Search results for: boost rectifier operation
2422 Round Addition DFA on Lightweight Block Ciphers with On-The-Fly Key Schedule
Authors: Hideki Yoshikawa, Masahiro Kaminaga, Arimitsu Shikoda, Toshinori Suzuki
Abstract:
Round addition differential fault analysis (DFA) using operation bypassing for lightweight block ciphers with on-the-fly key schedule is presented. For 64-bit KLEIN and 64-bit LED, it is shown that only a pair of correct ciphertext and faulty ciphertext can derive the secret master key. For PRESENT, one correct ciphertext and two faulty ciphertexts are required to reconstruct the secret key.Keywords: differential fault analysis (DFA), round addition, block cipher, on-the-fly key schedule
Procedia PDF Downloads 7032421 Consideration of Uncertainty in Engineering
Authors: A. Mohammadi, M. Moghimi, S. Mohammadi
Abstract:
Engineers need computational methods which could provide solutions less sensitive to the environmental effects, so the techniques should be used which take the uncertainty to account to control and minimize the risk associated with design and operation. In order to consider uncertainty in engineering problem, the optimization problem should be solved for a suitable range of the each uncertain input variable instead of just one estimated point. Using deterministic optimization problem, a large computational burden is required to consider every possible and probable combination of uncertain input variables. Several methods have been reported in the literature to deal with problems under uncertainty. In this paper, different methods presented and analyzed.Keywords: uncertainty, Monte Carlo simulated, stochastic programming, scenario method
Procedia PDF Downloads 4142420 Architecture - Performance Relationship in GPU Computing - Composite Process Flow Modeling and Simulations
Authors: Ram Mohan, Richard Haney, Ajit Kelkar
Abstract:
Current developments in computing have shown the advantage of using one or more Graphic Processing Units (GPU) to boost the performance of many computationally intensive applications but there are still limits to these GPU-enhanced systems. The major factors that contribute to the limitations of GPU(s) for High Performance Computing (HPC) can be categorized as hardware and software oriented in nature. Understanding how these factors affect performance is essential to develop efficient and robust applications codes that employ one or more GPU devices as powerful co-processors for HPC computational modeling. This research and technical presentation will focus on the analysis and understanding of the intrinsic interrelationship of both hardware and software categories on computational performance for single and multiple GPU-enhanced systems using a computationally intensive application that is representative of a large portion of challenges confronting modern HPC. The representative application uses unstructured finite element computations for transient composite resin infusion process flow modeling as the computational core, characteristics and results of which reflect many other HPC applications via the sparse matrix system used for the solution of linear system of equations. This work describes these various software and hardware factors and how they interact to affect performance of computationally intensive applications enabling more efficient development and porting of High Performance Computing applications that includes current, legacy, and future large scale computational modeling applications in various engineering and scientific disciplines.Keywords: graphical processing unit, software development and engineering, performance analysis, system architecture and software performance
Procedia PDF Downloads 3632419 Protection of Patients and Staff in External Beam Radiotherapy Using Linac in Kenya
Authors: Calvince Okome Odeny
Abstract:
There is a current action to increase radiotherapy services in Kenya. The National government of Kenya, in collaboration with the county governments, has embarked on building radiotherapy centers in all 47 regions of the country. As these new centers are established in Kenya, it has to be ensured that minimum radiation safety standards are in place prior to operation. For full implementation of this, it is imperative that more Research and training for regulators are done on radiation protection, and safety and national regulatory infrastructure is geared towards ensuring radiation protection and safety in all aspects of the use of external radiotherapy practices. The present work aims at reviewing the level of protection and safety for patients and staff during external beam radiotherapy using Linac in Kenya and provides relevant guidance to improve protection and safety. A retrospective evaluation was done to verify whether those occupationally exposed workers and patients are adequately protected from the harmful effect of radiation exposure during the treatment procedures using Linac. The project was experimental Research, also including an analysis of resource documents obtained from the literature and international organizations. The critical findings of the work revealed that the key elements of protection of occupationally exposed workers and patients include a comprehensive quality Management system governing all planned activities from siting, safety, and design of the Facility, construction, acceptance testing, commissioning, operation, and decommissioning of the Facility; Government empowering the Regulatory Authority to license Medical Linear facilities and to enforce the applicable regulations to ensure adequate protection; A comprehensive Radiation Protection and Safety program must be established to ensure adequate safety and protection of workers and patients during treatment planning and treatment delivery of patients and categories of staff associated with the Facility must be well educated and trained to perform professionally with a commitment to sound safety culture. Relevant recommendations from the findings are shared with the Medical Linear Accelerator facilities and the regulatory authority to provide guidance and continuous improvement of protection and safety to improve regulatory oversight.Keywords: oncology, radiotherapy, protection, staff
Procedia PDF Downloads 752418 Factors Influencing Household Expenditure Patterns on Cereal Grains in Nasarawa State, Nigeria
Authors: E. A. Ojoko, G. B. Umbugadu
Abstract:
This study aims at describing the expenditure pattern of households on millet, maize and sorghum across income groups in Nasarawa State. A multi-stage sampling technique was used to select a sample size of 316 respondents for the study. The Almost Ideal Demand System (AIDS) model was adopted in this study. Results from the study shows that the average household size was five persons with dependency ratio of 52 %, which plays an important role on the household’s expenditure pattern by increasing the household budget share. On the average 82 % were male headed households with an average age of 49 years and 13 years of formal education. Results on expenditure share show that maize has the highest expenditure share of 38 % across the three income groups and that most of the price effects are significantly different from zero at 5 % significant level. This shows that the low price of maize increased its demand as compared to other cereals. Household size and age of household members are major factors affecting the demand for cereals in the study. This agrees with the fact that increased household population (size) will bring about increase consumption. The results on factors influencing preferences for cereal grains reveals that cooking quality and appearance (65.7 %) were the most important factors affecting the demand for maize in the study area. This study recommends that cereal crop production should be prioritized in government policies and farming activities that help to boost food security and alleviate poverty should be subsidized.Keywords: expenditure pattern, AIDS model, budget share, price cereal grains and consumption
Procedia PDF Downloads 1952417 Self-Tuning Power System Stabilizer Based on Recursive Least Square Identification and Linear Quadratic Regulator
Authors: J. Ritonja
Abstract:
Available commercial applications of power system stabilizers assure optimal damping of synchronous generator’s oscillations only in a small part of operating range. Parameters of the power system stabilizer are usually tuned for the selected operating point. Extensive variations of the synchronous generator’s operation result in changed dynamic characteristics. This is the reason that the power system stabilizer tuned for the nominal operating point does not satisfy preferred damping in the overall operation area. The small-signal stability and the transient stability of the synchronous generators have represented an attractive problem for testing different concepts of the modern control theory. Of all the methods, the adaptive control has proved to be the most suitable for the design of the power system stabilizers. The adaptive control has been used in order to assure the optimal damping through the entire synchronous generator’s operating range. The use of the adaptive control is possible because the loading variations and consequently the variations of the synchronous generator’s dynamic characteristics are, in most cases, essentially slower than the adaptation mechanism. The paper shows the development and the application of the self-tuning power system stabilizer based on recursive least square identification method and linear quadratic regulator. Identification method is used to calculate the parameters of the Heffron-Phillips model of the synchronous generator. On the basis of the calculated parameters of the synchronous generator’s mathematical model, the synthesis of the linear quadratic regulator is carried-out. The identification and the synthesis are implemented on-line. In this way, the self-tuning power system stabilizer adapts to the different operating conditions. A purpose of this paper is to contribute to development of the more effective power system stabilizers, which would replace currently used linear stabilizers. The presented self-tuning power system stabilizer makes the tuning of the controller parameters easier and assures damping improvement in the complete operating range. The results of simulations and experiments show essential improvement of the synchronous generator’s damping and power system stability.Keywords: adaptive control, linear quadratic regulator, power system stabilizer, recursive least square identification
Procedia PDF Downloads 2472416 Technique for Online Condition Monitoring of Surge Arresters
Authors: Anil S. Khopkar, Kartik S. Pandya
Abstract:
Overvoltage in power systems is a phenomenon that cannot be avoided. However, it can be controlled to a certain extent. Power system equipment is to be protected against overvoltage to avoid system failure. Metal Oxide Surge Arresters (MOSA) are connected to the system for the protection of the power system against overvoltages. The MOSA will behave as an insulator under normal working conditions, where it offers a conductive path under voltage conditions. MOSA consists of zinc oxide elements (ZnO Blocks), which have non-linear V-I characteristics. ZnO blocks are connected in series and fitted in ceramic or polymer housing. This degrades due to the aging effect under continuous operation. Degradation of zinc oxide elements increases the leakage current flowing from the surge arresters. This Increased leakage current results in the increased temperature of the surge arrester, which further decreases the resistance of zinc oxide elements. As a result, leakage current increases, which again increases the temperature of a MOSA. This creates thermal runaway conditions for MOSA. Once it reaches the thermal runaway condition, it cannot return to normal working conditions. This condition is a primary cause of premature failure of surge arresters, as MOSA constitutes a core protective device for electrical power systems against transients. It contributes significantly to the reliable operation of the power system network. Hence, the condition monitoring of surge arresters should be done at periodic intervals. Online and Offline condition monitoring techniques are available for surge arresters. Offline condition monitoring techniques are not very popular as they require removing surge arresters from the system, which requires system shutdown. Hence, online condition monitoring techniques are very popular. This paper presents the evaluation technique for the surge arrester condition based on the leakage current analysis. Maximum amplitude of total leakage current (IT), Maximum amplitude of fundamental resistive leakage current (IR) and maximum amplitude of third harmonic resistive leakage current (I3rd) have been analyzed as indicators for surge arrester condition monitoring.Keywords: metal oxide surge arrester (MOSA), over voltage, total leakage current, resistive leakage current
Procedia PDF Downloads 662415 The K-Distance Neighborhood Polynomial of a Graph
Authors: Soner Nandappa D., Ahmed Mohammed Naji
Abstract:
In a graph G = (V, E), the distance from a vertex v to a vertex u is the length of shortest v to u path. The eccentricity e(v) of v is the distance to a farthest vertex from v. The diameter diam(G) is the maximum eccentricity. The k-distance neighborhood of v, for 0 ≤ k ≤ e(v), is Nk(v) = {u ϵ V (G) : d(v, u) = k}. In this paper, we introduce a new distance degree based topological polynomial of a graph G is called a k- distance neighborhood polynomial, denoted Nk(G, x). It is a polynomial with the coefficient of the term k, for 0 ≤ k ≤ e(v), is the sum of the cardinalities of Nk(v) for every v ϵ V (G). Some properties of k- distance neighborhood polynomials are obtained. Exact formulas of the k- distance neighborhood polynomial for some well-known graphs, Cartesian product and join of graphs are presented.Keywords: vertex degrees, distance in graphs, graph operation, Nk-polynomials
Procedia PDF Downloads 5492414 Geographic Information System Cloud for Sustainable Digital Water Management: A Case Study
Authors: Mohamed H. Khalil
Abstract:
Water is one of the most crucial elements which influence human lives and development. Noteworthy, over the last few years, GIS plays a significant role in optimizing water management systems, especially after exponential developing in this sector. In this context, the Egyptian government initiated an advanced ‘GIS-Web Based System’. This system is efficiently designed to tangibly assist and optimize the complement and integration of data between departments of Call Center, Operation and Maintenance, and laboratory. The core of this system is a unified ‘Data Model’ for all the spatial and tabular data of the corresponding departments. The system is professionally built to provide advanced functionalities such as interactive data collection, dynamic monitoring, multi-user editing capabilities, enhancing data retrieval, integrated work-flow, different access levels, and correlative information record/track. Noteworthy, this cost-effective system contributes significantly not only in the completeness of the base-map (93%), the water network (87%) in high level of details GIS format, enhancement of the performance of the customer service, but also in reducing the operating costs/day-to-day operations (~ 5-10 %). In addition, the proposed system facilitates data exchange between different departments (Call Center, Operation and Maintenance, and laboratory), which allowed a better understanding/analyzing of complex situations. Furthermore, this system reflected tangibly on: (i) dynamic environmental monitor/water quality indicators (ammonia, turbidity, TDS, sulfate, iron, pH, etc.), (ii) improved effectiveness of the different water departments, (iii) efficient deep advanced analysis, (iv) advanced web-reporting tools (daily, weekly, monthly, quarterly, and annually), (v) tangible planning synthesizing spatial and tabular data; and finally, (vi) scalable decision support system. It is worth to highlight that the proposed future plan (second phase) of this system encompasses scalability will extend to include integration with departments of Billing and SCADA. This scalability will comprise advanced functionalities in association with the existing one to allow further sustainable contributions.Keywords: GIS Web-Based, base-map, water network, decision support system
Procedia PDF Downloads 962413 Mitigation of Risk Management Activities towards Accountability into Microfinance Environment: Malaysian Case Study
Authors: Nor Azlina A. Rahman, Jamaliah Said, Salwana Hassan
Abstract:
Prompt changes in global business environment, such as passionate competition, managerial/operational, changing governmental regulation and innovation in technology have significant impacts on the organizations. At present, global business environment demands for more proactive institutions on microfinance to provide an opportunity for the business success. Microfinance providers in Malaysia still accelerate its activities of funding by cash and cheque. These institutions are at high risk as the paper-based system is deemed to be slow and prone to human error, as well as requiring a major annual reconciliation process. The global transformation of financial services, growing involvement of technology, innovation and new business activities had progressively made risk management profile to be more subjective and diversified. The persistent, complex and dynamic nature of risk management activities in the institutions arise due to highly automated advancements of technology. This may thus manifest in a variety of ways throughout the financial services sector. This study seeks out to examine current operational risks management being experienced by microfinance providers in Malaysia; investigate the process of current practices on facilitator control factor mechanisms, and explore how the adoption of technology, innovation and use of management accounting practices would affect the risk management process of operation system in microfinance providers in Malaysia. A case study method was employed in this study. The case study also need to find that the vital past role of management accounting will be used for mitigation of risk management activities towards accountability as an information or guideline to microfinance provider. An empirical element obtainable with qualitative method is needed in this study, where multipart and in-depth information are essential to understand the issues of these institution phenomena. This study is expected to propose a theoretical model for implementation of technology, innovation and management accounting practices into the system of operation to improve internal control and subsequently lead to mitigation of risk management activities among microfinance providers to be more successful.Keywords: microfinance, accountability, operational risks, management accounting practices
Procedia PDF Downloads 4382412 Evaluation of Goji By-Product as a Value-Added Ingredient for the Functional Food Industry
Authors: Sanaa Ragaee, Paragyani Bora, Wee Teng Tan, Xin Hu
Abstract:
Goji berry (Lycium barbarum) is a member of the family Solanaceae which is grown widely in China, Tibet, and other parts of Asia. Its fruits are 1–2 cm-long, bright orange-red ellipsoid berries and it has a long tradition as a food and medicinal plant. Goji berries are believed to boost immune system properties. The berries are considered an excellent source of macronutrients, micronutrients, vitamins, minerals and several bioactive components. Studies have shown effects of goji fruit on aging, neuroprotection, general well-being, fatigue/endurance, metabolism/energy expenditure, glucose control in diabetics and glaucoma, antioxidant properties, immunomodulation and anti-tumor activity. Goji berries are being used to prepare Goji beverage, and the remaining solid material is considered as by-product. The by-product is currently unused and disposed as waste despite its potential as a value-added food ingredient. Therefore, this study is intended to evaluate nutritional properties of Goji by-product and its potential applications in the baking industry. The Goji by-product was freeze dried and ground to pass through 1 mm screen prior to evaluation and food use. The Goji by-product was found to be a rich source of fiber (54%) and free phenolic components (1,307 µg/g), protein (13.6%), ash (3.3%) and fat (10%). Incorporation of the Goji by-product in muffins and cookies at various levels (10-40%) significantly improved the nutritional quality of the baked products. The baked products were generally accepted and highly rated by panelists at 20% replacement level. The results indicate the potential of Goji by-product as a value-added ingredient in particular as a source of dietary fiber and protein.Keywords: Goji, by-product, phenolics, fibers, baked products
Procedia PDF Downloads 3022411 Grid Architecture Model for Smart Grid
Authors: Nick Farid, Roghoyeh Salmeh
Abstract:
The planning and operation of the power grid is becoming much more complex because of the introduction of renewable energy resources, the digitalization of the electricity industry, as well as the coupling of efficiency and greener energy trends. These changes, along with new trends, make interactions between grid users and the other stakeholders more complex. This paper focuses on the main “physical” and “logical” interactions between grid users and the grid stakeholders, both from power system equipment and information management standpoints, and proposes a new interoperability model for Smart Grids.Keywords: user interface, interoperability layers, grid architecture framework, smart grid
Procedia PDF Downloads 952410 Implementation Principles and Strategies of Bilingual Teaching in Taiwan
Authors: Chinfen Chen
Abstract:
This paper aims to focus on the challenges and doubts encountered in the implementation of ‘bilingual teaching in some fields of courses’, and propose implementation principles and strategies from the four areas of curriculum design, teaching strategies, teaching language application, and bilingual teaching implementation and operation, as a school The administrative team considers when planning bilingual teaching and also clarifies teachers' doubts about the implementation of bilingual teaching to enhance their willingness and confidence to participate in bilingual teaching.Keywords: bilingual education policy, language immersion, partial bilingual education, content knowledge and target language acquisition, inquiry-based teaching.
Procedia PDF Downloads 522409 Analytical Investigation of Modeling and Simulation of Different Combinations of Sinusoidal Supplied Autotransformer under Linear Loading Conditions
Authors: M. Salih Taci, N. Tayebi, I. Bozkır
Abstract:
This paper investigates the operation of a sinusoidal supplied autotransformer on the different states of magnetic polarity of primary and secondary terminals for four different step-up and step-down analytical conditions. In this paper, a new analytical modeling and equations for dot-marked and polarity-based step-up and step-down autotransformer are presented. These models are validated by the simulation of current and voltage waveforms for each state. PSpice environment was used for simulation.Keywords: autotransformer modeling, autotransformer simulation, step-up autotransformer, step-down autotransformer, polarity
Procedia PDF Downloads 3182408 Effect of Built in Polarization on Thermal Properties of InGaN/GaN Heterostructures
Authors: Bijay Kumar Sahoo
Abstract:
An important feature of InₓGa₁-ₓN/GaN heterostructures is strong built-in polarization (BIP) electric field at the hetero-interface due to spontaneous (sp) and piezoelectric (pz) polarizations. The intensity of this electric field reaches several MV/cm. This field has profound impact on optical, electrical and thermal properties. In this work, the effect of BIP field on thermal conductivity of InₓGa₁-ₓN/GaN heterostructure has been investigated theoretically. The interaction between the elastic strain and built in electric field induces additional electric polarization. This additional polarization contributes to the elastic constant of InₓGa₁-ₓN alloy. This in turn modifies material parameters of InₓGa₁-ₓN. The BIP mechanism enhances elastic constant, phonon velocity and Debye temperature and their bowing constants in InₓGa₁-ₓN alloy. These enhanced thermal parameters increase phonon mean free path which boost thermal conduction process. The thermal conductivity (k) of InxGa1-xN alloy has been estimated for x=0, 0.1, 0.3 and 0.9. Computation finds that irrespective of In content, the room temperature k of InₓGa₁-ₓN/GaN heterostructure is enhanced by BIP mechanism. Our analysis shows that at a certain temperature both k with and without BIP show crossover. Below this temperature k with BIP field is lower than k without BIP; however, above this temperature k with BIP field is significantly contributed by BIP mechanism leading to k with BIP field become higher than k without BIP field. The crossover temperature is primary pyroelectric transition temperature. The pyroelectric transition temperature of InₓGa₁-ₓN alloy has been predicted for different x. This signature of pyroelectric nature suggests that thermal conductivity can reveal pyroelectricity in InₓGa₁-ₓN alloy. The composition dependent room temperature k for x=0.1 and 0.3 are in line with prior experimental studies. The result can be used to minimize the self-heating effect in InₓGa₁-ₓN/GaN heterostructures.Keywords: built-in polarization, phonon relaxation time, thermal properties of InₓGa₁-ₓN /GaN heterostructure, self-heating
Procedia PDF Downloads 4112407 Reduced Model Investigations Supported by Fuzzy Cognitive Map to Foster Circular Economy
Authors: A. Buruzs, M. F. Hatwágner, L. T. Kóczy
Abstract:
The aim of the present paper is to develop an integrated method that may provide assistance to decision makers during system planning, design, operation and evaluation. In order to support the realization of Circular Economy (CE), it is essential to evaluate local needs and conditions which help to select the most appropriate system components and resource needs. Each of these activities requires careful planning, however, the model of CE offers a comprehensive interdisciplinary framework. The aim of this research was to develop and to introduce a practical methodology for evaluation of local and regional opportunities to promote CE.Keywords: circular economy, factors, fuzzy cognitive map, model reduction, sustainability
Procedia PDF Downloads 2432406 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence
Authors: C. J. Rossouw, T. I. van Niekerk
Abstract:
The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring
Procedia PDF Downloads 882405 Responsibility of States in Air Traffic Management: Need for International Unification
Authors: Nandini Paliwal
Abstract:
Since aviation industry is one of the fastest growing sectors of the world economy, states depend on the air transport industry to maintain or stimulate economic growth. It significantly promotes and contributes to the economic well-being of every nation as well as world in general. Because of the continuous and rapid growth in civil aviation, it is inevitably leading to congested skies, flight delays and most alarmingly, a decrease in the safety of air navigation facilities. Safety is one of the most important concerns of aviation industry that has been unanimously recognised across the whole world. The available capacity of the air navigation system is not sufficient for the demand that is being generated. It has been indicated by forecast that the current growth in air traffic has the potential of causing delays in 20% of flights by 2020 unless changes are brought in the current system. Therefore, a safe, orderly and expeditious air navigation system is needed at the national and global levels, which, requires the implementation of an air traffic management (hereinafter referred as ‘ATM’) system to ensure an optimum flow of air traffic by utilising and enhancing capabilities provided by technical advances. The objective of this paper is to analyse the applicability of national regulations in case of liability arising out of air traffic management services and whether the current legal regime is sufficient to cover multilateral agreements including the Single European Sky regulations. In doing so, the paper will examine the international framework mainly the Article 28 of the Chicago Convention and its relevant annexes to determine the responsibility of states for providing air navigation services. Then, the paper will discuss the difference between the concept of responsibility and liability under the air law regime and how states might claim sovereign immunity for the functions of air traffic management. Thereafter, the paper will focus on the cross border agreements including the bilateral and multilateral agreements. In the end, the paper will address the scheme of Single European Sky and the need for an international convention dealing with the liability of air navigation service providers. The paper will conclude with some suggestions for unification of the laws at an international level dealing with liability of air navigation service providers and the requirement of enhanced co-operation among states in order to keep pace with technological advances.Keywords: air traffic management, safety, single European sky, co-operation
Procedia PDF Downloads 1692404 Analysis of Effect of Microfinance on the Profit Level of Small and Medium Scale Enterprises in Lagos State, Nigeria
Authors: Saheed Olakunle Sanusi, Israel Ajibade Adedeji
Abstract:
The study analysed the effect of microfinance on the profit level of small and medium scale enterprises in Lagos. The data for the study were obtained by simple random sampling, and total of one hundred and fifty (150) small and medium scale enterprises (SMEs) were sampled for the study. Seventy-five (75) each are microfinance users and non-users. Data were analysed using descriptive statistics, logit model, t-test and ordinary least square (OLS) regression. The mean profit of the enterprises using microfinance is ₦16.8m, while for the non-users of microfinance is ₦5.9m. The mean profit of microfinance users is statistically different from the non-users. The result of the logit model specified for the determinant of access to microfinance showed that three of specified variables- educational status of the enterprise head, credit utilisation and volume of business investment are significant at P < 0.01. Enterprises with many years of experience, highly educated enterprise heads and high volume of business investment have more potential access to microfinance. The OLS regression model indicated that three parameters namely number of school years, the volume of business investment and (dummy) participation in microfinance were found to be significant at P < 0.05. These variables are therefore significant determinants of impacts of microfinance on profit level in the study area. The study, therefore, concludes and recommends that to improve the status of small and medium scale enterprises for an increase in profit, the full benefit of access to microfinance can be enhanced through investment in social infrastructure and human capital development. Also, concerted efforts should be made to encouraged non-users of microfinance among SMEs to use it in order to boost their profit.Keywords: credit utilisation, logit model, microfinance, small and medium enterprises
Procedia PDF Downloads 2052403 Reliability-Based Life-Cycle Cost Model for Engineering Systems
Authors: Reza Lotfalian, Sudarshan Martins, Peter Radziszewski
Abstract:
The effect of reliability on life-cycle cost, including initial and maintenance cost of a system is studied. The failure probability of a component is used to calculate the average maintenance cost during the operation cycle of the component. The standard deviation of the life-cycle cost is also calculated as an error measure for the average life-cycle cost. As a numerical example, the model is used to study the average life cycle cost of an electric motor.Keywords: initial cost, life-cycle cost, maintenance cost, reliability
Procedia PDF Downloads 6042402 A Numerical Study on the Influence of CO2 Dilution on Combustion Characteristics of a Turbulent Diffusion Flame
Authors: Yasaman Tohidi, Rouzbeh Riazi, Shidvash Vakilipour, Masoud Mohammadi
Abstract:
The objective of the present study is to numerically investigate the effect of CO2 replacement of N2 in air stream on the flame characteristics of the CH4 turbulent diffusion flame. The Open source Field Operation and Manipulation (OpenFOAM) has been used as the computational tool. In this regard, laminar flamelet and modified k-ε models have been utilized as combustion and turbulence models, respectively. Results reveal that the presence of CO2 in air stream changes the flame shape and maximum flame temperature. Also, CO2 dilution causes an increment in CO mass fraction.Keywords: CH4 diffusion flame, CO2 dilution, OpenFOAM, turbulent flame
Procedia PDF Downloads 2752401 Income Inequality among Selected Entrepreneurs in Ondo State, Nigeria
Authors: O.O. Ehinmowo, A.I. Fatuase, D.F. Oke
Abstract:
Nigeria is endowed with resources that could boost the economy as well as generate income and provide jobs to the teaming populace. One of the keys of attaining this is by making the environment conducive for the entrepreneurs to excel in their respective enterprises so that more income could be accrued to the entrepreneurs. This study therefore examines income inequality among selected entrepreneurs in Ondo State, Nigeria using primary data. A multistage sampling technique was used to select 200 respondents for the study with the aid of structured questionnaire and personal interview. The data collected were subjected to descriptive statistics, Lorenz curve, Gini coefficient and Double - Log regression model. Results revealed that majority of the entrepreneurs (63%) were males and 90% were married with an average age of 44 years. About 40% of the respondents spent at most 12 years in school with 81% of the respondents had 4-6 members per household, while hair dressing (43.5%) and fashion designing (31.5%) were the most common enterprises among the sampled respondents. The findings also showed that majority of the entrepreneurs in hairdressing, fashion designing and laundry service earned below N200,000 per annum while the majority of those in restaurant and food vending earned between N400,000 – N600,000 followed by the entrepreneurs in pure water enterprise where majority earned N800,000 and above per annum. The result of the Gini coefficient (0.58) indicated that there was presence of inequality among the entrepreneurs which was also affirmed by the Lorenz curve. The Regression results showed that gender, household size and number of employees significantly affected the income of the entrepreneurs in the study area. Therefore, more female households should be encouraged into entrepreneurial businesses and government should give incentive cum conductive environment that could bridge the disparity in the income of the entrepreneurs in their various enterprises.Keywords: entrepreneurs, Gini coefficient, income inequality, Lorenz curve
Procedia PDF Downloads 3502400 A Comparative Study of Insurance Policies Worldwide in Public Private Partnerships
Authors: Guanqun Shi, Xueqing Zhang
Abstract:
The frequent occurrence of failures in PPP projects which caused great loss has raised attention from the government as well as the concessionaire. PPPs are complex arrangements for its long operation period and multiple players. Many types of risks in PPP projects may cause the project fail. The insurance is an important tool to transfer the risks. Through a comparison and analysis of international government PPP guidelines and contracts as well as the case studies worldwide, we have identified eight main insurance principles, discussed thirteen insurance types in different stages. An overall procedure would be established to improve the practices in PPP projects.Keywords: public private partnerships, insurance, contract, risk
Procedia PDF Downloads 2832399 Design and Implementation of Grid-Connected Photovoltaic Inverter
Authors: B. H. Lee
Abstract:
Nowadays, a grid-connected photovoltaic (PV) inverter is adopted in various places like as home, factory, because grid-connected PV inverter can reduce total power consumption by supplying electricity from PV array. In this paper, design and implementation of a 300 W grid-connected PV inverter are described. It is implemented with TI Piccolo DSP core and operated at 100 kHz switching frequency in order to reduce harmonic contents. The maximum operating input voltage is up to 45 V. The characteristics of the designed system that include maximum power point tracking (MPPT), single operation and battery charging are verified by simulation and experimental results.Keywords: design, grid-connected, implementation, photovoltaic
Procedia PDF Downloads 4202398 Experimental investigation on the lithium-Ion Battery Thermal Management System Based on Micro Heat Pipe Array in High Temperature Environment
Authors: Ruyang Ren, Yaohua Zhao, Yanhua Diao
Abstract:
The intermittent and unstable characteristics of renewable energy such as solar energy can be effectively solved through battery energy storage system. Lithium-ion battery is widely used in battery energy storage system because of its advantages of high energy density, small internal resistance, low self-discharge rate, no memory effect and long service life. However, the performance and service life of lithium-ion battery is seriously affected by its operating temperature. Thus, the safety operation of the lithium-ion battery module is inseparable from an effective thermal management system (TMS). In this study, a new type of TMS based on micro heat pipe array (MHPA) for lithium-ion battery is established, and the TMS is applied to a battery energy storage box that needs to operate at a high temperature environment of 40 °C all year round. MHPA is a flat shape metal body with high thermal conductivity and excellent temperature uniformity. The battery energy storage box is composed of four battery modules, with a nominal voltage of 51.2 V, a nominal capacity of 400 Ah. Through the excellent heat transfer characteristics of the MHPA, the heat generated by the charge and discharge process can be quickly transferred out of the battery module. In addition, if only the MHPA cannot meet the heat dissipation requirements of the battery module, the TMS can automatically control the opening of the external fan outside the battery module according to the temperature of the battery, so as to further enhance the heat dissipation of the battery module. The thermal management performance of lithium-ion battery TMS based on MHPA is studied experimentally under different ambient temperatures and the condition to turn on the fan or not. Results show that when the ambient temperature is 40 °C and the fan is not turned on in the whole charge and discharge process, the maximum temperature of the battery in the energy storage box is 53.1 °C and the maximum temperature difference in the battery module is 2.4 °C. After the fan is turned on in the whole charge and discharge process, the maximum temperature is reduced to 50.1 °C, and the maximum temperature difference is reduced to 1.7 °C. Obviously, the lithium-ion battery TMS based on MHPA not only could control the maximum temperature of the battery below 55 °C, but also ensure the excellent temperature uniformity of the battery module. In conclusion, the lithium-ion battery TMS based on MHPA can ensure the safe and stable operation of the battery energy storage box in high temperature environment.Keywords: heat dissipation, lithium-ion battery thermal management, micro heat pipe array, temperature uniformity
Procedia PDF Downloads 1812397 Passive Aeration of Wastewater: Analytical Model
Authors: Ayman M. El-Zahaby, Ahmed S. El-Gendy
Abstract:
Aeration for wastewater is essential for the proper operation of aerobic treatment units where the wastewater normally has zero dissolved oxygen. This is due to the need of oxygen by the aerobic microorganisms to grow and survive. Typical aeration units for wastewater treatment require electric energy for their operation such as mechanical aerators or diffused aerators. The passive units are units that operate without the need of electric energy such as cascade aerators, spray aerators and tray aerators. In contrary to the cascade aerators and spray aerators, tray aerators require much smaller area foot print for their installation as the treatment stages are arranged vertically. To the extent of the authors knowledge, the design of tray aerators for the aeration purpose has not been presented in the literature. The current research concerns with an analytical study for the design of tray aerators for the purpose of increasing the dissolved oxygen in wastewater treatment systems, including an investigation on different design parameters and their impact on the aeration efficiency. The studied aerator shall act as an intermediate stage between an anaerobic primary treatment unit and an aerobic treatment unit for small scale treatment systems. Different free falling flow regimes were investigated, and the thresholds for transition between regimes were obtained from the literature. The study focused on the jetting flow regime between trays. Starting from the two film theory, an equation that relates the dissolved oxygen concentration effluent from the system was derived as a function of the flow rate, number of trays, tray area, spacing between trays, number and diameter of holes and the water temperature. A MATLab ® model was developed for the derived equation. The expected aeration efficiency under different tray configurations and operating conditions were illustrated through running the model with varying the design parameters. The impact of each parameter was illustrated. The overall system efficiency was found to increase by decreasing the hole diameter. On the other side, increasing the number of trays, tray area, flow rate per hole or tray spacing had positive effect on the system efficiency.Keywords: aeration, analytical, passive, wastewater
Procedia PDF Downloads 2092396 Study on the Impact of Default Converter on the Quality of Energy Produced by DFIG Based Wind Turbine
Authors: N. Zerzouri, N. Benalia, N. Bensiali
Abstract:
This work is devoted to an analysis of the operation of a doubly fed induction generator (DFIG) integrated with a wind system. The power transfer between the stator and the network is carried out by acting on the rotor via a bidirectional signal converter. The analysis is devoted to the study of a fault in the converter due to an interruption of the control of a semiconductor. Simulation results obtained by the MATLAB/Simulink software illustrate the quality of the power generated at the default.Keywords: doubly fed induction generator (DFIG), wind energy, PWM inverter, modeling
Procedia PDF Downloads 3162395 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 1: Overview and Activities in Chemical Processing Facility
Authors: Kazunori Nomura, Hiromichi Ogi, Masaumi Nakahara, Sou Watanabe, Atsuhiro Shibata
Abstract:
Chemical Processing Facility of Japan Atomic Energy Agency is a basic research field for advanced back-end technology developments with using actual high-level radioactive materials such as irradiated fuels from the fast reactor, high-level liquid waste from reprocessing plant. In the nature of a research facility, various kinds of chemical reagents have been offered for fundamental tests. Most of them were treated properly and stored in the liquid waste vessel equipped in the facility, but some were not treated and remained at the experimental space as a kind of legacy waste. It is required to treat the waste in safety. On the other hand, we formulated the Medium- and Long-Term Management Plan of Japan Atomic Energy Agency Facilities. This comprehensive plan considers Chemical Processing Facility as one of the facilities to be decommissioned. Even if the plan is executed, treatment of the “legacy” waste beforehand must be a necessary step for decommissioning operation. Under this circumstance, we launched a collaborative research project called the STRAD project, which stands for Systematic Treatment of Radioactive liquid waste for Decommissioning, in order to develop the treatment processes for wastes of the nuclear research facility. In this project, decomposition methods of chemicals causing a troublesome phenomenon such as corrosion and explosion have been developed and there is a prospect of their decomposition in the facility by simple method. And solidification of aqueous or organic liquid wastes after the decomposition has been studied by adding cement or coagulants. Furthermore, we treated experimental tools of various materials with making an effort to stabilize and to compact them before the package into the waste container. It is expected to decrease the number of transportation of the solid waste and widen the operation space. Some achievements of these studies will be shown in this paper. The project is expected to contribute beneficial waste management outcome that can be shared world widely.Keywords: chemical processing facility, medium- and long-term management plan of JAEA facilities, STRAD project, treatment of radioactive waste
Procedia PDF Downloads 1422394 Finite Element Modelling and Optimization of Post-Machining Distortion for Large Aerospace Monolithic Components
Authors: Bin Shi, Mouhab Meshreki, Grégoire Bazin, Helmi Attia
Abstract:
Large monolithic components are widely used in the aerospace industry in order to reduce airplane weight. Milling is an important operation in manufacturing of the monolithic parts. More than 90% of the material could be removed in the milling operation to obtain the final shape. This results in low rigidity and post-machining distortion. The post-machining distortion is the deviation of the final shape from the original design after releasing the clamps. It is a major challenge in machining of the monolithic parts, which costs billions of economic losses every year. Three sources are directly related to the part distortion, including initial residual stresses (RS) generated from previous manufacturing processes, machining-induced RS and thermal load generated during machining. A finite element model was developed to simulate a milling process and predicate the post-machining distortion. In this study, a rolled-aluminum plate AA7175 with a thickness of 60 mm was used for the raw block. The initial residual stress distribution in the block was measured using a layer-removal method. A stress-mapping technique was developed to implement the initial stress distribution into the part. It is demonstrated that this technique significantly accelerates the simulation time. Machining-induced residual stresses on the machined surface were measured using MTS3000 hole-drilling strain-gauge system. The measured RS was applied on the machined surface of a plate to predict the distortion. The predicted distortion was compared with experimental results. It is found that the effect of the machining-induced residual stress on the distortion of a thick plate is very limited. The distortion can be ignored if the wall thickness is larger than a certain value. The RS generated from the thermal load during machining is another important factor causing part distortion. Very limited number of research on this topic was reported in literature. A coupled thermo-mechanical FE model was developed to evaluate the thermal effect on the plastic deformation of a plate. A moving heat source with a feed rate was used to simulate the dynamic cutting heat in a milling process. When the heat source passed the part surface, a small layer was removed to simulate the cutting operation. The results show that for different feed rates and plate thicknesses, the plastic deformation/distortion occurs only if the temperature exceeds a critical level. It was found that the initial residual stress has a major contribution to the part distortion. The machining-induced stress has limited influence on the distortion for thin-wall structure when the wall thickness is larger than a certain value. The thermal load can also generate part distortion when the cutting temperature is above a critical level. The developed numerical model was employed to predict the distortion of a frame part with complex structures. The predictions were compared with the experimental measurements, showing both are in good agreement. Through optimization of the position of the part inside the raw plate using the developed numerical models, the part distortion can be significantly reduced by 50%.Keywords: modelling, monolithic parts, optimization, post-machining distortion, residual stresses
Procedia PDF Downloads 542393 On the Design of Wearable Fractal Antenna
Authors: Amar Partap Singh Pharwaha, Shweta Rani
Abstract:
This paper is aimed at proposing a rhombus shaped wearable fractal antenna for wireless communication systems. The geometrical descriptors of the antenna have been obtained using bacterial foraging optimization (BFO) for wide band operation. The method of moment based IE3D software has been used to simulate the antenna and observed that miniaturization of 13.08% has been achieved without degrading the resonating properties of the proposed antenna. An analysis with different substrates has also been done in order to evaluate the effectiveness of electrical permittivity on the presented structure. The proposed antenna has low profile, light weight and has successfully demonstrated wideband and multiband characteristics for wearable electronic applications.Keywords: BFO, bandwidth, electrical permittivity, fractals, wearable antenna
Procedia PDF Downloads 463