Search results for: device
1071 Computational Analysis on Thermal Performance of Chip Package in Electro-Optical Device
Authors: Long Kim Vu
Abstract:
The central processing unit in Electro-Optical devices is a Field-programmable gate array (FPGA) chip package allowing flexible, reconfigurable computing but energy consumption. Because chip package is placed in isolated devices based on IP67 waterproof standard, there is no air circulation and the heat dissipation is a challenge. In this paper, the author successfully modeled a chip package which various interposer materials such as silicon, glass and organics. Computational fluid dynamics (CFD) was utilized to analyze the thermal performance of chip package in the case of considering comprehensive heat transfer modes: conduction, convection and radiation, which proposes equivalent heat dissipation. The logic chip temperature varying with time is compared between the simulation and experiment results showing the excellent correlation, proving the reasonable chip modeling and simulation method.Keywords: CFD, FPGA, heat transfer, thermal analysis
Procedia PDF Downloads 1841070 A Passive Reaction Force Compensation for a Linear Motor Motion Stage Using Pre-Compressed Springs
Authors: Kim Duc Hoang, Hyeong Joon Ahn
Abstract:
Residual vibration of the system base due to a high-acceleration motion of a stage may reduce life and productivity of the manufacturing device. Although a passive RFC can reduce vibration of the system base, spring or dummy mass should be replaced to tune performance of the RFC. In this paper, we develop a novel concept of the passive RFC mechanism for a linear motor motion stage using pre-compressed springs. Dynamic characteristic of the passive RFC can be adjusted by pre-compression of the spring without exchanging the spring or dummy mass. First, we build a linear motor motion stage with pre-compressed springs. Then, the effect of the pre-compressed spring on the passive RFC is investigated by changing both pre-compressions and stiffness of springs. Finally, the effectiveness of the passive RFC using pre-compressed springs was verified with both simulations and experiments.Keywords: linear motor motion stage, residual vibration, passive RFC, pre-compressed spring
Procedia PDF Downloads 3541069 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method
Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis
Abstract:
Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses
Procedia PDF Downloads 1321068 Development of an Optimization Method for Myoelectric Signal Processing by Active Matrix Sensing in Robot Rehabilitation
Authors: Noriyoshi Yamauchi, Etsuo Horikawa, Takunori Tsuji
Abstract:
Training by exoskeleton robot is drawing attention as a rehabilitation method for body paralysis seen in many cases, and there are many forms that assist with the myoelectric signal generated by exercise commands from the brain. Rehabilitation requires more frequent training, but it is one of the reasons that the technology is required for the identification of the myoelectric potential derivation site and attachment of the device is preventing the spread of paralysis. In this research, we focus on improving the efficiency of gait training by exoskeleton type robots, improvement of myoelectric acquisition and analysis method using active matrix sensing method, and improvement of walking rehabilitation and walking by optimization of robot control.Keywords: active matrix sensing, brain machine interface (BMI), the central pattern generator (CPG), myoelectric signal processing, robot rehabilitation
Procedia PDF Downloads 3851067 Estimation and Restoration of Ill-Posed Parameters for Underwater Motion Blurred Images
Authors: M. Vimal Raj, S. Sakthivel Murugan
Abstract:
Underwater images degrade their quality due to atmospheric conditions. One of the major problems in an underwater image is motion blur caused by the imaging device or the movement of the object. In order to rectify that in post-imaging, parameters of the blurred image are to be estimated. So, the point spread function is estimated by the properties, using the spectrum of the image. To improve the estimation accuracy of the parameters, Optimized Polynomial Lagrange Interpolation (OPLI) method is implemented after the angle and length measurement of motion-blurred images. Initially, the data were collected from real-time environments in Chennai and processed. The proposed OPLI method shows better accuracy than the existing classical Cepstral, Hough, and Radon transform estimation methods for underwater images.Keywords: image restoration, motion blur, parameter estimation, radon transform, underwater
Procedia PDF Downloads 1761066 Design of Speedy, Scanty Adder for Lossy Application Using QCA
Authors: T. Angeline Priyanka, R. Ganesan
Abstract:
Recent trends in microelectronics technology have gradually changed the strategies used in very large scale integration (VLSI) circuits. Complementary Metal Oxide Semiconductor (CMOS) technology has been the industry standard for implementing VLSI device for the past two decades, but due to scale-down issues of ultra-low dimension achievement is not achieved so far. Hence it paved a way for Quantum Cellular Automata (QCA). It is only one of the many alternative technologies proposed as a replacement solution to the fundamental limit problem that CMOS technology will impose in the years to come. In this brief, presented a new adder that possesses high speed of operation occupying less area is proposed. This adder is designed especially for error tolerant application. Hence in the proposed adder, the overall area (cell count) and simulation time are reduced by 88 and 73 percent respectively. Various results of the proposed adder are shown and described.Keywords: quantum cellular automata, carry look ahead adder, ripple carry adder, lossy application, majority gate, crossover
Procedia PDF Downloads 5561065 Particle Observation in Secondary School Using a Student-Built Instrument: Design-Based Research on a STEM Sequence about Particle Physics
Authors: J.Pozuelo-Muñoz, E. Cascarosa-Salillas, C. Rodríguez-Casals, A. de Echave, E. Terrado-Sieso
Abstract:
This study focuses on the development, implementation, and evaluation of an instructional sequence aimed at 16–17-year-old students, involving the design and use of a cloud chamber—a device that allows observation of subatomic particles. The research addresses the limited presence of particle physics in Spanish secondary and high school curricula, a gap that restricts students' learning of advanced physics concepts and diminishes engagement with complex scientific topics. The primary goal of this project is to introduce particle physics in the classroom through a practical, interdisciplinary methodology that promotes autonomous learning and critical thinking. The methodology is framed within Design-Based Research (DBR), an approach that enables iterative and pragmatic development of educational resources. The research proceeded in several phases, beginning with the design of an experimental teaching sequence, followed by its implementation in high school classrooms. This sequence was evaluated, redesigned, and reimplemented with the aim of enhancing students’ understanding and skills related to designing and using particle detection instruments. The instructional sequence was divided into four stages: introduction to the activity, research and design of cloud chamber prototypes, observation of particle tracks, and analysis of collected data. In the initial stage, students were introduced to the fundamentals of the activity and provided with bibliographic resources to conduct autonomous research on cloud chamber functioning principles. During the design stage, students sourced materials and constructed their own prototypes, stimulating creativity and understanding of physics concepts like thermodynamics and material properties. The third stage focused on observing subatomic particles, where students recorded and analyzed the tracks generated in their chambers. Finally, critical reflection was encouraged regarding the instrument's operation and the nature of the particles observed. The results show that designing the cloud chamber motivates students and actively engages them in the learning process. Additionally, the use of this device introduces advanced scientific topics beyond particle physics, promoting a broader understanding of science. The study’s conclusions emphasize the need to provide students with ample time and space to thoroughly understand the role of materials and physical conditions in the functioning of their prototypes and to encourage critical analysis of the obtained data. This project not only highlights the importance of interdisciplinarity in science education but also provides a practical framework for teachers to adapt complex concepts for educational contexts where these topics are often absent.Keywords: cloud chamber, particle physics, secondary education, instructional design, design-based research, STEM
Procedia PDF Downloads 131064 Phytotoxicity of Lead on the Physiological Parameters of Two Varieties of Broad Bean (Vicia faba)
Authors: El H. Bouziani, H. A. Reguieg Yssaad
Abstract:
The phytotoxicity of heavy metals can be expressed on roots and visible part of plants and is characterized by molecular and metabolic answers at various levels of organization of the whole plant. The present study was undertaken on two varieties of broad bean Vicia faba (Sidi Aïch and Super Aguadulce). The device was mounted on a substrate prepared by mixing sand, soil and compost, the substrate was artificially contaminated with three doses of lead nitrate [Pb(NO3)2] 0, 500 and 1000 ppm. Our objective is to follow the behavior of plant opposite the stress by evaluating the physiological parameters. The results reveal a reduction in the parameters of the productivity (chlorophyll and proteins production) with an increase in the osmoregulators (soluble sugars and proline).These results show that the production of broad bean is strongly modified by the disturbance of its internal physiology under lead exposure.Keywords: broad bean, lead, stress, physiological parameters, phytotoxicity
Procedia PDF Downloads 3071063 Investigating Activity Recognition Using 9-Axis Sensors and Filters in Wearable Devices
Authors: Jun Gil Ahn, Jong Kang Park, Jong Tae Kim
Abstract:
In this paper, we analyze major components of activity recognition (AR) in wearable device with 9-axis sensors and sensor fusion filters. 9-axis sensors commonly include 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer. We chose sensor fusion filters as Kalman filter and Direction Cosine Matrix (DCM) filter. We also construct sensor fusion data from each activity sensor data and perform classification by accuracy of AR using Naïve Bayes and SVM. According to the classification results, we observed that the DCM filter and the specific combination of the sensing axes are more effective for AR in wearable devices while classifying walking, running, ascending and descending.Keywords: accelerometer, activity recognition, directiona cosine matrix filter, gyroscope, Kalman filter, magnetometer
Procedia PDF Downloads 3331062 The Impact of a Gait Assessment Model on Learning Outcomes
Authors: Seema Saini, Arsh Shikalgar, Neelam Tejani, Tushar J. Palekar
Abstract:
This study introduces and evaluates a gait assessment system device as an educational model for healthcare students. The system aims to enhance learning through active experimentation with educators, focusing on teaching fundamental concepts like torque, potential energy, and kinetic movements. A total of 80 fourth-year healthcare students specializing in physiotherapy participated in this study. The study utilized a pre-post multiple-choice question (MCQ) examination format to evaluate the student's learning outcomes. Post-test performance significantly improved compared to pre-test scores (mean difference p<0.001, t=5.96). Participants reported that the gait assessment model effectively aided in achieving learning objectives, increasing topic understanding and interest, and enhancing comprehension of biomechanical events in gait.Keywords: biomechanics, educational innovation, interactive learning, healthcare education
Procedia PDF Downloads 201061 Novel Ferroelectric Properties as Studied by Boson Mean Field Laser Radiation Induced from a Beer Bottle
Authors: Tadeus Atraskevic, Asch Dalbajobas, Mazahistas Pukuotukas
Abstract:
The novel ferroelectric properties appeared in the recent ten years. Many scientists consider them as non-statement science. Nevertheless, many papers are published. The Mean field theory takes an important place in the theory of ferroelectric materials which can be applied for Boson induced laser systems for ‘Star Track’ soldiers. The novel Laser, which was produced in The Vilnius Bambalio University is a ‘now-how’ among other laser systems. The laser can produce power of 30 kW during 15 seconds. Its size and compatibility distinguishes it among other devices and safety gadgets. Scientists of Bambalio University have already patented the device. The most interesting in this innovations is the process of operation. Merely it may be operated through a bottle a beer what makes the measurement so convenient, that an ordinary scientist can process all stuff without significant effort just by taking pleasure by drinking a bottle of beer. Here we would like to report on the laser system and present our unique developments.Keywords: laser, boson, ferroelectrics, mean field theory
Procedia PDF Downloads 1741060 Exergy Analysis of Reverse Osmosis for Potable Water and Land Irrigation
Authors: M. Sarai Atab, A. Smallbone, A. P. Roskilly
Abstract:
A thermodynamic study is performed on the Reverse Osmosis (RO) desalination process for brackish water. The detailed RO model of thermodynamics properties with and without an energy recovery device was built in Simulink/MATLAB and validated against reported measurement data. The efficiency of desalination plants can be estimated by both the first and second laws of thermodynamics. While the first law focuses on the quantity of energy, the second law analysis (i.e. exergy analysis) introduces quality. This paper used the Main Outfall Drain in Iraq as a case study to conduct energy and exergy analysis of RO process. The result shows that it is feasible to use energy recovery method for reverse osmosis with salinity less than 15000 ppm as the exergy efficiency increases twice. Moreover, this analysis shows that the highest exergy destruction occurs in the rejected water and lowest occurs in the permeate flow rate accounting 37% for 4.3% respectively.Keywords: brackish water, exergy, irrigation, reverse osmosis (RO)
Procedia PDF Downloads 1741059 Android Application on Checking Halal Product Based on Augmented Reality
Authors: Saidatul A'isyah Ahmad Shukri, Haslina Arshad
Abstract:
This study was conducted to develop an application that provides Augmented Reality experience in identifying halal food products and beverages based on Malaysian Islamic Development Department (JAKIM) database for Muslim consumers in Malaysia. The applications is operating on the mobile device using the Android platform. This application aims to provide a new experience to the user how to use the Android application implements Augmentation Reality technology The methodology used is object-oriented analysis and design (OOAD). The programming language used is JAVA programming using the Android Software Development Kit (SDK) and XML. Android operating system is selected, and it is an open source operating system. Results from the study are implemented to further enhance diversity in presentation of information contained in this application and so can bring users using these applications from different angles.Keywords: android, augmented reality, food, halal, Malaysia, products, XML
Procedia PDF Downloads 4551058 Flexible Design of Triboelectric Nanogenerators for Efficient Vibration Energy Harvesting
Authors: Meriam Khelifa
Abstract:
In recent years, many studies have focused on the harvesting of the vibrations energy to produce electrical energy using contact separation (CS) triboelectric nanogenerators (TENG). The simplest design for a TENG consists of a capacitor comprising a single moving electrode. The conversion efficiency of vibration energy into electrical energy can, in principle, reach 100%. But to actually achieve this objective, it is necessary to optimize the parameters of the TENG, such as the dielectric constant and the thickness of the insulator, the load resistance, etc. In particular, the use of a switch which is actioned at optimal times within the TENG cycle is essential. Using numerical modeling and experimental design, we applied a methodology to find the TENG parameters which optimize the energy transfer efficiency (ETE) to almost 100% for any vibration frequency and amplitude. The rather simple design of a TENG is promising as an environment friendly device. It opens the doors for harvesting acoustic vibrations from the environment and to design effective protection against environmental noise.Keywords: vibrations, CS TENG, efficiency, design of experiments
Procedia PDF Downloads 901057 Development of Single Layer of WO3 on Large Spatial Resolution by Atomic Layer Deposition Technique
Authors: S. Zhuiykov, Zh. Hai, H. Xu, C. Xue
Abstract:
Unique and distinctive properties could be obtained on such two-dimensional (2D) semiconductor as tungsten trioxide (WO3) when the reduction from multi-layer to one fundamental layer thickness takes place. This transition without damaging single-layer on a large spatial resolution remained elusive until the atomic layer deposition (ALD) technique was utilized. Here we report the ALD-enabled atomic-layer-precision development of a single layer WO3 with thickness of 0.77±0.07 nm on a large spatial resolution by using (tBuN)2W(NMe2)2 as tungsten precursor and H2O as oxygen precursor, without affecting the underlying SiO2/Si substrate. Versatility of ALD is in tuning recipe in order to achieve the complete WO3 with desired number of WO3 layers including monolayer. Governed by self-limiting surface reactions, the ALD-enabled approach is versatile, scalable and applicable for a broader range of 2D semiconductors and various device applications.Keywords: Atomic Layer Deposition (ALD), tungsten oxide, WO₃, two-dimensional semiconductors, single fundamental layer
Procedia PDF Downloads 2421056 Experimental Research of Biogas Production by Using Sewage Sludge and Chicken Manure Bioloadings with Wood Biochar Additive
Authors: P. Baltrenas, D. Paliulis, V. Kolodynskij, D. Urbanas
Abstract:
Bioreactor; special device, which is used for biogas production from various organic material under anaerobic conditions. In this research, a batch bioreactor with a mechanical mixer was used for biogas production from sewage sludge and chicken manure bioloadings. The process of anaerobic digestion was mesophilic (35 °C). Produced biogas was stoted in a gasholder and the concentration of its components was measured with INCA 4000 biogas analyser. Also, a specific additive (pine wood biochar) was applied to prepare bioloadings. The application of wood biochar in bioloading increases the CH₄ concentration in the produced gas by 6-7%. The highest concentrations of CH₄ were found in biogas produced during the decomposition of sewage sludge bioloadings. The maximum CH₄ reached 77.4%. Studies have shown that the application of biochar in bioloadings also reduces average CO₂ and H₂S concentrations in biogas.Keywords: biochar, biogas, bioreactor, sewage sludge
Procedia PDF Downloads 1691055 Implementation of a Virtual Testbed for Secure IoT Firmware Update Using Blockchain
Authors: Tarun Chand, Michael Jurczyk
Abstract:
With the increasing need and popularity of IoT devices and how integrated they are becoming in our daily lives and industries, these devices make for a very lucrative target for malicious actors. And since these devices have such limited resources, the implementation of robust security features is a tradeoff to be made for the actual functionality the device was intended for. This makes them an easy target with high returns. Several frameworks for the secure firmware update of these devices have been recently proposed in the literature. They focus on methods such as blockchains and distributed file systems to secure firmware updates, but do not go into the details of the actual implementation of these frameworks and the lower-level interactions among these methods used. This work integrates some of these security measures into one overall framework and details the actual lower-level implementation of this framework in a virtual dockerized testbed running on AWS.Keywords: blockchain, Ethereum, Geth, IPFS, secure IoT-firmware update, virtual testbed development
Procedia PDF Downloads 671054 Carbon Aerogels with Tailored Porosity as Cathode in Li-Ion Capacitors
Authors: María Canal-Rodríguez, María Arnaiz, Natalia Rey-Raap, Ana Arenillas, Jon Ajuria
Abstract:
The constant demand of electrical energy, as well as the increase in environmental concern, lead to the necessity of investing in clean and eco-friendly energy sources that implies the development of enhanced energy storage devices. Li-ion batteries (LIBs) and Electrical double layer capacitors (EDLCs) are the most widespread energy systems. Batteries are able to storage high energy densities contrary to capacitors, which main strength is the high-power density supply and the long cycle life. The combination of both technologies gave rise to Li-ion capacitors (LICs), which offers all these advantages in a single device. This is achieved combining a capacitive, supercapacitor-like positive electrode with a faradaic, battery-like negative electrode. Due to the abundance and affordability, dual carbon-based LICs are nowadays the common technology. Normally, an Active Carbon (AC) is used as the EDLC like electrode, while graphite is the material commonly employed as anode. LICs are potential systems to be used in applications in which high energy and power densities are required, such us kinetic energy recovery systems. Although these devices are already in the market, some drawbacks like the limited power delivered by graphite or the energy limiting nature of AC must be solved to trigger their used. Focusing on the anode, one possibility could be to replace graphite with Hard Carbon (HC). The better rate capability of the latter increases the power performance of the device. Moreover, the disordered carbonaceous structure of HCs enables storage twice the theoretical capacity of graphite. With respect to the cathode, the ACs are characterized for their high volume of micropores, in which the charge is storage. Nevertheless, they normally do not show mesoporous, which are really important mainly at high C-rates as they act as transport channels for the ions to reach the micropores. Usually, the porosity of ACs cannot be tailored, as it strongly depends on the precursor employed to get the final carbon. Moreover, they are not characterized for having a high electrical conductivity, which is an important characteristic to get a good performance in energy storage applications. A possible candidate to substitute ACs are carbon aerogels (CAs). CAs are materials that combine a high porosity with great electrical conductivity, opposite characteristics in carbon materials. Furthermore, its porous properties can be tailored quite accurately according to with the requirements of the application. In the present study, CAs with controlled porosity were obtained from polymerization of resorcinol and formaldehyde by microwave heating. Varying the synthesis conditions, mainly the amount of precursors and pH of the precursor solution, carbons with different textural properties were obtained. The way the porous characteristics affect the performance of the cathode was studied by means of a half-cell configuration. The material with the best performance was evaluated as cathode in a LIC versus a hard carbon as anode. An analogous full LIC made by a high microporous commercial cathode was also assembled for comparison purposes.Keywords: li-ion capacitors, energy storage, tailored porosity, carbon aerogels
Procedia PDF Downloads 1671053 Global Direct Search Optimization of a Tuned Liquid Column Damper Subject to Stochastic Load
Authors: Mansour H. Alkmim, Adriano T. Fabro, Marcus V. G. De Morais
Abstract:
In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of an undamped primary system under white noise excitation. Finally, a numerical example considering a simplified wind turbine model is given to illustrate the efficacy of the TLCD. Results from the random vibration analysis are shown for four types of random excitation wind model where the response PSDs obtained showed good vibration attenuation.Keywords: generalized pattern search, parameter optimization, random vibration analysis, vibration suppression
Procedia PDF Downloads 2751052 Analysis of a Power Factor Correction Converter for Light Emitting Diode Driver Application
Authors: Edwina G. Rodrigues, S. J. Bindhu, A. V. Rajesh
Abstract:
This paper proposes a switched capacitor based driver circuit for high power light emitting diodes with a front end rectifier. LEDs are low-voltage light sources, requiring a constant DC voltage or current to operate optimally. LEDs, therefore, require a device that can convert incoming AC power to the proper DC voltage, and regulate the current flowing through the LED during operation. Proposed topology has a front end converter. It is an AC-DC rectifier that works on bridgeless boost topology which shapes the input current waveform. The front end converter is followed by a DC-DC converter which provides a constant DC voltage across the LEDs. A 12V AC input is given to the input of frontend converter which rectifies and boost the voltage to 24v DC and gives it to the DC-DC converter. The DC-DC converter converts the 24V DC and regulates this constant DC voltage across the LEDs.Keywords: bridgeless rectifier, power factor correction(PFC), SC converter, total harmonic distortion (THD)
Procedia PDF Downloads 8731051 Transient Stability Improvement in Multi-Machine System Using Power System Stabilizer (PSS) and Static Var Compensator (SVC)
Authors: Khoshnaw Khalid Hama Saleh, Ergun Ercelebi
Abstract:
Increasingly complex modern power systems require stability, especially for transient and small disturbances. Transient stability plays a major role in stability during fault and large disturbance. This paper compares a power system stabilizer (PSS) and static Var compensator (SVC) to improve damping oscillation and enhance transient stability. The effectiveness of a PSS connected to the exciter and/or governor in damping electromechanical oscillations of isolated synchronous generator was tested. The SVC device is a member of the shunt FACTS (flexible alternating current transmission system) family, utilized in power transmission systems. The designed model was tested with a multi-machine system consisting of four machines six bus, using MATLAB/SIMULINK software. The results obtained indicate that SVC solutions are better than PSS.Keywords: FACTS, MATLAB/SIMULINK, multi-machine system, PSS, SVC, transient stability
Procedia PDF Downloads 4541050 Mobile Learning in Teacher Education: A Review in Context of Developing Countries
Authors: Mehwish Raza
Abstract:
Mobile learning (m-learning) offers unique affordances to learners, setting them free of limitations posed by time and geographic space; thus becoming an affordable device for convenient distant learning. There is a plethora of research available on mobile learning projects planned, implemented and evaluated across disciplines in the context of developed countries, however, the potential of m-learning at different educational levels remain unexplored with little evidence of research carried out in developing countries. Despite the favorable technical infrastructure offered by cellular networks and boom in mobile subscriptions in the developing world, there is limited focus on utilizing m-learning for education and development purposes. The objective of this review is to unify findings from m-learning projects that have been implemented in developing countries such as Pakistan, Bangladesh, Philippines, India, and Tanzania for teachers’ in-service training. The purpose is to draw upon key characteristics of mobile learning that would be useful for future researchers to inform conceptualizations of mobile learning for developing countries.Keywords: design model, developing countries, key characteristics, mobile learning
Procedia PDF Downloads 4471049 Reconfigurable Efficient IIR Filter Design Using MAC Algorithm
Authors: Rajesh Mehra
Abstract:
In this paper an IIR filter has been designed and simulated on an FPGA. The implementation is based on MAC algorithm which uses multiply-and-accumulate operations IIR filter design implementation. Parallel Pipelined structure is used to implement the proposed IIR Filter taking optimal advantage of the look up table of the FPGA device. The designed filter has been synthesized on DSP slice based FPGA to perform multiplier function of MAC unit. The DSP slices are useful to enhance the speed performance. The developed IIR filter is designed and simulated with MATLAB and synthesized with Xilinx Synthesis Tool (XST), and implemented on Virtex 5 and Spartan 3 ADSP FPGA devices. The IIR filter implemented on Virtex 5 FPGA can operate at an estimated frequency of 81.5 MHz as compared to 40.5 MHz in case of Spartan 3 ADSP FPGA. The Virtex 5 based implementation also consumes less slices and slice flip flops of target FPGA in comparison to Spartan 3 ADSP based implementation to provide cost effective solution for signal processing applications.Keywords: butterworth, DSP, IIR, MAC, FPGA
Procedia PDF Downloads 3571048 Task Kicking Performance with Biomechanical Instrumentation
Authors: T. Hirata, M. G. Silva, L. M. Rosa
Abstract:
The balance ability during task kick in soccer is a determining factor in the execution of functional movements that require a high-performance motor coordination. The current experiment explored it during an instep soccer kick and functional task kicking. Their kicking performance was measured in terms of the sway characteristics using lateral and antero-posterior balance of the center of pressure (COP) for the supporting leg and the kinematic data, the supporting leg’s knee angle. The motion was realized with one-legged stance of five male indoor soccer players and using the trigger device ball controller. The results showed large balance in antero-posterior direction than in lateral direction. However, each player adopts a different way to kick the ball, and the media-lateral displacement of the COP showed no correlation with the balance skill.Keywords: kicking performance, center of pressure, one-legged stance, balance ability
Procedia PDF Downloads 6161047 Modeling the Transport of Charge Carriers in the Active Devices MESFET Based of GaInP by the Monte Carlo Method
Authors: N. Massoum, A. Guen. Bouazza, B. Bouazza, A. El Ouchdi
Abstract:
The progress of industry integrated circuits in recent years has been pushed by continuous miniaturization of transistors. With the reduction of dimensions of components at 0.1 micron and below, new physical effects come into play as the standard simulators of two dimensions (2D) do not consider. In fact the third dimension comes into play because the transverse and longitudinal dimensions of the components are of the same order of magnitude. To describe the operation of such components with greater fidelity, we must refine simulation tools and adapted to take into account these phenomena. After an analytical study of the static characteristics of the component, according to the different operating modes, a numerical simulation is performed of field-effect transistor with submicron gate MESFET GaInP. The influence of the dimensions of the gate length is studied. The results are used to determine the optimal geometric and physical parameters of the component for their specific applications and uses.Keywords: Monte Carlo simulation, transient electron transport, MESFET device, GaInP
Procedia PDF Downloads 4191046 Computational Fluid Dynamics Study on Water Soot Blower Direction in Tangentially Fired Pulverized-Coal Boiler
Authors: Teewin Plangsrinont, Wasawat Nakkiew
Abstract:
In this study, computational fluid dynamics (CFD) was utilized to simulate and predict the path of water from water soot blower through an ambient flow field in 300-megawatt tangentially burned pulverized coal boiler that utilizes a water soot blower as a cleaning device. To predict the position of the impact of water on the opposite side of the water soot blower under identical conditions, the nozzle size and water flow rate were fixed in this investigation. The simulation findings demonstrated a high degree of accuracy in predicting the direction of water flow to the boiler's water wall tube, which was validated by comparison to experimental data. Results show maximum deviation value of the water jet trajectory is 10.2 percent.Keywords: computational fluid dynamics, tangentially fired boiler, thermal power plant, water soot blower
Procedia PDF Downloads 2091045 Evaluation of Turbulence Modelling of Gas-Liquid Two-Phase Flow in a Venturi
Authors: Mengke Zhan, Cheng-Gang Xie, Jian-Jun Shu
Abstract:
A venturi flowmeter is a common device used in multiphase flow rate measurement in the upstream oil and gas industry. Having a robust computational model for multiphase flow in a venturi is desirable for understanding the gas-liquid and fluid-pipe interactions and predicting pressure and phase distributions under various flow conditions. A steady Eulerian-Eulerian framework is used to simulate upward gas-liquid flow in a vertical venturi. The simulation results are compared with experimental measurements of venturi differential pressure and chord-averaged gas holdup in the venturi throat section. The choice of turbulence model is nontrivial in the multiphase flow modelling in a venturi. The performance cross-comparison of the k-ϵ model, Reynolds stress model (RSM) and shear-stress transport (SST) k-ω turbulence model is made in the study. In terms of accuracy and computational cost, the SST k-ω turbulence model is observed to be the most efficient.Keywords: computational fluid dynamics (CFD), gas-liquid flow, turbulence modelling, venturi
Procedia PDF Downloads 1731044 Frequency Recognition Models for Steady State Visual Evoked Potential Based Brain Computer Interfaces (BCIs)
Authors: Zeki Oralhan, Mahmut Tokmakçı
Abstract:
SSVEP based brain computer interface (BCI) systems have been preferred, because of high information transfer rate (ITR) and practical use. ITR is the parameter of BCI overall performance. For high ITR value, one of specification BCI system is that has high accuracy. In this study, we investigated to recognize SSVEP with shorter time and lower error rate. In the experiment, there were 8 flickers on light crystal display (LCD). Participants gazed to flicker which had 12 Hz frequency and 50% duty cycle ratio on the LCD during 10 seconds. During the experiment, EEG signals were acquired via EEG device. The EEG data was filtered in preprocessing session. After that Canonical Correlation Analysis (CCA), Multiset CCA (MsetCCA), phase constrained CCA (PCCA), and Multiway CCA (MwayCCA) methods were applied on data. The highest average accuracy value was reached when MsetCCA was applied.Keywords: brain computer interface, canonical correlation analysis, human computer interaction, SSVEP
Procedia PDF Downloads 2661043 Utilizing Quantum Chemistry for Nanotechnology: Electron and Spin Movement in Molecular Devices
Authors: Mahsa Fathollahzadeh
Abstract:
The quick advancement of nanotechnology necessitates the creation of innovative theoretical approaches to elucidate complex experimental findings and forecast novel capabilities of nanodevices. Therefore, over the past ten years, a difficult task in quantum chemistry has been comprehending electron and spin transport in molecular devices. This thorough evaluation presents a comprehensive overview of current research and its status in the field of molecular electronics, emphasizing the theoretical applications to various device types and including a brief introduction to theoretical methods and their practical implementation plan. The subject matter includes a variety of molecular mechanisms like molecular cables, diodes, transistors, electrical and visual switches, nano detectors, magnetic valve gadgets, inverse electrical resistance gadgets, and electron tunneling exploration. The text discusses both the constraints of the method presented and the potential strategies to address them, with a total of 183 references.Keywords: chemistry, nanotechnology, quantum, molecule, spin
Procedia PDF Downloads 481042 An Augmented Reality Based Self-Learning Support System for Skills Training
Authors: Chinlun Lai, Yu-Mei Chang
Abstract:
In this paper, an augmented reality learning support system is proposed to replace the traditional teaching tool thus to help students improve their learning motivation, effectiveness, and efficiency. The system can not only reduce the exhaust of educational hardware and realistic material, but also provide an eco-friendly and self-learning practical environment in any time and anywhere with immediate practical experiences feedback. To achieve this, an interactive self-training methodology which containing step by step operation directions is designed using virtual 3D scenario and wearable device platforms. The course of nasogastric tube care of nursing skills is selected as the test example for self-learning and online test. From the experimental results, it is observed that the support system can not only increase the student’s learning interest but also improve the learning performance than the traditional teaching methods. Thus, it fulfills the strategy of learning by practice while reducing the related cost and effort significantly and is practical in various fields.Keywords: augmented reality technology, learning support system, self-learning, simulation learning method
Procedia PDF Downloads 167