Search results for: ant colony algorithms
1390 Relevant LMA Features for Human Motion Recognition
Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier
Abstract:
Motion recognition from videos is actually a very complex task due to the high variability of motions. This paper describes the challenges of human motion recognition, especially motion representation step with relevant features. Our descriptor vector is inspired from Laban Movement Analysis method. We propose discriminative features using the Random Forest algorithm in order to remove redundant features and make learning algorithms operate faster and more effectively. We validate our method on MSRC-12 and UTKinect datasets.Keywords: discriminative LMA features, features reduction, human motion recognition, random forest
Procedia PDF Downloads 1951389 Optimal Portfolio Selection under Treynor Ratio Using Genetic Algorithms
Authors: Imad Zeyad Ramadan
Abstract:
In this paper a genetic algorithm was developed to construct the optimal portfolio based on the Treynor method. The GA maximizes the Treynor ratio under budget constraint to select the best allocation of the budget for the companies in the portfolio. The results show that the GA was able to construct a conservative portfolio which includes companies from the three sectors. This indicates that the GA reduced the risk on the investor as it choose some companies with positive risks (goes with the market) and some with negative risks (goes against the market).Keywords: oOptimization, genetic algorithm, portfolio selection, Treynor method
Procedia PDF Downloads 4491388 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.Keywords: deep learning, long short term memory, energy, renewable energy load forecasting
Procedia PDF Downloads 2661387 Technological Development of a Biostimulant Bioproduct for Fruit Seedlings: An Engineering Overview
Authors: Andres Diaz Garcia
Abstract:
The successful technological development of any bioproduct, including those of the biostimulant type, requires to adequately completion of a series of stages allied to different disciplines that are related to microbiological, engineering, pharmaceutical chemistry, legal and market components, among others. Engineering as a discipline has a key contribution in different aspects of fermentation processes such as the design and optimization of culture media, the standardization of operating conditions within the bioreactor and the scaling of the production process of the active ingredient that it will be used in unit operations downstream. However, all aspects mentioned must take into account many biological factors of the microorganism such as the growth rate, the level of assimilation to various organic and inorganic sources and the mechanisms of action associated with its biological activity. This paper focuses on the practical experience within the Colombian Corporation for Agricultural Research (Agrosavia), which led to the development of a biostimulant bioproduct based on native rhizobacteria Bacillus amyloliquefaciens, oriented mainly to plant growth promotion in cape gooseberry nurseries and fruit crops in Colombia, and the challenges that were overcome from the expertise in the area of engineering. Through the application of strategies and engineering tools, a culture medium was optimized to obtain concentrations higher than 1E09 CFU (colony form units)/ml in liquid fermentation, the process of biomass production was standardized and a scale-up strategy was generated based on geometric (H/D of bioreactor relationships), and operational criteria based on a minimum dissolved oxygen concentration and that took into account the differences in the capacity of control of the process in the laboratory and pilot scales. Currently, the bioproduct obtained through this technological process is in stages of registration in Colombia for cape gooseberry fruits for export.Keywords: biochemical engineering, liquid fermentation, plant growth promoting, scale-up process
Procedia PDF Downloads 1121386 The Human Process of Trust in Automated Decisions and Algorithmic Explainability as a Fundamental Right in the Exercise of Brazilian Citizenship
Authors: Paloma Mendes Saldanha
Abstract:
Access to information is a prerequisite for democracy while also guiding the material construction of fundamental rights. The exercise of citizenship requires knowing, understanding, questioning, advocating for, and securing rights and responsibilities. In other words, it goes beyond mere active electoral participation and materializes through awareness and the struggle for rights and responsibilities in the various spaces occupied by the population in their daily lives. In times of hyper-cultural connectivity, active citizenship is shaped through ethical trust processes, most often established between humans and algorithms. Automated decisions, so prevalent in various everyday situations, such as purchase preference predictions, virtual voice assistants, reduction of accidents in autonomous vehicles, content removal, resume selection, etc., have already found their place as a normalized discourse that sometimes does not reveal or make clear what violations of fundamental rights may occur when algorithmic explainability is lacking. In other words, technological and market development promotes a normalization for the use of automated decisions while silencing possible restrictions and/or breaches of rights through a culturally modeled, unethical, and unexplained trust process, which hinders the possibility of the right to a healthy, transparent, and complete exercise of citizenship. In this context, the article aims to identify the violations caused by the absence of algorithmic explainability in the exercise of citizenship through the construction of an unethical and silent trust process between humans and algorithms in automated decisions. As a result, it is expected to find violations of constitutionally protected rights such as privacy, data protection, and transparency, as well as the stipulation of algorithmic explainability as a fundamental right in the exercise of Brazilian citizenship in the era of virtualization, facing a threefold foundation called trust: culture, rules, and systems. To do so, the author will use a bibliographic review in the legal and information technology fields, as well as the analysis of legal and official documents, including national documents such as the Brazilian Federal Constitution, as well as international guidelines and resolutions that address the topic in a specific and necessary manner for appropriate regulation based on a sustainable trust process for a hyperconnected world.Keywords: artificial intelligence, ethics, citizenship, trust
Procedia PDF Downloads 641385 Seamless Mobility in Heterogeneous Mobile Networks
Authors: Mohab Magdy Mostafa Mohamed
Abstract:
The objective of this paper is to introduce a vertical handover (VHO) algorithm between wireless LANs (WLANs) and LTE mobile networks. The proposed algorithm is based on the fuzzy control theory and takes into consideration power level, subscriber velocity, and target cell load instead of only power level in traditional algorithms. Simulation results show that network performance in terms of number of handovers and handover occurrence distance is improved.Keywords: vertical handover, fuzzy control theory, power level, speed, target cell load
Procedia PDF Downloads 3521384 Parallel Multisplitting Methods for DAE’s
Authors: Ahmed Machmoum, Malika El Kyal
Abstract:
We consider iterative parallel multi-splitting method for differential algebraic equations. The main feature of the proposed idea is to use the asynchronous form. We prove that the multi-splitting technique can effectively accelerate the convergent performance of the iterative process. The main characteristic of an asynchronous mode is that the local algorithm not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays tobe substantial and unpredictable. Note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one.Keywords: computer, multi-splitting methods, asynchronous mode, differential algebraic systems
Procedia PDF Downloads 5491383 Wideband Performance Analysis of C-FDTD Based Algorithms in the Discretization Impoverishment of a Curved Surface
Authors: Lucas L. L. Fortes, Sandro T. M. Gonçalves
Abstract:
In this work, it is analyzed the wideband performance with the mesh discretization impoverishment of the Conformal Finite Difference Time-Domain (C-FDTD) approaches developed by Raj Mittra, Supriyo Dey and Wenhua Yu for the Finite Difference Time-Domain (FDTD) method. These approaches are a simple and efficient way to optimize the scattering simulation of curved surfaces for Dielectric and Perfect Electric Conducting (PEC) structures in the FDTD method, since curved surfaces require dense meshes to reduce the error introduced due to the surface staircasing. Defined, on this work, as D-FDTD-Diel and D-FDTD-PEC, these approaches are well-known in the literature, but the improvement upon their application is not quantified broadly regarding wide frequency bands and poorly discretized meshes. Both approaches bring improvement of the accuracy of the simulation without requiring dense meshes, also making it possible to explore poorly discretized meshes which bring a reduction in simulation time and the computational expense while retaining a desired accuracy. However, their applications present limitations regarding the mesh impoverishment and the frequency range desired. Therefore, the goal of this work is to explore the approaches regarding both the wideband and mesh impoverishment performance to bring a wider insight over these aspects in FDTD applications. The D-FDTD-Diel approach consists in modifying the electric field update in the cells intersected by the dielectric surface, taking into account the amount of dielectric material within the mesh cells edges. By taking into account the intersections, the D-FDTD-Diel provides accuracy improvement at the cost of computational preprocessing, which is a fair trade-off, since the update modification is quite simple. Likewise, the D-FDTD-PEC approach consists in modifying the magnetic field update, taking into account the PEC curved surface intersections within the mesh cells and, considering a PEC structure in vacuum, the air portion that fills the intersected cells when updating the magnetic fields values. Also likewise to D-FDTD-Diel, the D-FDTD-PEC provides a better accuracy at the cost of computational preprocessing, although with a drawback of having to meet stability criterion requirements. The algorithms are formulated and applied to a PEC and a dielectric spherical scattering surface with meshes presenting different levels of discretization, with Polytetrafluoroethylene (PTFE) as the dielectric, being a very common material in coaxial cables and connectors for radiofrequency (RF) and wideband application. The accuracy of the algorithms is quantified, showing the approaches wideband performance drop along with the mesh impoverishment. The benefits in computational efficiency, simulation time and accuracy are also shown and discussed, according to the frequency range desired, showing that poorly discretized mesh FDTD simulations can be exploited more efficiently, retaining the desired accuracy. The results obtained provided a broader insight over the limitations in the application of the C-FDTD approaches in poorly discretized and wide frequency band simulations for Dielectric and PEC curved surfaces, which are not clearly defined or detailed in the literature and are, therefore, a novelty. These approaches are also expected to be applied in the modeling of curved RF components for wideband and high-speed communication devices in future works.Keywords: accuracy, computational efficiency, finite difference time-domain, mesh impoverishment
Procedia PDF Downloads 1341382 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques
Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu
Abstract:
Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare
Procedia PDF Downloads 641381 Portable and Parallel Accelerated Development Method for Field-Programmable Gate Array (FPGA)-Central Processing Unit (CPU)- Graphics Processing Unit (GPU) Heterogeneous Computing
Authors: Nan Hu, Chao Wang, Xi Li, Xuehai Zhou
Abstract:
The field-programmable gate array (FPGA) has been widely adopted in the high-performance computing domain. In recent years, the embedded system-on-a-chip (SoC) contains coarse granularity multi-core CPU (central processing unit) and mobile GPU (graphics processing unit) that can be used as general-purpose accelerators. The motivation is that algorithms of various parallel characteristics can be efficiently mapped to the heterogeneous architecture coupled with these three processors. The CPU and GPU offload partial computationally intensive tasks from the FPGA to reduce the resource consumption and lower the overall cost of the system. However, in present common scenarios, the applications always utilize only one type of accelerator because the development approach supporting the collaboration of the heterogeneous processors faces challenges. Therefore, a systematic approach takes advantage of write-once-run-anywhere portability, high execution performance of the modules mapped to various architectures and facilitates the exploration of design space. In this paper, A servant-execution-flow model is proposed for the abstraction of the cooperation of the heterogeneous processors, which supports task partition, communication and synchronization. At its first run, the intermediate language represented by the data flow diagram can generate the executable code of the target processor or can be converted into high-level programming languages. The instantiation parameters efficiently control the relationship between the modules and computational units, including two hierarchical processing units mapping and adjustment of data-level parallelism. An embedded system of a three-dimensional waveform oscilloscope is selected as a case study. The performance of algorithms such as contrast stretching, etc., are analyzed with implementations on various combinations of these processors. The experimental results show that the heterogeneous computing system with less than 35% resources achieves similar performance to the pure FPGA and approximate energy efficiency.Keywords: FPGA-CPU-GPU collaboration, design space exploration, heterogeneous computing, intermediate language, parameterized instantiation
Procedia PDF Downloads 1181380 Cluster Analysis and Benchmarking for Performance Optimization of a Pyrochlore Processing Unit
Authors: Ana C. R. P. Ferreira, Adriano H. P. Pereira
Abstract:
Given the frequent variation of mineral properties throughout the Araxá pyrochlore deposit, even if a good homogenization work has been carried out before feeding the processing plants, an operation with quality and performance’s high variety standard is expected. These results could be improved and standardized if the blend composition parameters that most influence the processing route are determined, and then the types of raw materials are grouped by them, finally presenting a great reference with operational settings for each group. Associating the physical and chemical parameters of a unit operation through benchmarking or even an optimal reference of metallurgical recovery and product quality reflects in the reduction of the production costs, optimization of the mineral resource, and guarantee of greater stability in the subsequent processes of the production chain that uses the mineral of interest. Conducting a comprehensive exploratory data analysis to identify which characteristics of the ore are most relevant to the process route, associated with the use of Machine Learning algorithms for grouping the raw material (ore) and associating these with reference variables in the process’ benchmark is a reasonable alternative for the standardization and improvement of mineral processing units. Clustering methods through Decision Tree and K-Means were employed, associated with algorithms based on the theory of benchmarking, with criteria defined by the process team in order to reference the best adjustments for processing the ore piles of each cluster. A clean user interface was created to obtain the outputs of the created algorithm. The results were measured through the average time of adjustment and stabilization of the process after a new pile of homogenized ore enters the plant, as well as the average time needed to achieve the best processing result. Direct gains from the metallurgical recovery of the process were also measured. The results were promising, with a reduction in the adjustment time and stabilization when starting the processing of a new ore pile, as well as reaching the benchmark. Also noteworthy are the gains in metallurgical recovery, which reflect a significant saving in ore consumption and a consequent reduction in production costs, hence a more rational use of the tailings dams and life optimization of the mineral deposit.Keywords: mineral clustering, machine learning, process optimization, pyrochlore processing
Procedia PDF Downloads 1431379 Tumour Radionuclides Therapy: in vitro and in vivo Dose Distribution Study
Authors: Rekaya A. Shabbir, Marco Mingarelli, Glenn Flux, Ananya Choudhury, Tim A. D. Smith
Abstract:
Introduction: Heterogeneity of dose distributions across a tumour is problematic for targeted radiotherapy. Gold nanoparticles (AuNPs) enhance dose-distributions of targeted radionuclides. The aim of this study is to demonstrate if tumour dose-distribution of targeted AuNPs radiolabelled with either of two radioisotopes (¹⁷⁷Lu and ⁹⁰Y) in breast cancer cells produced homogeneous dose distributions. Moreover, in vitro and in vivo studies were conducted to study the importance of receptor level on cytotoxicity of EGFR-targeted AuNPs in breast and colorectal cancer cells. Methods: AuNPs were functionalised with DOTA and OPPS-PEG-SVA to optimise labelling with radionuclide tracers and targeting with Erbitux. Radionuclides were chelated with DOTA, and the uptake of the radiolabelled AuNPs and targeted activity in vitro in both cell lines measured using liquid scintillation counting. Cells with medium (HCT8) and high (MDA-MB-468) EGFR expression were incubated with targeted ¹⁷⁷Lu-AuNPs for 4h, then washed and allowed to form colonies. Nude mice bearing tumours were used to study the biodistribution by injecting ¹⁷⁷Lu-AuNPs or ⁹⁰Y-AuNPs via the tail vein. Heterogeneity of dose-distribution in tumours was determined using autoradiography. Results: Colony formation (% control) was 81 ± 4.7% (HCT8) and 32 ± 9% (MDA-MB-468). High uptake was observed in the liver and spleen, indicating hepatobiliary excretion. Imaging showed heterogeneity in dose-distributions for both radionuclides across the tumours. Conclusion: The cytotoxic effect of EGFR-targeted AuNPs is greater in cells with higher EGFR expression. Dose-distributions for individual radiolabelled nanoparticles were heterogeneous across tumours. Further strategies are required to improve the uniformity of dose distribution prior to clinical trials.Keywords: cancer cells, dose distributions, radionuclide therapy, targeted gold nanoparticles
Procedia PDF Downloads 1141378 Microbial and Oocyst Count in Feacal Material of Broilers Birds Administered Phytochemicals (Naringin and Hesperidin)
Authors: Adeleye Oluwagbemmiga, Obuotor Tolulope, Dosumu Adebisi, Opowoye I., Olasoju M., Kolawole Amos, Egbeyale Lawrence
Abstract:
Gut Microbiota plays a vital role in animal health and welfare. This study investigated the effect of naringin and hesperidin administration on broiler birds. A total of 80 day – old broiler chicks were randomly divided into eight groups, with ten birds per group. Four groups were not inoculated but administered coccidiostat (1A), hesperidin alone (2A), naringin alone (3A) and a combination of naringin and hesperidin (4A) from day eight (8) to day fourteen (14) while four other groups (5A – 8A) were inoculated with 2 x 10⁴ oocysts per 0.5ml of Eimeria tenella on the 16th and 19th day of age after they were administered conventional antibiotics and coccidiostat, naringin (50mg/body weight), hesperidin (50mg/body weight) and a combination from day 8 - 14. McMaster counting technique was used to count the oocysts, while pour plate technique was used to determine the bacterial load. The results showed a significant increase in their performance with an average weight ranging from 1.55kg – 2.00kg, microbial load also improved with colony count values from 3.5 x 104 - 4.5 x 10⁴ CFU/ml. The study also found that the inclusion of naringin and hesperidin in the diets of broiler birds inoculated with coccidia oocysts significantly reduced the fecal oocyst counts, with the lowest count in combined treatment (8A) (10%) and indicating a lower degree of coccidiosis infection in the treated groups whereas control group (5A) had the highest oocyst count (35%). Mortality and Morbidity rate was 0% as none of the bird showed signs and symptoms. The reduction in oocyst counts could help to strengthen the immune system of broiler birds and limit the severity of coccidiosis infection, which could be an effective strategy for improving performance, immune function and mitigating the impact of coccidiosis infection in broiler birds.Keywords: gut colonization, naringin, hesperidin, eimeria tenella, broilers
Procedia PDF Downloads 871377 Issues in Travel Demand Forecasting
Authors: Huey-Kuo Chen
Abstract:
Travel demand forecasting including four travel choices, i.e., trip generation, trip distribution, modal split and traffic assignment constructs the core of transportation planning. In its current application, travel demand forecasting has associated with three important issues, i.e., interface inconsistencies among four travel choices, inefficiency of commonly used solution algorithms, and undesirable multiple path solutions. In this paper, each of the three issues is extensively elaborated. An ideal unified framework for the combined model consisting of the four travel choices and variable demand functions is also suggested. Then, a few remarks are provided in the end of the paper.Keywords: travel choices, B algorithm, entropy maximization, dynamic traffic assignment
Procedia PDF Downloads 4581376 Breeding for Hygienic Behavior in Honey Bees
Authors: Michael Eickermann, Juergen Junk
Abstract:
The Western honey (Apis mellifera) is threatened by a number of parasites, especially the devastating Varroa mite (Varroa destructor) is responsible for a high level of mortality over winter, e.g., in Europe and USA. While the use of synthetic pesticides or organic acids has been preferred so far to control this parasite, breeding strategies for less susceptible honey bees are in early stages. Hygienic behavior can be an important tool for controlling Varroa destructor. Worker bees with a high level of this behavior are able to detect infested brood in the cells under the wax lid during pupation and remove them out of the hive. The underlying processes of this behavior are only partly investigated, but it is for sure that hygienic behavior is heritable and therefore, can be integrated into commercial breeding lines. In a first step, breeding lines with a high level of phenotypic hygienic behavior have been identified by using a bioassay for accurate assessment of this trait in a long-term national breeding program in Luxembourg since 2015. Based on the artificial infestation of nucleus colonies with 150 phoretic Varroa destructor mites, the level of phenotypic hygienic behavior was detected by counting the number of mites in all stages, twelve days after infestation. A nucleus with a high level of hygienic behavior was overwintered and used for breeding activities in the following years. Artificial insemination was used to combine different breeding lines. Buckfast lines, as well as Carnica lines, were used. While Carnica lines offered only a low increase of hygienic behavior up to maximum 62.5%, Buckfast lines performed much better with mean levels of more than 87.5%. Some mating ends up with a level of 100%. But even with a level of 82.5% Varroa mites are not able to reproduce in the colony anymore. In a final step, a nucleus with a high level of hygienic behavior were build up to full colonies and located at two places in Luxembourg to build up a drone congregation area. Local beekeepers can bring their nucleus to this location for mating the queens with drones offering a high level of hygienic behavior.Keywords: agiculture, artificial insemination, honey bee, varroa destructor
Procedia PDF Downloads 1361375 Segregation of Domestic Solid Waste: An Evidence of Households’ Knowledge, Attitude, Behavior, and Challenges from Manipal, India
Authors: Vidya Pratap, Seena Biju, A. Keshavdev
Abstract:
The ever-increasing quantity and variety of domestic solid waste pose a major challenge to both households as well as to municipal authorities. In keeping with the Indian Prime Minister’s mission of Swachh Bharat (Clean India), the local municipal administration distributed 2 buckets to each household in a residential colony in Manipal (an educational town in southern India). Households were instructed to segregate their waste into wet and dry waste and keep these buckets at their gate for daily collection. This paper captures the knowledge, attitude, and behavior of 145 households along with the challenges they face in segregating their wastes. Survey representatives self-administered a questionnaire based on 107 variables that gathered demographic details, attitude and behavior constructs, knowledge about waste segregation and method of disposal for organic, recyclable and hazardous wastes. The study used descriptive tools to explore the data. While 95% of the respondents preferred good segregation practices, only 86% of them exhibited such behavior. 88% of the families observed had members who were either graduates or post-graduates whereas only 37% of the families had women who were working. In both attitude and behavior, 63% of the households did not have working women. Also, among those who practiced segregation, 7% were observed to not practice segregation in spite of the lady member being at home (The authors of this study in no way intend to name women as responsible for waste segregation at home; this thought is based on the fact that while in conversation with households, all respondents opined that women lead this activity). The findings of the study are intended to add value to the existing perceptions of the municipality regarding citizen behavior towards policy implementation/improvement. India as a country faces roadblocks at many levels of policy implementation. The findings of this study are meant to contribute/clarify about the Clean India drive.Keywords: attitude, behavior, knowledge, segregation of domestic waste
Procedia PDF Downloads 1701374 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms
Authors: Man-Yun Liu, Emily Chia-Yu Su
Abstract:
Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning
Procedia PDF Downloads 3221373 Optimization of Robot Motion Planning Using Biogeography Based Optimization (Bbo)
Authors: Jaber Nikpouri, Arsalan Amralizadeh
Abstract:
In robotics manipulators, the trajectory should be optimum, thus the torque of the robot can be minimized in order to save power. This paper includes an optimal path planning scheme for a robotic manipulator. Recently, techniques based on metaheuristics of natural computing, mainly evolutionary algorithms (EA), have been successfully applied to a large number of robotic applications. In this paper, the improved BBO algorithm is used to minimize the objective function in the presence of different obstacles. The simulation represents that the proposed optimal path planning method has satisfactory performance.Keywords: biogeography-based optimization, path planning, obstacle detection, robotic manipulator
Procedia PDF Downloads 3011372 An Analysis of OpenSim Graphical User Interface Effectiveness
Authors: Sina Saadati
Abstract:
OpenSim is a well-known software in biomechanical studies. There are worthy algorithms developed in this program which are used for modeling and simulation of human motions. In this research, we analyze the OpenSim application from the computer science perspective. It is important that every application have a user-friendly interface. An effective user interface can decrease the time, costs, and energy needed to learn how to use a program. In this paper, we survey the user interface of OpenSim as an important factor of the software. Finally, we infer that there are many challenges to be addressed in the development of OpenSim.Keywords: biomechanics, computer engineering, graphical user interface, modeling and simulation, interface effectiveness
Procedia PDF Downloads 951371 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms
Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita
Abstract:
Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.Keywords: air quality, internet of things, artificial intelligence, smart home
Procedia PDF Downloads 931370 Parallel Asynchronous Multi-Splitting Methods for Differential Algebraic Systems
Authors: Malika Elkyal
Abstract:
We consider an iterative parallel multi-splitting method for differential algebraic equations. The main feature of the proposed idea is to use the asynchronous form. We prove that the multi-splitting technique can effectively accelerate the convergent performance of the iterative process. The main characteristic of an asynchronous mode is that the local algorithm does not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays to be substantial and unpredictable. Accordingly, we note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one.Keywords: parallel methods, asynchronous mode, multisplitting, differential algebraic equations
Procedia PDF Downloads 5581369 Modelling Affordable Waste Management Solutions for India
Authors: Pradip Baishya, D. K. Mahanta
Abstract:
Rapid and unplanned urbanisation in most cities of India has progressively increased the problem of managing municipal waste in the past few years. With insufficient infrastructure and funds, Municipalities in most cities are struggling to cope with the pace of waste generated. Open dumping is widely in practice as a cheaper option. Scientific disposal of waste in such a large scale with the elements of segregation, recycling, landfill, and incineration involves sophisticated and expensive plants. In an effort to finding affordable and simple solutions to address this burning issue of waste disposal, a semi-mechanized plant has been designed underlying the concept of a zero waste community. The fabrication work of the waste management unit is carried out by local skills from locally available materials. A resident colony in the city of Guwahati has been chosen, which is seen as a typical representative of most cities in India in terms of size and key issues surrounding waste management. Scientific management and disposal of waste on site is carried out on the principle of reduce, reuse and recycle from segregation to compositing. It is a local community participatory model, which involves all stakeholders in the process namely rag pickers, residents, municipality and local industry. Studies were conducted to testify the plant as revenue earning self-sustaining model in the long term. Current working efficiency of plant for segregation was found to be 1kg per minute. Identifying bottlenecks in the success of the model, data on efficiency of the plant, economics of its fabrication were part of the study. Similar satellite waste management plants could potentially be a solution to supplement the waste management system of municipalities of similar sized cities in India or South East Asia with similar issues surrounding waste disposal.Keywords: affordable, rag pickers, recycle, reduce, reuse, segregation, zero waste
Procedia PDF Downloads 3051368 Comparative Study of Universities’ Web Structure Mining
Authors: Z. Abdullah, A. R. Hamdan
Abstract:
This paper is meant to analyze the ranking of University of Malaysia Terengganu, UMT’s website in the World Wide Web. There are only few researches have been done on comparing the ranking of universities’ websites so this research will be able to determine whether the existing UMT’s website is serving its purpose which is to introduce UMT to the world. The ranking is based on hub and authority values which are accordance to the structure of the website. These values are computed using two web-searching algorithms, HITS and SALSA. Three other universities’ websites are used as the benchmarks which are UM, Harvard and Stanford. The result is clearly showing that more work has to be done on the existing UMT’s website where important pages according to the benchmarks, do not exist in UMT’s pages. The ranking of UMT’s website will act as a guideline for the web-developer to develop a more efficient website.Keywords: algorithm, ranking, website, web structure mining
Procedia PDF Downloads 5171367 Brown-Spot Needle Blight: An Emerging Threat Causing Loblolly Pine Needle Defoliation in Alabama, USA
Authors: Debit Datta, Jeffrey J. Coleman, Scott A. Enebak, Lori G. Eckhardt
Abstract:
Loblolly pine (Pinus taeda) is a leading productive timber species in the southeastern USA. Over the past three years, an emerging threat is expressed by successive needle defoliation followed by stunted growth and tree mortality in loblolly pine plantations. Considering economic significance, it has now become a rising concern among landowners, forest managers, and forest health state cooperators. However, the symptoms of the disease were perplexed somewhat with root disease(s) and recurrently attributed to invasive Phytophthora species due to the similarity of disease nature and devastation. Therefore, the study investigated the potential causal agent of this disease and characterized the fungi associated with loblolly pine needle defoliation in the southeastern USA. Besides, 70 trees were selected at seven long-term monitoring plots at Chatom, Alabama, to monitor and record the annual disease incidence and severity. Based on colony morphology and ITS-rDNA sequence data, a total of 28 species of fungi representing 17 families have been recovered from diseased loblolly pine needles. The native brown-spot pathogen, Lecanosticta acicola, was the species most frequently recovered from unhealthy loblolly pine needles in combination with some other common needle cast and rust pathogen(s). Identification was confirmed using morphological similarity and amplification of translation elongation factor 1-alpha gene region of interest. Tagged trees were consistently found chlorotic and defoliated from 2019 to 2020. The current emergence of the brown-spot pathogen causing loblolly pine mortality necessitates the investigation of the role of changing climatic conditions, which might be associated with increased pathogen pressure to loblolly pines in the southeastern USA.Keywords: brown-spot needle blight, loblolly pine, needle defoliation, plantation forestry
Procedia PDF Downloads 1521366 Semirings of Graphs: An Approach Towards the Algebra of Graphs
Authors: Gete Umbrey, Saifur Rahman
Abstract:
Graphs are found to be most capable in computing, and its abstract structures have been applied in some specific computations and algorithms like in phase encoding controller, processor microcontroller, and synthesis of a CMOS switching network, etc. Being motivated by these works, we develop an independent approach to study semiring structures and various properties by defining the binary operations which in fact, seems analogous to an existing definition in some sense but with a different approach. This work emphasizes specifically on the construction of semigroup and semiring structures on the set of undirected graphs, and their properties are investigated therein. It is expected that the investigation done here may have some interesting applications in theoretical computer science, networking and decision making, and also on joining of two network systems.Keywords: graphs, join and union of graphs, semiring, weighted graphs
Procedia PDF Downloads 1481365 Efficient Field-Oriented Motor Control on Resource-Constrained Microcontrollers for Optimal Performance without Specialized Hardware
Authors: Nishita Jaiswal, Apoorv Mohan Satpute
Abstract:
The increasing demand for efficient, cost-effective motor control systems in the automotive industry has driven the need for advanced, highly optimized control algorithms. Field-Oriented Control (FOC) has established itself as the leading approach for motor control, offering precise and dynamic regulation of torque, speed, and position. However, as energy efficiency becomes more critical in modern applications, implementing FOC on low-power, cost-sensitive microcontrollers pose significant challenges due to the limited availability of computational and hardware resources. Currently, most solutions rely on high-performance 32-bit microcontrollers or Application-Specific Integrated Circuits (ASICs) equipped with Floating Point Units (FPUs) and Hardware Accelerated Units (HAUs). These advanced platforms enable rapid computation and simplify the execution of complex control algorithms like FOC. However, these benefits come at the expense of higher costs, increased power consumption, and added system complexity. These drawbacks limit their suitability for embedded systems with strict power and budget constraints, where achieving energy and execution efficiency without compromising performance is essential. In this paper, we present an alternative approach that utilizes optimized data representation and computation techniques on a 16-bit microcontroller without FPUs or HAUs. By carefully optimizing data point formats and employing fixed-point arithmetic, we demonstrate how the precision and computational efficiency required for FOC can be maintained in resource-constrained environments. This approach eliminates the overhead performance associated with floating-point operations and hardware acceleration, providing a more practical solution in terms of cost, scalability and improved execution time efficiency, allowing faster response in motor control applications. Furthermore, it enhances system design flexibility, making it particularly well-suited for applications that demand stringent control over power consumption and costs.Keywords: field-oriented control, fixed-point arithmetic, floating point unit, hardware accelerator unit, motor control systems
Procedia PDF Downloads 141364 A Mean–Variance–Skewness Portfolio Optimization Model
Authors: Kostas Metaxiotis
Abstract:
Portfolio optimization is one of the most important topics in finance. This paper proposes a mean–variance–skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean–variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio's expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model.Keywords: evolutionary algorithms, portfolio optimization, skewness, stock selection
Procedia PDF Downloads 1981363 The Intersection of Artificial Intelligence and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.Keywords: AI, mathematics, machine learning, optimization techniques, image processing
Procedia PDF Downloads 141362 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 2921361 An Efficient Strategy for Relay Selection in Multi-Hop Communication
Authors: Jung-In Baik, Seung-Jun Yu, Young-Min Ko, Hyoung-Kyu Song
Abstract:
This paper proposes an efficient relaying algorithm to obtain diversity for improving the reliability of a signal. The algorithm achieves time or space diversity gain by multiple versions of the same signal through two routes. Relays are separated between a source and destination. The routes between the source and destination are set adaptive in order to deal with different channels and noises. The routes consist of one or more relays and the source transmits its signal to the destination through the routes. The signals from the relays are combined and detected at the destination. The proposed algorithm provides a better performance than the conventional algorithms in bit error rate (BER).Keywords: multi-hop, OFDM, relay, relaying selection
Procedia PDF Downloads 445