latest model has been implemented in a military naval situation, and serves as the basic architecture for the RIFAN2 network.Keywords: equilibrium beach profile, eastern tombolo of Giens, potential function, erosion
Procedia PDF Downloads 2911974 Investigation of the Effects of Simple Heating Processes on the Crystallization of Bi₂WO₆
Authors: Cisil Gulumser, Francesc Medina, Sevil Veli
Abstract:
In this study, the synthesis of photocatalytic Bi₂WO₆ was practiced with simple heating processes and the effects of these treatments on the production of the desired compound were investigated. For this purpose, experiments with Bi(NO₃)₃.5H₂O and H₂WO₄ precursors were carried out to synthesize Bi₂WO₆ by four different combinations. These four combinations were grouped in two main sets as ‘treated in microwave reactor’ and ‘directly filtrated’; additionally these main sets were grouped into two subsets as ‘calcined’ and ‘not calcined’. Calcination processes were conducted at temperatures of 400ᵒC, 600ᵒC, and 800ᵒC. X-ray diffraction (XRD) and environmental scanning electron microscopy (ESEM) analyses were performed in order to investigate the crystal structure of powdered product synthesized with each combination. The highest crystallization of produced compounds was observed for calcination at 600ᵒC from each main group.Keywords: bismuth tungstate, crystallization, microwave, photocatalysts
Procedia PDF Downloads 1751973 Multifunctional Coating of Nylon Using Nano-Si, Nano-Ti and SiO2-TiO2 Nancomposite :Properties of Colorimetric and Flammability
Authors: E. Fereydouni, Laleh Maleknia , M. E. Olya
Abstract:
The present research, nylon fabric dyed by pressure method with nano-Si, nano-Ti particles and SiO2-TiO2 nancomposite. The influence of the amount of Si, Ti and SiO2-TiO2 on the performance of nylon fabric was investigated by the use of Fourier transform infrared spectrophotometer (FTIR), horizontal flammability apparatus (HFA), scanning electron microscope (SEM), electron dispersive X-ray spectroscope (EDX), water contact angle tester (WCA) and CIE LAB colorimetric system. The possible interactions between particles and nylon fiber were elucidated by the FTIR spectroscopy. Results indicated that the stabilized nanoparticles and nanocomposite enhances flame retardancy of nylon fabrics. Also, the prominet features of nanoparticles and nanocomposite treatment can note increase of adsorption and fixation of dye.Keywords: nano-Si, nano- Ti, SiO2-TiO2 nancomposite, nylon fabric, flame retardant nylon
Procedia PDF Downloads 3611972 Photo-Thermal Degradation Analysis of Single Junction Amorphous Silicon Solar Module Eva Encapsulation
Authors: Gilbert O. Osayemwenre, Meyer L. Edson
Abstract:
Ethylene vinyl acetate (EVA) encapsulation degradation affects the performance of photovoltaic (PV) module. Hotspot formation causes the EVA encapsulation to undergo photothermal deterioration and molecular breakdown by UV radiation. This leads to diffusion of chemical particles into other layers. During outdoor deployment, the EVA encapsulation in the affect region loses its adhesive strength, when this happen the affected region layer undergoes rapid delamination. The presence of photo-thermal degradation is detrimental to PV modules as it causes both optical and thermal degradation. Also, it enables the encapsulant to be more susceptible to chemicals substance and moisture. Our findings show a high concentration of Sodium, Phosphorus and Aluminium which originate from the glass substrate, cell emitter and back contact respectively.Keywords: ethylene vinyl acetate (EVA), encapsulation, photo-thermal degradation, thermogravimetric analysis (TGA), scanning probe microscope (SPM)
Procedia PDF Downloads 3071971 Evaluation of tribological performance of aged and unaged biodiesel
Authors: Yuan-Ching Lin, Tian-Yi Huang, Ming-Jhe Hsieh
Abstract:
In this work, soybean biodiesel was blended with petroleum diesel as testing oils (B2). The tribiological performance of the B2 biodiesel before and after aging was evaluated using a reciprocating cylinder-on-flat wear test rig (Cameron-Plint TE-77) at various temperatures. The worn surface of each tested specimen was observed using a field-emission scanning electron microscope (FESEM). The compositions of the chemical films on each worn surface were determined using an energy dispersive spectrometer (EDS). The experimental results demonstrate that the tribiological behavior of the B2 was superior to that of other testing oils. Furthermore, the aging of biodiesel caused acidification, which resulted in poorer wear performance in the same experimental condition compared with others. The worn morphology of the specimen that was tested in the aged soybean biodiesel exhibited corrosion wear, reflecting low wear resistance.Keywords: biodiesel, soybean, tribological performance
Procedia PDF Downloads 4941970 Functionalization and Dispersion of Multiwall Carbon Nanotubes in Waterborne Polyurethane
Authors: Shahla Hajializadeh, Maryam Hamedanlou
Abstract:
Multiwall carbon nanotubes were chemically modified with amide groups for the purpose of enhancing their chemical affinity with waterborne polyurethane. In this study, a thermoplastic nanocomposite containing functionalized multiwall carbon nanotube/waterborne polyurethane (WBPU/MWNT) via in situ polymerization has been prepared. The impacts of MWNT addition on the morphology and electrical properties of nanocomposites were investigated. Micrographs of Scanning Electron Microscopy (SEM) prove that functionalized CNT can be effectively dispersed in WBPU matrix. The electrical conductivity of nanocomposites increased with the CNT contents in as such the nanocomposites containing 1 wt% of MWNT exhibited a conductivity nearly five orders of magnitude higher than the WBPU film.Keywords: chemical functionalization, electrical properties, in situ polymerization, morphology, multiwall carbon nanotubes, waterborne polyurethane
Procedia PDF Downloads 2661969 Improvement in Ni (II) Adsorption Capacity by Using Fe-Nano Zeolite
Authors: Pham-Thi Huong, Byeong-Kyu Lee, Jitae Kim, Chi-Hyeon Lee
Abstract:
Fe-nano zeolite adsorbent was used for removal of Ni (II) ions from aqueous solution. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and the surface area Brunauer–Emmett–Teller (BET) using for analysis of functional groups, morphology and surface area. Bath adsorption experiments were analyzed on the effect of pH, time, adsorbent doses and initial Ni (II) concentration. The optimum pH for Ni (II) removal using Fe-nano zeolite was found at 5.0 and 90 min of reaction time. The maximum adsorption capacity of Ni (II) was 231.68 mg/g based on the Langmuir isotherm. The kinetics data for the adsorption process was fitted with the pseudo-second-order model. The desorption of Ni (II) from Ni-loaded Fe-nano zeolite was analyzed and even after 10 cycles 72 % desorption was achieved. These finding supported that Fe-nano zeolite with high adsorption capacity, high reuse ability would be utilized for Ni (II) removal from water.Keywords: Fe-nano zeolite, adsorption, Ni (II) removal, regeneration
Procedia PDF Downloads 2321968 Enhancement and Characterization of Titanium Surfaces with Sandblasting and Acid Etching for Dental Implants
Authors: Busra Balli, Tuncay Dikici, Mustafa Toparli
Abstract:
Titanium and its alloys have been used extensively over the past 25 years as biomedical materials in orthopedic and dental applications because of their good mechanical properties, corrosion resistance, and biocompatibility. It is known that the surface properties of titanium implants can enhance the cellular response and play an important role in Osseo integration. The rate and quality of Osseo integration in titanium implants are related to their surface properties. The purpose of this investigation was to evaluate the effect of sandblasting and acid etching on surface morphology, roughness, the wettability of titanium. The surface properties will be characterized by scanning electron microscopy and contact angle and roughness measurements. The results show that surface morphology, roughness, and wettability were changed and enhanced by these treatments.Keywords: dental implant, etching, surface modifications, surface morphology, surface roughness
Procedia PDF Downloads 491