Search results for: demand models
8841 Renewable Energy Integration in Cities of Developing Countries: The Case Study of Tema City, Ghana
Authors: Marriette Sakah, Christoph Kuhn, Samuel Gyamfi
Abstract:
Global electricity demand of households in 2005 is estimated to double by 2025 and nearly double again in 2030. The residential sector promises considerable demand growth through infrastructural and equipment investments, the majority of which is projected to occur in developing countries. This lays bare the urgency for enhanced efficiency in all energy systems combined with exploitation of local potential for renewable energy systems. This study explores options for reducing energy consumption, particularly in residential buildings and providing robust, decentralized and renewable energy supply for African cities. The potential of energy efficiency measures and the potential of harnessing local resources for renewable energy supply are quantitatively assessed. The scale of research specifically addresses the city level, which is regulated by local authorities. Local authorities can actively promote the transition to a renewable-based energy supply system by promoting energy efficiency and the use of alternative renewable fuels in existing buildings, and particularly in planning and development of new settlement areas through the use of incentives, regulations, and demonstration projects. They can also support a more sustainable development by shaping local land use and development patterns in such ways that reduce per capita energy consumption and are benign to the environment. The subject of the current case study, Tema, is Ghana´s main industrial hub, a port city and home to 77,000 families. Residential buildings in Tema consumed 112 GWh of electricity in 2013 or 1.45 MWh per household. If average household electricity demand were to decline at an annual rate of just 2 %, by 2035 Tema would consume only 134 GWh of electricity despite an expected increase in the number of households by 84 %. The work is based on a ground survey of the city’s residential sector. The results show that efficient technologies and decentralized renewable energy systems have great potential for meeting the rapidly growing energy demand of cities in developing countries.Keywords: energy efficiency, energy saving potential, renewable energy integration, residential buildings, urban Africa
Procedia PDF Downloads 2868840 Part of Geomatics Technology in the Capability to Implement an on Demand Transport in Oran Wilaya (the Northwestern of Algeria)
Authors: N. Brahmia
Abstract:
The growing needs of displacements led advanced countries in this field install new specific transport systems, able to palliate any deficiencies, especially when regular public transport does not adequately meet the requests of users. In this context, on-demand transport systems (ODT) are very efficient; they rely on techniques based on the location of trip generators which should be assured effectively with the use of operators responsible of the advance reservation, planning and organization, and studying the different ODT criteria. As the advanced countries in the field of transport, some developing countries are involved in the adaptation of the new technologies to reduce the deficit in their communication system. This communication presents the study of an ODT implementation in the west of Algeria, by developing the Geomatics side of the study. This part requires the use of specific systems such as Geographic Information System (GIS), Road Database Management System (RDBMS)… so we developed the process through an application in an environment of mobility by using the computer tools dedicated to the management of the entities related to the transport field.Keywords: geomatics, GIS, ODT, transport systems
Procedia PDF Downloads 6008839 Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils
Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha
Abstract:
Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.Keywords: soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil, geotechnical engineering
Procedia PDF Downloads 3388838 Data Poisoning Attacks on Federated Learning and Preventive Measures
Authors: Beulah Rani Inbanathan
Abstract:
In the present era, it is vivid from the numerous outcomes that data privacy is being compromised in various ways. Machine learning is one technology that uses the centralized server, and then data is given as input which is being analyzed by the algorithms present on this mentioned server, and hence outputs are predicted. However, each time the data must be sent by the user as the algorithm will analyze the input data in order to predict the output, which is prone to threats. The solution to overcome this issue is federated learning, where the models alone get updated while the data resides on the local machine and does not get exchanged with the other local models. Nevertheless, even on these local models, there are chances of data poisoning, and it is crystal clear from various experiments done by many people. This paper delves into many ways where data poisoning occurs and the many methods through which it is prevalent that data poisoning still exists. It includes the poisoning attacks on IoT devices, Edge devices, Autoregressive model, and also, on Industrial IoT systems and also, few points on how these could be evadible in order to protect our data which is personal, or sensitive, or harmful when exposed.Keywords: data poisoning, federated learning, Internet of Things, edge computing
Procedia PDF Downloads 878837 Optimizing Residential Housing Renovation Strategies at Territorial Scale: A Data Driven Approach and Insights from the French Context
Authors: Rit M., Girard R., Villot J., Thorel M.
Abstract:
In a scenario of extensive residential housing renovation, stakeholders need models that support decision-making through a deep understanding of the existing building stock and accurate energy demand simulations. To address this need, we have modified an optimization model using open data that enables the study of renovation strategies at both territorial and national scales. This approach provides (1) a definition of a strategy to simplify decision trees from theoretical combinations, (2) input to decision makers on real-world renovation constraints, (3) more reliable identification of energy-saving measures (changes in technology or behaviour), and (4) discrepancies between currently planned and actually achieved strategies. The main contribution of the studies described in this document is the geographic scale: all residential buildings in the areas of interest were modeled and simulated using national data (geometries and attributes). These buildings were then renovated, when necessary, in accordance with the environmental objectives, taking into account the constraints applicable to each territory (number of renovations per year) or at the national level (renovation of thermal deficiencies (Energy Performance Certificates F&G)). This differs from traditional approaches that focus only on a few buildings or archetypes. This model can also be used to analyze the evolution of a building stock as a whole, as it can take into account both the construction of new buildings and their demolition or sale. Using specific case studies of French territories, this paper highlights a significant discrepancy between the strategies currently advocated by decision-makers and those proposed by our optimization model. This discrepancy is particularly evident in critical metrics such as the relationship between the number of renovations per year and achievable climate targets or the financial support currently available to households and the remaining costs. In addition, users are free to seek optimizations for their building stock across a range of different metrics (e.g., financial, energy, environmental, or life cycle analysis). These results are a clear call to re-evaluate existing renovation strategies and take a more nuanced and customized approach. As the climate crisis moves inexorably forward, harnessing the potential of advanced technologies and data-driven methodologies is imperative.Keywords: residential housing renovation, MILP, energy demand simulations, data-driven methodology
Procedia PDF Downloads 688836 Market Segmentation and Conjoint Analysis for Apple Family Design
Authors: Abbas Al-Refaie, Nour Bata
Abstract:
A distributor of Apple products' experiences numerous difficulties in developing marketing strategies for new and existing mobile product entries that maximize customer satisfaction and the firm's profitability. This research, therefore, integrates market segmentation in platform-based product family design and conjoint analysis to identify iSystem combinations that increase customer satisfaction and business profits. First, the enhanced market segmentation grid is created. Then, the estimated demand model is formulated. Finally, the profit models are constructed then used to determine the ideal product family design that maximizes profit. Conjoint analysis is used to explore customer preferences with their satisfaction levels. A total of 200 surveys are collected about customer preferences. Then, simulation is used to determine the importance values for each attribute. Finally, sensitivity analysis is conducted to determine the product family design that maximizes both objectives. In conclusion, the results of this research shall provide great support to Apple distributors in determining the best marketing strategies that enhance their market share.Keywords: market segmentation, conjoint analysis, market strategies, optimization
Procedia PDF Downloads 3728835 Lean Impact Analysis Assessment Models: Development of a Lean Measurement Structural Model
Authors: Catherine Maware, Olufemi Adetunji
Abstract:
The paper is aimed at developing a model to measure the impact of Lean manufacturing deployment on organizational performance. The model will help industry practitioners to assess the impact of implementing Lean constructs on organizational performance. It will also harmonize the measurement models of Lean performance with the house of Lean that seems to have become the industry standard. The sheer number of measurement models for impact assessment of Lean implementation makes it difficult for new adopters to select an appropriate assessment model or deployment methodology. A literature review is conducted to classify the Lean performance model. Pareto analysis is used to select the Lean constructs for the development of the model. The model is further formalized through the use of Structural Equation Modeling (SEM) in defining the underlying latent structure of a Lean system. An impact assessment measurement model developed can be used to measure Lean performance and can be adopted by different industries.Keywords: impact measurement model, lean bundles, lean manufacturing, organizational performance
Procedia PDF Downloads 4858834 Spatial Time Series Models for Rice and Cassava Yields Based on Bayesian Linear Mixed Models
Authors: Panudet Saengseedam, Nanthachai Kantanantha
Abstract:
This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.Keywords: Bayesian method, linear mixed model, multivariate conditional autoregressive model, spatial time series
Procedia PDF Downloads 3958833 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset
Authors: Gabriele Borg, Alexei Debono, Charlie Abela
Abstract:
There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.Keywords: graph neural networks, traffic management, big data, mobile data patterns
Procedia PDF Downloads 1318832 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals
Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer
Abstract:
Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).Keywords: diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography (VOG)
Procedia PDF Downloads 2608831 Oryzanol Recovery from Rice Bran Oil: Adsorption Equilibrium Models Through Kinetics Data Approachments
Authors: A.D. Susanti, W. B. Sediawan, S.K. Wirawan, Budhijanto, Ritmaleni
Abstract:
Oryzanol content in rice bran oil (RBO) naturally has high antioxidant activity. Its reviewed has several health properties and high interested in pharmacy, cosmetics, and nutrition’s. Because of the low concentration of oryzanol in crude RBO (0.9-2.9%) then its need to be further processed for practical usage, such as via adsorption process. In this study, investigation and adjustment of adsorption equilibrium models were conducted through the kinetic data approachments. Mathematical modeling on kinetics of batch adsorption of oryzanol separation from RBO has been set-up and then applied for equilibrium results. The size of adsorbent particles used in this case are usually relatively small then the concentration in the adsorbent is assumed to be not different. Hence, the adsorption rate is controlled by the rate of oryzanol mass transfer from the bulk fluid of RBO to the surface of silica gel. In this approachments, the rate of mass transfer is assumed to be proportional to the concentration deviation from the equilibrium state. The equilibrium models applied were Langmuir, coefficient distribution, and Freundlich with the values of the parameters obtained from equilibrium results. It turned out that the models set-up can quantitatively describe the experimental kinetics data and the adjustment of the values of equilibrium isotherm parameters significantly improves the accuracy of the model. And then the value of mass transfer coefficient per unit adsorbent mass (kca) is obtained by curve fitting.Keywords: adsorption equilibrium, adsorption kinetics, oryzanol, rice bran oil
Procedia PDF Downloads 3238830 Vibration of a Beam on an Elastic Foundation Using the Variational Iteration Method
Authors: Desmond Adair, Kairat Ismailov, Martin Jaeger
Abstract:
Modelling of Timoshenko beams on elastic foundations has been widely used in the analysis of buildings, geotechnical problems, and, railway and aerospace structures. For the elastic foundation, the most widely used models are one-parameter mechanical models or two-parameter models to include continuity and cohesion of typical foundations, with the two-parameter usually considered the better of the two. Knowledge of free vibration characteristics of beams on an elastic foundation is considered necessary for optimal design solutions in many engineering applications, and in this work, the efficient and accurate variational iteration method is developed and used to calculate natural frequencies of a Timoshenko beam on a two-parameter foundation. The variational iteration method is a technique capable of dealing with some linear and non-linear problems in an easy and efficient way. The calculations are compared with those using a finite-element method and other analytical solutions, and it is shown that the results are accurate and are obtained efficiently. It is found that the effect of the presence of the two-parameter foundation is to increase the beam’s natural frequencies and this is thought to be because of the shear-layer stiffness, which has an effect on the elastic stiffness. By setting the two-parameter model’s stiffness parameter to zero, it is possible to obtain a one-parameter foundation model, and so, comparison between the two foundation models is also made.Keywords: Timoshenko beam, variational iteration method, two-parameter elastic foundation model
Procedia PDF Downloads 1948829 Positive Bias and Length Bias in Deep Neural Networks for Premises Selection
Authors: Jiaqi Huang, Yuheng Wang
Abstract:
Premises selection, the task of selecting a set of axioms for proving a given conjecture, is a major bottleneck in automated theorem proving. An array of deep-learning-based methods has been established for premises selection, but a perfect performance remains challenging. Our study examines the inaccuracy of deep neural networks in premises selection. Through training network models using encoded conjecture and axiom pairs from the Mizar Mathematical Library, two potential biases are found: the network models classify more premises as necessary than unnecessary, referred to as the ‘positive bias’, and the network models perform better in proving conjectures that paired with more axioms, referred to as ‘length bias’. The ‘positive bias’ and ‘length bias’ discovered could inform the limitation of existing deep neural networks.Keywords: automated theorem proving, premises selection, deep learning, interpreting deep learning
Procedia PDF Downloads 1838828 Modified Clusterwise Regression for Pavement Management
Authors: Mukesh Khadka, Alexander Paz, Hanns de la Fuente-Mella
Abstract:
Typically, pavement performance models are developed in two steps: (i) pavement segments with similar characteristics are grouped together to form a cluster, and (ii) the corresponding performance models are developed using statistical techniques. A challenge is to select the characteristics that define clusters and the segments associated with them. If inappropriate characteristics are used, clusters may include homogeneous segments with different performance behavior or heterogeneous segments with similar performance behavior. Prediction accuracy of performance models can be improved by grouping the pavement segments into more uniform clusters by including both characteristics and a performance measure. This grouping is not always possible due to limited information. It is impractical to include all the potential significant factors because some of them are potentially unobserved or difficult to measure. Historical performance of pavement segments could be used as a proxy to incorporate the effect of the missing potential significant factors in clustering process. The current state-of-the-art proposes Clusterwise Linear Regression (CLR) to determine the pavement clusters and the associated performance models simultaneously. CLR incorporates the effect of significant factors as well as a performance measure. In this study, a mathematical program was formulated for CLR models including multiple explanatory variables. Pavement data collected recently over the entire state of Nevada were used. International Roughness Index (IRI) was used as a pavement performance measure because it serves as a unified standard that is widely accepted for evaluating pavement performance, especially in terms of riding quality. Results illustrate the advantage of the using CLR. Previous studies have used CLR along with experimental data. This study uses actual field data collected across a variety of environmental, traffic, design, and construction and maintenance conditions.Keywords: clusterwise regression, pavement management system, performance model, optimization
Procedia PDF Downloads 2528827 Using the Bootstrap for Problems Statistics
Authors: Brahim Boukabcha, Amar Rebbouh
Abstract:
The bootstrap method based on the idea of exploiting all the information provided by the initial sample, allows us to study the properties of estimators. In this article we will present a theoretical study on the different methods of bootstrapping and using the technique of re-sampling in statistics inference to calculate the standard error of means of an estimator and determining a confidence interval for an estimated parameter. We apply these methods tested in the regression models and Pareto model, giving the best approximations.Keywords: bootstrap, error standard, bias, jackknife, mean, median, variance, confidence interval, regression models
Procedia PDF Downloads 3818826 Framework for Developing Change Team to Maximize Change Initiative Success
Authors: Mohammad Z. Ansari, Lisa Brodie, Marilyn Goh
Abstract:
Change facilitators are individuals who utilize change philosophy to make a positive change to organizations. The application of change facilitators can be seen in various change models; Lewin, Lippitt, etc. The facilitators within numerous change models are considered as internal/external consultants. Whilst most of the scholarly paper considers change facilitation as a consensus attempt to improve organization, there is a lack of a framework that develops both the organization and the change facilitator creating a self-sustaining change environment. This research paper introduces the development of the framework for change Leaders, Planners, and Executers (LPE), aiming at various organizational levels (Process, Departmental, and Organisational). The LPE framework is derived by exploring interrelated characteristics between facilitator(s) and the organization through qualitative research for understanding change management techniques and facilitator(s) behavioral aspect from existing Change Management models and Organisation behavior works of literature. The introduced framework assists in highlighting and identify the most appropriate change team to successfully deliver the change initiative within any organization (s).Keywords: change initiative, LPE framework, change facilitator(s), sustainable change
Procedia PDF Downloads 1968825 3D Building Model Utilizing Airborne LiDAR Dataset and Terrestrial Photographic Images
Authors: J. Jasmee, I. Roslina, A. Mohammed Yaziz & A.H Juazer Rizal
Abstract:
The need of an effective building information collection method is vital to support a diversity of land development activities. At present, advances in remote sensing such as airborne LiDAR (Light Detection and Ranging) is an established technology for building information collection, location, and elevation of the reflecting laser points towards the construction of 3D building models. In this study, LiDAR datasets and terrestrial photographic images of buildings towards the construction of 3D building models is explored. It is found that, the quantitative accuracy of the constructed 3D building model, namely in the horizontal and vertical components were ± 0.31m (RMSEx,y) and ± 0.145m (RMSEz) respectively. The accuracies were computed based on sixty nine (69) horizontal and twenty (20) vertical surveyed points. As for the qualitative assessment, it is shown that the appearance of the 3D building model is adequate to support the requirements of LOD3 presentation based on the OGC (Open Geospatial Consortium) standard CityGML.Keywords: LiDAR datasets, DSM, DTM, 3D building models
Procedia PDF Downloads 3218824 Improving University Operations with Data Mining: Predicting Student Performance
Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević
Abstract:
The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.Keywords: data mining, knowledge discovery in databases, prediction models, student success
Procedia PDF Downloads 4078823 Investigating the Effectiveness of Multilingual NLP Models for Sentiment Analysis
Authors: Othmane Touri, Sanaa El Filali, El Habib Benlahmar
Abstract:
Natural Language Processing (NLP) has gained significant attention lately. It has proved its ability to analyze and extract insights from unstructured text data in various languages. It is found that one of the most popular NLP applications is sentiment analysis which aims to identify the sentiment expressed in a piece of text, such as positive, negative, or neutral, in multiple languages. While there are several multilingual NLP models available for sentiment analysis, there is a need to investigate their effectiveness in different contexts and applications. In this study, we aim to investigate the effectiveness of different multilingual NLP models for sentiment analysis on a dataset of online product reviews in multiple languages. The performance of several NLP models, including Google Cloud Natural Language API, Microsoft Azure Cognitive Services, Amazon Comprehend, Stanford CoreNLP, spaCy, and Hugging Face Transformers are being compared. The models based on several metrics, including accuracy, precision, recall, and F1 score, are being evaluated and compared to their performance across different categories of product reviews. In order to run the study, preprocessing of the dataset has been performed by cleaning and tokenizing the text data in multiple languages. Then training and testing each model has been applied using a cross-validation approach where randomly dividing the dataset into training and testing sets and repeating the process multiple times has been used. A grid search approach to optimize the hyperparameters of each model and select the best-performing model for each category of product reviews and language has been applied. The findings of this study provide insights into the effectiveness of different multilingual NLP models for Multilingual Sentiment Analysis and their suitability for different languages and applications. The strengths and limitations of each model were identified, and recommendations for selecting the most performant model based on the specific requirements of a project were provided. This study contributes to the advancement of research methods in multilingual NLP and provides a practical guide for researchers and practitioners in the field.Keywords: NLP, multilingual, sentiment analysis, texts
Procedia PDF Downloads 1058822 Welfare Dynamics and Food Prices' Changes: Evidence from Landholding Groups in Rural Pakistan
Authors: Lubna Naz, Munir Ahmad, G. M. Arif
Abstract:
This study analyzes static and dynamic welfare impacts of food price changes for various landholding groups in Pakistan. The study uses three classifications of land ownership, landless, small landowners and large landowners, for analysis. The study uses Panel Survey, Pakistan Rural Household Survey (PRHS) of Pakistan Institute of Development Economics Islamabad, of rural households from two largest provinces (Sindh and Punjab) of Pakistan. The study uses all three waves (2001, 2004 and 2010) of PRHS. This research work makes three important contributions in literature. First, this study uses Quadratic Almost Ideal Demand System (QUAIDS) to estimate demand functions for eight food groups-cereals, meat, milk and milk products, vegetables, cooking oil, pulses and other food. The study estimates food demand functions with Nonlinear Seemingly Unrelated (NLSUR), and employs Lagrange Multiplier and test on the coefficient of squared expenditure term to determine inclusion of squared expenditure term. Test results support the inclusion of squared expenditure term in the food demand model for each of landholding groups (landless, small landowners and large landowners). This study tests for endogeneity and uses control function for its correction. The problem of observed zero expenditure is dealt with a two-step procedure. Second, it creates low price and high price periods, based on literature review. It uses elasticity coefficients from QUAIDS to analyze static and dynamic welfare effects (first and second order Tylor approximation of expenditure function is used) of food price changes across periods. The study estimates compensation variation (CV), money metric loss from food price changes, for landless, small and large landowners. Third, this study compares the findings on welfare implications of food price changes based on QUAIDS with the earlier research in Pakistan, which used other specification of the demand system. The findings indicate that dynamic welfare impacts of food price changes are lower as compared to static welfare impacts for all landholding groups. The static and dynamic welfare impacts of food price changes are highest for landless. The study suggests that government should extend social security nets to landless poor and categorically to vulnerable landless (without livestock) to redress the short-term impact of food price increase. In addition, the government should stabilize food prices and particularly cereal prices in the long- run.Keywords: QUAIDS, Lagrange multiplier, NLSUR, and Tylor approximation
Procedia PDF Downloads 3648821 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community
Authors: Mohamed Ghorab
Abstract:
Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.Keywords: distributed energy resources, network energy system, optimization, microgeneration system
Procedia PDF Downloads 1908820 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format
Authors: Maryam Fallahpoor, Biswajeet Pradhan
Abstract:
Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format
Procedia PDF Downloads 888819 Drying Kinects of Soybean Seeds
Authors: Amanda Rithieli Pereira Dos Santos, Rute Quelvia De Faria, Álvaro De Oliveira Cardoso, Anderson Rodrigo Da Silva, Érica Leão Fernandes Araújo
Abstract:
The study of the kinetics of drying has great importance for the mathematical modeling, allowing to know about the processes of transference of heat and mass between the products and to adjust dryers managing new technologies for these processes. The present work had the objective of studying the kinetics of drying of soybean seeds and adjusting different statistical models to the experimental data varying cultivar and temperature. Soybean seeds were pre-dried in a natural environment in order to reduce and homogenize the water content to the level of 14% (b.s.). Then, drying was carried out in a forced air circulation oven at controlled temperatures of 38, 43, 48, 53 and 58 ± 1 ° C, using two soybean cultivars, BRS 8780 and Sambaíba, until reaching a hygroscopic equilibrium. The experimental design was completely randomized in factorial 5 x 2 (temperature x cultivar) with 3 replicates. To the experimental data were adjusted eleven statistical models used to explain the drying process of agricultural products. Regression analysis was performed using the least squares Gauss-Newton algorithm to estimate the parameters. The degree of adjustment was evaluated from the analysis of the coefficient of determination (R²), the adjusted coefficient of determination (R² Aj.) And the standard error (S.E). The models that best represent the drying kinetics of soybean seeds are those of Midilli and Logarítmico.Keywords: curve of drying seeds, Glycine max L., moisture ratio, statistical models
Procedia PDF Downloads 6288818 Non-Adiabatic Silica Microfibre Sensor for BOD/COD Ratio Measurement
Authors: S. S. Chong, A. R. Abdul Aziz, S. W. Harun, H. Arof
Abstract:
A miniaturized non-adiabatic silica microfiber is proposed for biological oxygen demand (BOD) ratio chemical oxygen demand (COD) sensing for the first time. BOD and COD are two main parameters to justify quality of wastewater. A ratio, BOD:COD can usually be established between the two analytical methods once COD and BOD value has been gathered. This ratio plays a vital role to determine appropriate strategy in wastewater treatment. A non-adiabatic microfiber sensor was formed by tapering the SMF to generate evanescent field where sensitive to perturbation of sensing medium. Because difference ratio BOD and COD contain in solution, this may induced changes of effective refractive index between microfiber and sensing medium. Attenuation wavelength shift to right with 0.5 nm and 3.5 nm while BOD:COD equal to 0.09 and 0.18 respectively. Significance difference wavelength shift may relate with the biodegradability of analyte. This proposed sensor is compact, reliable and feasible to determine the BOD:COD. Further research and investigation should be proceeded to enhance sensitivity and precision of the sensor for several of wastewater online monitoring.Keywords: non-adiabatic fiber sensor, environmental sensing, biodegradability, evanescent field
Procedia PDF Downloads 6618817 Infilling Strategies for Surrogate Model Based Multi-disciplinary Analysis and Applications to Velocity Prediction Programs
Authors: Malo Pocheau-Lesteven, Olivier Le Maître
Abstract:
Engineering and optimisation of complex systems is often achieved through multi-disciplinary analysis of the system, where each subsystem is modeled and interacts with other subsystems to model the complete system. The coherence of the output of the different sub-systems is achieved through the use of compatibility constraints, which enforce the coupling between the different subsystems. Due to the complexity of some sub-systems and the computational cost of evaluating their respective models, it is often necessary to build surrogate models of these subsystems to allow repeated evaluation these subsystems at a relatively low computational cost. In this paper, gaussian processes are used, as their probabilistic nature is leveraged to evaluate the likelihood of satisfying the compatibility constraints. This paper presents infilling strategies to build accurate surrogate models of the subsystems in areas where they are likely to meet the compatibility constraint. It is shown that these infilling strategies can reduce the computational cost of building surrogate models for a given level of accuracy. An application of these methods to velocity prediction programs used in offshore racing naval architecture further demonstrates these method's applicability in a real engineering context. Also, some examples of the application of uncertainty quantification to field of naval architecture are presented.Keywords: infilling strategy, gaussian process, multi disciplinary analysis, velocity prediction program
Procedia PDF Downloads 1578816 Legal Considerations in Fashion Modeling: Protecting Models' Rights and Ensuring Ethical Practices
Authors: Fatemeh Noori
Abstract:
The fashion industry is a dynamic and ever-evolving realm that continuously shapes societal perceptions of beauty and style. Within this industry, fashion modeling plays a crucial role, acting as the visual representation of brands and designers. However, behind the glamorous façade lies a complex web of legal considerations that govern the rights, responsibilities, and ethical practices within the field. This paper aims to explore the legal landscape surrounding fashion modeling, shedding light on key issues such as contract law, intellectual property, labor rights, and the increasing importance of ethical considerations in the industry. Fashion modeling involves the collaboration of various stakeholders, including models, designers, agencies, and photographers. To ensure a fair and transparent working environment, it is imperative to establish a comprehensive legal framework that addresses the rights and obligations of each party involved. One of the primary legal considerations in fashion modeling is the contractual relationship between models and agencies. Contracts define the terms of engagement, including payment, working conditions, and the scope of services. This section will delve into the essential elements of modeling contracts, the negotiation process, and the importance of clarity to avoid disputes. Models are not just individuals showcasing clothing; they are integral to the creation and dissemination of artistic and commercial content. Intellectual property rights, including image rights and the use of a model's likeness, are critical aspects of the legal landscape. This section will explore the protection of models' image rights, the use of their likeness in advertising, and the potential for unauthorized use. Models, like any other professionals, are entitled to fair and ethical treatment. This section will address issues such as working conditions, hours, and the responsibility of agencies and designers to prioritize the well-being of models. Additionally, it will explore the global movement toward inclusivity, diversity, and the promotion of positive body image within the industry. The fashion industry has faced scrutiny for perpetuating harmful standards of beauty and fostering a culture of exploitation. This section will discuss the ethical responsibilities of all stakeholders, including the promotion of diversity, the prevention of exploitation, and the role of models as influencers for positive change. In conclusion, the legal considerations in fashion modeling are multifaceted, requiring a comprehensive approach to protect the rights of models and ensure ethical practices within the industry. By understanding and addressing these legal aspects, the fashion industry can create a more transparent, fair, and inclusive environment for all stakeholders involved in the art of modeling.Keywords: fashion modeling contracts, image rights in modeling, labor rights for models, ethical practices in fashion, diversity and inclusivity in modeling
Procedia PDF Downloads 778815 A Stepwise Approach to Automate the Search for Optimal Parameters in Seasonal ARIMA Models
Authors: Manisha Mukherjee, Diptarka Saha
Abstract:
Reliable forecasts of univariate time series data are often necessary for several contexts. ARIMA models are quite popular among practitioners in this regard. Hence, choosing correct parameter values for ARIMA is a challenging yet imperative task. Thus, a stepwise algorithm is introduced to provide automatic and robust estimates for parameters (p; d; q)(P; D; Q) used in seasonal ARIMA models. This process is focused on improvising the overall quality of the estimates, and it alleviates the problems induced due to the unidimensional nature of the methods that are currently used such as auto.arima. The fast and automated search of parameter space also ensures reliable estimates of the parameters that possess several desirable qualities, consequently, resulting in higher test accuracy especially in the cases of noisy data. After vigorous testing on real as well as simulated data, the algorithm doesn’t only perform better than current state-of-the-art methods, it also completely obviates the need for human intervention due to its automated nature.Keywords: time series, ARIMA, auto.arima, ARIMA parameters, forecast, R function
Procedia PDF Downloads 1668814 The Strategies to Develop Post-Disaster Multi-Mode Transportation System from the Perspective of Traffic Resilience
Authors: Yuxiao Jiang, Lingjun Meng, Mengyu Zhan, Lichunyi Zhang, Yingxia Yun
Abstract:
On August 8th of 2015, a serious explosion occurred in Binhai New Area of Tianjin. This explosion led to the suspension of Tianjin-Binhai Light Rail Line 9 which was an important transportation mean connecting the old and new urban areas and the suspension causes inconvenience to commuters traveling from Tianjin to Binhai or Binhai to Tianjin and residents living by Line 9. On this regard, this paper intends to give suggestions on how to develop multi-mode transportation system rapidly and effectively after a disaster and tackle with the problems in terms of transportation infrastructure facilities. The paper proposes the idea of traffic resilience which refers to the city’s ability to restore its transportation system and reduce risks when the transportation system is destroyed by a disaster. By doing questionnaire research, on the spot study and collecting data from the internet, a GIS model is established so as to analyze the alternative traffic means used by different types of residents and study the transportation supply and demand. The result shows that along the Line 9, there is a larger demand for alternative traffic means in the place which is nearer to the downtown area. Also, the distribution of bus stations is more reasonable in the place nearer to downtown area, however, the traffic speed in the area is slower. Based on traffic resilience, the paper raises strategies to develop post-disaster multi-mode transportation system such as establishing traffic management mechanism timely and effectively, building multi-mode traffic networks, improving intelligent traffic systems and so on.Keywords: traffic resilience, multi-mode transportation system, public traffic, transportation demand
Procedia PDF Downloads 3488813 A Literature Review on Development of a Forecast Supported Approach for the Continuous Pre-Planning of Required Transport Capacity for the Design of Sustainable Transport Chains
Authors: Georg Brunnthaller, Sandra Stein, Wilfried Sihn
Abstract:
Logistics service providers are facing increasing volatility concerning future transport demand. Short-term planning horizons and planning uncertainties lead to reduced capacity utilisation and increasing empty mileage. To overcome these challenges, a model is proposed to continuously pre-plan future transport capacity in order to redesign and adjust the intermodal fleet accordingly. It is expected that the model will enable logistics service providers to organise more economically and ecologically sustainable transport chains in a more flexible way. To further describe such planning aspects, this paper gives a structured literature review on transport planning problems. The focus is on strategic and tactical planning levels, comprising relevant fleet-sizing-, network-design- and choice-of-carriers-problems. Models and their developed solution techniques are presented and the literature review is concluded with an outlook to our future research objectivesKeywords: choice of transport mode, fleet-sizing, freight transport planning, multimodal, review, service network design
Procedia PDF Downloads 3648812 MCDM Spectrum Handover Models for Cognitive Wireless Networks
Authors: Cesar Hernández, Diego Giral, Fernando Santa
Abstract:
The spectral handoff is important in cognitive wireless networks to ensure an adequate quality of service and performance for secondary user communications. This work proposes a benchmarking of performance of the three spectrum handoff models: VIKOR, SAW and MEW. Four evaluation metrics are used. These metrics are, accumulative average of failed handoffs, accumulative average of handoffs performed, accumulative average of transmission bandwidth and, accumulative average of the transmission delay. As a difference with related work, the performance of the three spectrum handoff models was validated with captured data of spectral occupancy in experiments realized at the GSM frequency band (824 MHz-849 MHz). These data represent the actual behavior of the licensed users for this wireless frequency band. The results of the comparative show that VIKOR Algorithm provides 15.8% performance improvement compared to a SAW Algorithm and, 12.1% better than the MEW Algorithm.Keywords: cognitive radio, decision making, MEW, SAW, spectrum handoff, VIKOR
Procedia PDF Downloads 438