Search results for: advanced electrochemical oxidation
2821 Comparative Ante-Mortem Studies through Electrochemical Impedance Spectroscopy, Differential Voltage Analysis and Incremental Capacity Analysis on Lithium Ion Batteries
Authors: Ana Maria Igual-Munoz, Juan Gilabert, Marta Garcia, Alfredo Quijano-Lopez
Abstract:
Nowadays, several lithium-ion battery technologies are being commercialized. These chemistries present different properties that make them more suitable for different purposes. However, comparative studies showing the advantages and disadvantages of different chemistries are incomplete or scarce. Different non-destructive techniques are currently being employed to detect how ageing affects the active materials of lithium-ion batteries (LIBs). For instance, electrochemical impedance spectroscopy (EIS) is one of the most employed ones. This technique allows the user to identify the variations on the different resistances present in LIBs. On the other hand, differential voltage analysis (DVA) has shown to be a powerful technique to detect the processes affecting the different capacities present in LIBs. This technique shows variations in the state of health (SOH) and the capacities for one or both electrodes depending on their chemistry. Finally, incremental capacity analysis (ICA) is a widely known technique for being capable of detecting phase equilibria. It reminds of the commonly used cyclic voltamperometry, as it allows detecting some reactions taking place in the electrodes. In these studies, a set of ageing procedures have been applied to commercial batteries of different chemistries (NCA, NMC, and LFP). Afterwards, results of EIS, DVA, and ICA have been used to correlate them with the processes affecting each cell. Ciclability, overpotential, and temperature cycling studies envisage how the charge-discharge rates, cut-off voltage, and operation temperatures affect each chemistry. These studies will serve battery pack manufacturers, as for common battery users, as they will determine the different conditions affecting cells for each of the chemistry. Taking this into account, each cell could be adjusted to the final purpose of the battery application. Last but not least, all the degradation parameters observed are focused to be integrated into degradation models in the future. This fact will allow the implementation of the widely known digital twins to the degradation in LIBs.Keywords: lithium ion batteries, non-destructive analysis, different chemistries, ante-mortem studies, ICA, DVA, EIS
Procedia PDF Downloads 1282820 Remediation of Dye Contaminated Wastewater Using N, Pd Co-Doped TiO₂ Photocatalyst Derived from Polyamidoamine Dendrimer G1 as Template
Authors: Sarre Nzaba, Bulelwa Ntsendwana, Bekkie Mamba, Alex Kuvarega
Abstract:
The discharge of azo dyes such as Brilliant black (BB) into the water bodies has carcinogenic and mutagenic effects on humankind and the ecosystem. Conventional water treatment techniques fail to degrade these dyes completely thereby posing more problems. Advanced oxidation processes (AOPs) are promising technologies in solving the problem. Anatase type nitrogen-platinum (N, Pt) co-doped TiO₂ photocatalysts were prepared by a modified sol-gel method using amine terminated polyamidoamine generation 1 (PG1) as a template and source of nitrogen. The resultant photocatalysts were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), UV‐Vis diffuse reflectance spectroscopy, photoluminescence spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (RS), thermal gravimetric analysis (TGA). The results showed that the calcination atmosphere played an important role in the morphology, crystal structure, spectral absorption, oxygen vacancy concentration, and visible light photocatalytic performance of the catalysts. Anatase phase particles ranging between 9- 20 nm were also confirmed by TEM, SEM, and analysis. The origin of the visible light photocatalytic activity was attributed to both the elemental N and Pd dopants and the existence of oxygen vacancies. Co-doping imparted a shift in the visible region of the solar spectrum. The visible light photocatalytic activity of the samples was investigated by monitoring the photocatalytic degradation of brilliant black dye. Co-doped TiO₂ showed greater photocatalytic brilliant black degradation efficiency compared to singly doped N-TiO₂ or Pd-TiO₂ under visible light irradiation. The highest reaction rate constant of 3.132 x 10-2 min⁻¹ was observed for N, Pd co-doped TiO₂ (2% Pd). The results demonstrated that the N, Pd co-doped TiO₂ (2% Pd) sample could completely degrade the dye in 3 h, while the commercial TiO₂ showed the lowest dye degradation efficiency (52.66%).Keywords: brilliant black, Co-doped TiO₂, polyamidoamine generation 1 (PAMAM G1), photodegradation
Procedia PDF Downloads 1782819 Recycling of Spent Mo-Co Catalyst for the Recovery of Molybdenum Using Cyphos IL 104
Authors: Harshit Mahandra, Rashmi Singh, Bina Gupta
Abstract:
Molybdenum is widely used in thermocouples, anticathode of X-ray tubes and in the production of alloys of steels. Molybdenum compounds are extensively used as a catalyst in petroleum-refining industries for hydrodesulphurization. Activity of the catalysts decreases gradually with time and are dumped as hazardous waste due to contamination with toxic materials during the process. These spent catalysts can serve as a secondary source for metal recovery and help to sort out environmental and economical issues. In present study, extraction and separation of molybdenum from a Mo-Co spent catalyst leach liquor containing 0.870 g L⁻¹ Mo, 0.341 g L⁻¹ Co, 0.422 ×10⁻¹ g L⁻¹ Fe and 0.508 g L⁻¹ Al in 3 mol L⁻¹ HCl has been investigated using solvent extraction technique. The extracted molybdenum has been finally recovered as molybdenum trioxide. Leaching conditions used were- 3 mol L⁻¹ HCl, 90°C temperature, solid to liquid ratio (w/v) of 1.25% and reaction time of 60 minutes. 96.45% molybdenum was leached under these conditions. For the extraction of molybdenum from leach liquor, Cyphos IL 104 [trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate] in toluene was used as an extractant. Around 91% molybdenum was extracted with 0.02 mol L⁻¹ Cyphos IL 104, and 75% of molybdenum was stripped from the loaded organic phase with 2 mol L⁻¹ HNO₃ at A/O=1/1. McCabe Thiele diagrams were drawn to determine the number of stages required for the extraction and stripping of molybdenum. According to McCabe Thiele plots, two stages are required for both extraction and stripping of molybdenum at A/O=1/1 which were also confirmed by countercurrent simulation studies. Around 98% molybdenum was extracted in two countercurrent extraction stages with no co-extraction of cobalt and aluminum. Iron was removed from the loaded organic phase by scrubbing with 0.01 mol L⁻¹ HCl. Quantitative recovery of molybdenum is achieved in three countercurrent stripping stages at A/O=1/1. Trioxide of molybdenum was obtained from strip solution and was characterized by XRD, FE-SEM and EDX techniques. Molybdenum trioxide due to its distinctive electrochromic, thermochromic and photochromic properties is used as a smart material for sensors, lubricants, and Li-ion batteries. Molybdenum trioxide finds application in various processes such as methanol oxidation, metathesis, propane oxidation and in hydrodesulphurization. It can also be used as a precursor for the synthesis of MoS₂ and MoSe₂.Keywords: Cyphos IL 104, molybdenum, spent Mo-Co catalyst, recovery
Procedia PDF Downloads 2062818 Electrochemical Properties of Li-Ion Batteries Anode Material: Li₃.₈Cu₀.₁Ni₀.₁Ti₅O₁₂
Authors: D. Olszewska, J. Niewiedzial
Abstract:
In some types of Li-ion batteries carbon in the form of graphite is used. Unfortunately, carbon materials, in particular graphite, have very good electrochemical properties, but increase their volume during charge/discharge cycles, which may even lead to an explosion of the cell. The cell element may be replaced by a composite material consisting of lithium-titanium oxide Li4Ti5O12 (LTO) modified with copper and nickel ions and carbon derived from sucrose. This way you can improve the conductivity of the material. LTO is appropriate only for applications which do not require high energy density because of its high operating voltage (ca. 1.5 V vs. Li/Li+). Specific capacity of Li4Ti5O12 is high enough for utilization in Li-ion batteries (theoretical capacity 175 mAh·g-1) but it is lower than capacity of graphite anodes. Materials based on Li4Ti5O12 do not change their volume during charging/discharging cycles, however, LTO has low conductivity. Another positive aspect of the use of sucrose in the carbon composite material is to eliminate the addition of carbon black from the anode of the battery. Therefore, the proposed materials contribute significantly to environmental protection and safety of selected lithium cells. New anode materials in order to obtain Li3.8Cu0.1Ni0.1Ti5O12 have been prepared by solid state synthesis using three-way: i) stoichiometric composition of Li2CO3, TiO2, CuO, NiO (A- Li3.8Cu0.1Ni0.1Ti5O12); ii) stoichiometric composition of Li2CO3, TiO2, Cu(NO3)2, Ni(NO3)2 (B-Li3.8Cu0.1Ni0.1Ti5O12); and iii) stoichiometric composition of Li2CO3, TiO2, CuO, NiO calcined with 10% of saccharose (Li3.8Cu0.1Ni0.1Ti5O12-C). Structure of materials was studied by X-ray diffraction (XRD). The electrochemical properties were performed using appropriately prepared cell Li|Li+|Li3.8Cu0.1Ni0.1Ti5O12 for cyclic voltammetry and discharge/charge measurements. The cells were periodically charged and discharged in the voltage range from 1.3 to 2.0 V applying constant charge/discharge current in order to determine the specific capacity of each electrode. Measurements at various values of the charge/discharge current (from C/10 to 5C) were carried out. Cyclic voltammetry investigation was carried out by applying to the cells a voltage linearly changing over time at a rate of 0.1 mV·s-1 (in the range from 2.0 to 1.3 V and from 1.3 to 2.0 V). The XRD method analyzes show that composite powders were obtained containing, in addition to the main phase, 4.78% and 4% TiO2 in A-Li3.8Cu0.1Ni0.1O12 and B-Li3.8Cu0.1Ni0.1O12, respectively. However, Li3.8Cu0.1Ni0.1O12-C material is three-phase: 63.84% of the main phase, 17.49 TiO2 and 18.67 Li2TiO3. Voltammograms of electrodes containing materials A-Li3.8Cu0.1Ni0.1O12 and B-Li3.8Cu0.1Ni0.1O12 are correct and repeatable. Peak cathode occurs for both samples at a potential approx. 1.52±0.01 V relative to a lithium electrode, while the anodic peak at potential approx. 1.65±0.05 V relative to a lithium electrode. Voltammogram of Li3.8Cu0.1Ni0.1Ti5O12-C (especially for the first measurement cycle) is not correct. There are large variations in values of specific current, which are not characteristic for materials LTO. From the point of view of safety and environmentally friendly production of Li-ion cells eliminating soot and applying Li3.8Cu0.1Ni0.1Ti5O12-C as an active material of an anode in lithium-ion batteries seems to be a good alternative to currently used materials.Keywords: anode, Li-ion batteries, Li₄O₅O₁₂, spinel
Procedia PDF Downloads 1502817 Stage-Gate Framework Application for Innovation Assessment among Small and Medium-Sized Enterprises
Authors: Indre Brazauskaite, Vilte Auruskeviciene
Abstract:
The paper explores the Stage-Gate framework application for innovation maturity among small and medium-sized enterprises (SMEs). Innovation management becomes an essential business survival process for all sizes of organizations that can be evaluated and audited systemically. This research systemically defines and assesses the innovation process from the perspective of the company’s top management. Empirical research explores attitudes and existing practices of innovation management in SMEs in Baltic countries. It structurally investigates the current innovation management practices, level of standardization, and potential challenges in the area. Findings allow to structure of existing practices based on an institutionalized model and contribute to a more advanced understanding of the innovation process among SMEs. Practically, findings contribute to advanced decision-making and business planning in the process.Keywords: innovation measure, innovation process, SMEs, stage-gate framework
Procedia PDF Downloads 982816 Identification of the Key Enzyme of Roseoflavin Biosynthesis
Authors: V. Konjik, J. Schwartz, R. Sandhoff, M. Mack
Abstract:
The rising number of multi-resistant pathogens demands the development of new antibiotics in order to reduce the lethal risk of infections. Here, we investigate roseoflavin, a vitamin B2 analogue which is produced by Streptomyces davawensis and Streptomyces cinnabarinus. We consider roseoflavin to be a 'Trojan horse' compound. Its chemical structure is very similar to riboflavin but in fact it is a toxin. Furthermore, it is a clever strategy with regard to the delivery of an antibiotic to its site of action but also with regard to the production of this chemical: The producer cell has only to convert a vitamin (which is already present in the cytoplasm) into a vitamin analog. Roseoflavin inhibits the activity of Flavin depending proteins, which makes up to 3.5 % of predicted proteins in organisms sequenced so far. We sequentially knocked out gene clusters and later on single genes in order to find the ones which are involved in the roseoflavin biosynthesis. Consequently, we identified the gene rosB, coding for the protein carrying out the first step of roseoflavin biosynthesis, starting form Flavin mononucleotide. Here we show, that the protein RosB has so far unknown features. It is per se an oxidoreductase, a decarboxylase and an aminotransferase, all rolled into one enzyme. A screen of cofactors revealed needs of oxygen, NAD+, thiamine and glutamic acid to carry out its function. Surprisingly, thiamine is not only needed for the decaboxylation step, but also for the oxidation of 8-demethyl-8-formyl Flavin mononucleotide. We had managed to isolate three different Flavin intermediates with different oxidation states, which gave us a mechanistic insight of RosB functionality. Our work points to a so far new function of thiamine in Streptomyces davawensis. Additionally, RosB could be extremely useful for chemical synthesis. Careful engineering of RosB may allow the site-specific replacement of methyl groups by amino groups in polyaromatic compounds of commercial interest. Finally, the complete clarification of the roseoflavin biosynthesis opens the possibility of engineering cost-effective roseoflavin producing strains.Keywords: antibiotic, flavin analogue, roseoflavin biosynthesis, vitamin B2
Procedia PDF Downloads 2432815 Degradation Study of Food Colorants by SingletOxygen
Authors: A. T. Toci, M. V. B. Zanoni
Abstract:
The advanced oxidation processes have been defined as destructive technologies treatment of wastewater. These involve the formation of powerful oxidizing agents (usually hydroxyl radical .OH) capable of reacting with organic compounds present in wastewater, transforming damaging substances in CO2 and H2O (mineralization) or other innocuous products. However, the photochemical degradation with singlet oxygen has been little explored as oxidative pathway for the treatment of effluents containing food colorants. The molecular oxygen is an effective suppressor of organic molecules in the triplet excited state. One of the possible results of the physical withdrawal is the formation of singlet oxygen. Studies with singlet oxygen (1O2) show an high reactivity of the excited state of the molecule with olefins, aromatic hydrocarbons and a number of other organic and inorganic compounds. Its reactivity is about 2500 times larger than the oxygen in the ground state. Thus, in this work, it was studied the degradation of some dyes used in food industry (tartrazine, sunset yellow, erythrosine and carmoisine) by singlet oxygen. The sensitizer used for generating the 1O2 was methylene blue, which has a quantum yield generation of 0.50. Samples were prepared in water at a concentration of 5 ppm and irradiated with a sunlight simulator (Newport brand, model no. 67005) by consecutive 8h. The absorption spectra of UV-Vis molecules were made each hour irradiation. The degradation kinetics for each dye was determined using the maximum length of each dye absorption. The analysis by UV-Vis revealed that the processes were very efficient for the colorants sunset yellow and carmoisine. Both presented degradation kinetics of order zero with degradation constants 0.416 and 0.104, respectively. In the case of sunset yellow degradation reached 53% after 7h irradiation, Demonstrating the process efficiency. The erithrosine presented during the period irradiated a oscillating degradation kinetics, which requires further study. In the other hand, tartrazine was stable in the presence of 1O2. The investigation of the dyes degradation products owned degradation by 1O2 are underway, the techniques used for this are MS and NMR. The results of this study will enable the application of the cleanest methods for the treatment of industrial effluents, as there are other non-toxic and polluting molecules to generate 1O2.Keywords: food colourants, singlet oxygen, degradation, wastewater, oxidative
Procedia PDF Downloads 3972814 Formation of in-situ Ceramic Phase in N220 Nano Carbon Containing Low Carbon Mgo-C Refractory
Authors: Satyananda Behera, Ritwik Sarkar
Abstract:
In iron and steel industries, MgO–C refractories are widely used in basic oxygen furnaces, electric arc furnaces and steel ladles due to their excellent corrosion resistance, thermal shock resistance, and other excellent hot properties. Conventionally magnesia carbon refractories contain about 8-20 wt% of carbon but the use of carbon is also associate with disadvantages like oxidation, low fracture strength, high heat loss and higher carbon pick up in steel. So, MgO-C refractory having low carbon content without compromising the beneficial properties is the challenge. Nano carbon, having finer particles, can mix and distribute within the entire matrix uniformly and can result in improved mechanical, thermo-mechanical, corrosion and other refractory properties. Previous experiences with the use of nano carbon in low carbon MgO-C refractory have indicated an optimum range of use of nano carbon around 1 wt%. This optimum nano carbon content was used in MgO-C compositions with flaky graphite followed by aluminum and silicon metal powder as an anti-oxidant. These low carbon MgO-C refractory compositions were prepared by conventional manufacturing techniques. At the same time 16 wt. % flaky graphite containing conventional MgO-C refractory was also prepared parallel under similar conditions. The developed products were characterized for various refractory related properties. Nano carbon containing compositions showed better mechanical, thermo-mechanical properties, and oxidation resistance compared to that of conventional composition. Improvement in the properties is associated with the formation of in-situ ceramic phase-like aluminum carbide, silicon carbide, and magnesium aluminum spinel. Higher surface area and higher reactivity of N220 nano carbon black resulted in greater formation in-situ ceramic phases, even at a much lower amount. Nano carbon containing compositions were found to have improved properties in MgO-C refractories compared to that of the conventional ones at much lower total carbon content.Keywords: N220nano carbon black, refractory properties, conventionally manufacturing techniques, conventional magnesia carbon refractories
Procedia PDF Downloads 3672813 Comparison of the Thermal Behavior of Different Crystal Forms of Manganese(II) Oxalate
Authors: B. Donkova, M. Nedyalkova, D. Mehandjiev
Abstract:
Sparingly soluble manganese oxalate is an appropriate precursor for the preparation of nanosized manganese oxides, which have a wide range of technological application. During the precipitation of manganese oxalate, three crystal forms could be obtained – α-MnC₂O₄.2H₂O (SG C2/c), γ-MnC₂O₄.2H₂O (SG P212121) and orthorhombic MnC₂O₄.3H₂O (SG Pcca). The thermolysis of α-MnC₂O₄.2H₂O has been extensively studied during the years, while the literature data for the other two forms has been quite scarce. The aim of the present communication is to highlight the influence of the initial crystal structure on the decomposition mechanism of these three forms, their magnetic properties, the structure of the anhydrous oxalates, as well as the nature of the obtained oxides. For the characterization of the samples XRD, SEM, DTA, TG, DSC, nitrogen adsorption, and in situ magnetic measurements were used. The dehydration proceeds in one step with α-MnC₂O₄.2H2O and γ-MnC₂O₄.2H₂O, and in three steps with MnC₂O₄.3H2O. The values of dehydration enthalpy are 97, 149 and 132 kJ/mol, respectively, and the last two were reported for the first time, best to our knowledge. The magnetic measurements show that at room temperature all samples are antiferomagnetic, however during the dehydration of α-MnC₂O₄.2H₂O the exchange interaction is preserved, for MnC₂O₄.3H₂O it changes to ferromagnetic above 35°C, and for γ-MnC₂O₄.2H₂O it changes twice from antiferomagnetic to ferromagnetic above 70°C. The experimental results for magnetic properties are in accordance with the computational results obtained with Wien2k code. The difference in the initial crystal structure of the forms used determines different changes in the specific surface area during dehydration and different extent of Mn(II) oxidation during decomposition in the air; both being highest at α-MnC₂O₄.2H₂O. The isothermal decomposition of the different oxalate forms shows that the type and physicochemical properties of the oxides, obtained at the same annealing temperature depend on the precursor used. Based on the results from the non-isothermal and isothermal experiments, and from different methods used for characterization of the sample, a comparison of the nature, mechanism and peculiarities of the thermolysis of the different crystal forms of manganese oxalate was made, which clearly reveals the influence of the initial crystal structure. Acknowledgment: 'Science and Education for Smart Growth', project BG05M2OP001-2.009-0028, COST Action MP1306 'Modern Tools for Spectroscopy on Advanced Materials', and project DCOST-01/18 (Bulgarian Science Fund).Keywords: crystal structure, magnetic properties, manganese oxalate, thermal behavior
Procedia PDF Downloads 1712812 Establishment of the Regression Uncertainty of the Critical Heat Flux Power Correlation for an Advanced Fuel Bundle
Authors: L. Q. Yuan, J. Yang, A. Siddiqui
Abstract:
A new regression uncertainty analysis methodology was applied to determine the uncertainties of the critical heat flux (CHF) power correlation for an advanced 43-element bundle design, which was developed by Canadian Nuclear Laboratories (CNL) to achieve improved economics, resource utilization and energy sustainability. The new methodology is considered more appropriate than the traditional methodology in the assessment of the experimental uncertainty associated with regressions. The methodology was first assessed using both the Monte Carlo Method (MCM) and the Taylor Series Method (TSM) for a simple linear regression model, and then extended successfully to a non-linear CHF power regression model (CHF power as a function of inlet temperature, outlet pressure and mass flow rate). The regression uncertainty assessed by MCM agrees well with that by TSM. An equation to evaluate the CHF power regression uncertainty was developed and expressed as a function of independent variables that determine the CHF power.Keywords: CHF experiment, CHF correlation, regression uncertainty, Monte Carlo Method, Taylor Series Method
Procedia PDF Downloads 4162811 Integrated Braking and Traction Torque Vectoring Control Based on Vehicle Yaw Rate for Stability improvement of All-Wheel-Drive Electric Vehicles
Authors: Mahmoud Said Jneid, Péter Harth
Abstract:
EVs with independent wheel driving greatly improve vehicle stability in poor road conditions. Wheel torques can be precisely controlled through electric motors driven using advanced technologies. As a result, various types of advanced chassis assistance systems (ACAS) can be implemented. This paper proposes an integrated torque vectoring control based on wheel slip regulation in both braking and traction modes. For generating the corrective yaw moment, the vehicle yaw rate and sideslip angle are monitored. The corrective yaw moment is distributed into traction and braking torques based on an equal-opposite components approach. The proposed torque vectoring control scheme is validated in simulation and the results show its superiority when compared to conventional schemes.Keywords: all-wheel-drive, electric vehicle, torque vectoring, regenerative braking, stability control, traction control, yaw rate control
Procedia PDF Downloads 832810 Impedimetric Phage-Based Sensor for the Rapid Detection of Staphylococcus aureus from Nasal Swab
Authors: Z. Yousefniayejahr, S. Bolognini, A. Bonini, C. Campobasso, N. Poma, F. Vivaldi, M. Di Luca, A. Tavanti, F. Di Francesco
Abstract:
Pathogenic bacteria represent a threat to healthcare systems and the food industry because their rapid detection remains challenging. Electrochemical biosensors are gaining prominence as a novel technology for the detection of pathogens due to intrinsic features such as low cost, rapid response time, and portability, which make them a valuable alternative to traditional methodologies. These sensors use biorecognition elements that are crucial for the identification of specific bacteria. In this context, bacteriophages are promising tools for their inherent high selectivity towards bacterial hosts, which is of fundamental importance when detecting bacterial pathogens in complex biological samples. In this study, we present the development of a low-cost and portable sensor based on the Zeno phage for the rapid detection of Staphylococcus aureus. Screen-printed gold electrodes functionalized with the Zeno phage were used, and electrochemical impedance spectroscopy was applied to evaluate the change of the charge transfer resistance (Rct) as a result of the interaction with S. aureus MRSA ATCC 43300. The phage-based biosensor showed a linear range from 101 to 104 CFU/mL with a 20-minute response time and a limit of detection (LOD) of 1.2 CFU/mL under physiological conditions. The biosensor’s ability to recognize various strains of staphylococci was also successfully demonstrated in the presence of clinical isolates collected from different geographic areas. Assays using S. epidermidis were also carried out to verify the species-specificity of the phage sensor. We only observed a remarkable change of the Rct in the presence of the target S. aureus bacteria, while no substantial binding to S. epidermidis occurred. This confirmed that the Zeno phage sensor only targets S. aureus species within the genus Staphylococcus. In addition, the biosensor's specificity with respect to other bacterial species, including gram-positive bacteria like Enterococcus faecium and the gram-negative bacterium Pseudomonas aeruginosa, was evaluated, and a non-significant impedimetric signal was observed. Notably, the biosensor successfully identified S. aureus bacterial cells in a complex matrix such as a nasal swab, opening the possibility of its use in a real-case scenario. We diluted different concentrations of S. aureus from 108 to 100 CFU/mL with a ratio of 1:10 in the nasal swap matrices collected from healthy donors. Three different sensors were applied to measure various concentrations of bacteria. Our sensor indicated high selectivity to detect S. aureus in biological matrices compared to time-consuming traditional methods, such as enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and radioimmunoassay (RIA), etc. With the aim to study the possibility to use this biosensor to address the challenge associated to pathogen detection, ongoing research is focused on the assessment of the biosensor’s analytical performances in different biological samples and the discovery of new phage bioreceptors.Keywords: electrochemical impedance spectroscopy, bacteriophage, biosensor, Staphylococcus aureus
Procedia PDF Downloads 662809 A Novel NRIS Index to Evaluate Brain Activity in Prefrontal Regions While Listening to First and Second Languages for Long Time Periods
Authors: Kensho Takahashi, Ko Watanabe, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara
Abstract:
Near-infrared spectroscopy (NIRS) has been widely used as a non-invasive method to measure brain activity, but it is corrupted by baseline drift noise. Here we present a method to measure regional cerebral blood flow as a derivative of NIRS output. We investigate whether, when listening to languages, blood flow can reasonably localize and represent regional brain activity or not. The prefrontal blood flow distribution pattern when advanced second-language listeners listened to a second language (L2) was most similar to that when listening to their first language (L1) among the patterns of mean and standard deviation. In experiments with 25 healthy subjects, the maximum blood flow was localized to the left BA46 of advanced listeners. The blood flow presented is robust to baseline drift and stably localizes regional brain activity.Keywords: NIRS, oxy-hemoglobin, baseline drift, blood flow, working memory, BA46, first language, second language
Procedia PDF Downloads 5582808 Three-Dimensional Carbon Foam Based Asymmetric Assembly of Metal Oxides Electrodes for High-Performance Solid-State Micro-Supercapacitor
Authors: Sumana Kumar, Abha Misra
Abstract:
Micro-supercapacitors hold great attention as one of the promising energy storage devices satisfying the increasing quest for miniaturized and portable devices. Despite having impressive power density, superior cyclic lifetime, and high charge-discharge rates, micro-supercapacitors still suffer from low energy density, which limits their practical application. The energy density (E=1/2CV²) can be increased either by increasing specific capacitance (C) or voltage range (V). Asymmetric micro-supercapacitors have attracted great attention by using two different electrode materials to expand the voltage window and thus increase the energy density. Currently, versatile fabrication technologies such as inkjet printing, lithography, laser scribing, etc., are used to directly or indirectly pattern the electrode material; these techniques still suffer from scalable production and cost inefficiency. Here, we demonstrate the scalable production of a three-dimensional (3D) carbon foam (CF) based asymmetric micro-supercapacitor by spray printing technique on an array of interdigital electrodes. The solid-state asymmetric micro-supercapacitor comprised of CF-MnO positive electrode and CF-Fe₂O₃ negative electrode achieves a high areal capacitance of 18.4 mF/cm² (2326.8 mF/cm³) at 5 mV/s and a wider potential window of 1.4 V. Consequently, a superior energy density of 5 µWh/cm² is obtained, and high cyclic stability is confirmed with retention of the initial capacitance by 86.1% after 10000 electrochemical cycles. The optimized decoration of pseudocapacitive metal oxides in the 3D carbon network helps in high electrochemical utilization of materials where the 3D interconnected network of carbon provides overall electrical conductivity and structural integrity. The research provides a simple and scalable spray printing method to fabricate an asymmetric micro-supercapacitor using a custom-made mask that can be integrated on a large scale.Keywords: asymmetric micro-supercapacitors, high energy-density, hybrid materials, three-dimensional carbon-foam
Procedia PDF Downloads 1152807 Architectural Strategies for Designing Durable Steel Structural Systems
Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi
Abstract:
Nowadays, steel structures are used for not only common buildings but also high-rise construction and wide span covering. The advanced methods of construction as well as the advanced structural connections have a great effect on architecture. However a better use of steel structural systems will be achieved with the deep understanding of steel structures specifications and their substantial advantages. On the other hand, the steel structures face to the different environmental factors such as air flow which cause erosion and corrosion. With the time passing, the amount of these steel mass damages and also the imposed stress will be increased. In other words, the position of erosion in steel structures related to existing stresses indicates that effective environmental conditions will gradually decrease the structural resistance of steel components and result in decreasing the durability of steel components. In this paper, the durability of different steel structural components is evaluated and on the basis of these stress, architectural strategies for designing the system and the components of steel structures is recognized in order to achieve an optimum life cycle.Keywords: durability, bending stress, erosion in steel structure, life cycle
Procedia PDF Downloads 5602806 Treatment of Municipal Wastewater by Means of Uv-Assisted Irradiation Technologies: Fouling Studies and Optimization of Operational Parameters
Authors: Tooba Aslam, Efthalia Chatzisymeon
Abstract:
UV-assisted irradiation technologies are well-established for water and wastewater treatment. UVC treatments are widely used at large-scale, while UVA irradiation has more often been applied in combination with a catalyst (e.g. TiO₂ or FeSO₄) in smaller-scale systems. A technical issue of these systems is the formation of fouling on the quartz sleeves that houses the lamps. This fouling can prevent complete irradiation, therefore reducing the efficiency of the process. This paper investigates the effects of operational parameters, such as the type of wastewater, irradiation source, H₂O₂ addition, and water pH on fouling formation and, ultimately, the treatment of municipal wastewater. Batch experiments have been performed at lab-scale while monitoring water quality parameters including: COD, TS, TSS, TDS, temperature, pH, hardness, alkalinity, turbidity, TOC, UV transmission, UV₂₅₄ absorbance, and metal concentrations. The residence time of the wastewater in the reactor was 5 days in order to observe any fouling formation on the quartz surface. Over this period, it was observed that chemical oxygen demand (COD) decreased by 30% and 59% during photolysis (Ultraviolet A) and photo-catalysis (UVA/Fe/H₂O₂), respectively. Higher fouling formation was observed with iron-rich and phosphorous-rich wastewater. The highest rate of fouling was developed with phosphorous-rich wastewater, followed by the iron-rich wastewater. Photo-catalysis (UVA/Fe/H₂O₂) had better removal efficiency than photolysis (UVA). This was attributed to the Photo-Fenton reaction, which was initiated under these operational conditions. Scanning electron microscope (SEM) measurements of fouling formed on the quartz sleeves showed that particles vary in size, shape, and structure; some have more distinct structures and are generally larger and have less compact structure than the others. Energy-dispersive X-ray spectroscopy (EDX) results showed that the major metals present in the fouling cake were iron, phosphorous, and calcium. In conclusion, iron-rich wastewaters are more suitable for UV-assisted treatment since fouling formation on quartz sleeves can be minimized by the formation of oxidizing agents during treatment, such as hydroxyl radicals.Keywords: advanced oxidation processes, photo-fenton treatment, photo-catalysis, wastewater treatment
Procedia PDF Downloads 772805 Prognostic Value of Tumor Markers in Younger Patients with Breast Cancer
Authors: Lola T. Alimkhodjaeva, Lola T. Zakirova, Soniya S. Ziyavidenova
Abstract:
Background: Breast cancer occupies the first place among the cancer in women in the world. It is urgent today to study the role of molecular markers which are capable of predicting the dynamics and outcome of the disease. The aim of this study is to define the prognostic value of the content of estrogen receptor (ER), progesterone receptor (PgR), and amplification of HER-2 / neu oncoprotein by studying 3 and 5-year overall and relapse-free survival in 470 patients with primary operable and 280 patients with locally–advanced breast cancer. Materials and methods: Study results of 3 and 5-year overall and relapse-free survival, depending on the content of RE, PgR in primary operable patients showed that ER positive (+) and PgR (+) survival was 100 (96.2%) and 97.3 (94.6%), for ER negative (-) and PgR (-) - 69.2 (60.3%) and 65.4 (57.7%), for ER positive (+) and negative PgR (-) 87.4 (80.1%) and 81.5 (79.3%), for ER negative (-) and positive PgR (+) - 97.4 (93.4%) and 90.4 (88.5%), respectively. Survival results depended also on the level of HER-2 / neu expression. In patients with HER-2 / neu negative the survival rates were as follows: 98.6 (94.7%) and 96.2 (92.3%). In group of patients with the level of HER-2 / neu (2+) expression these figures were: 45.3 (44.3%) and 45.1 (40.2%), and in group of patients with the level of HER-2 / neu (3+) expression - 41.2 (33.1%) and 34.3 (29.4%). The combination of ER negative (-), PgR (-), HER-2 / neu (-) they were 27.2 (25.4%) and 19.5 (15.3%), respectively. In patients with locally-advanced breast cancer the results of 3 and 5-year OS and RFS for ER (+) and PgR (+) were 76.3 (69.3%) and 62.2 (61.4%), for ER (-) and RP (-) 29.1 (23.7%) and 18.3 (12.6%), for ER (+) and PgR (-) 61.2 (47.2%) and 39.4 (25.6%), for ER (-) and PgR (+) 54.3 (43.1%) and 41.3 (18.3%), respectively. The level of HER-2 / neu expression also affected the survival results. Therefore, in HER-2/ neu negative patients the survival rate was 74.1 (67.6%) and 65.1 (57.3%), with the level of expression (2+) 20.4 (14.2%) and 8.6 (6.4%), with the level of expression (3+) 6.2 (3.1%) and 1.2 (1.5%), respectively. The combination for ER, PgR, HER-2 / neu negative was 22.1 (14.3%) and 8.4 (1.2%). Conclusion: Thus, the presence of steroid hormone receptors in breast tumor tissues at primary operable and locally- advanced process as the lack of HER-2/neu oncoprotein correlates with the highest rates of 3- and 5-year overall and relapse-free survival. The absence of steroid hormone receptors as well as of HER-2/neu overexpression in malignant breast tissues significantly degrades the 3- and 5-year overall and relapse-free survival. Tumors with ER, PgR and HER-2/neu negative have the most unfavorable prognostics.Keywords: breast cancer, estrogen receptor, oncoprotein, progesterone receptor
Procedia PDF Downloads 1902804 MnO₂-Carbon Nanotubes Catalyst for Enhanced Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cell
Authors: Abidullah, Basharat Hussain, Jong Seok Kim
Abstract:
Polymer electrolyte membrane fuel cell (PEMFC) is an electrochemical cell, which undergoes an oxygen reduction reaction to produce electrical energy. Platinum (Pt) metal has been used as a catalyst since its inception, but expensiveness is the major obstacle in the commercialization of fuel cells. Herein a non-precious group metal (NPGM) is employed instead of Pt to reduce the cost of PEMFCs. Manganese dioxide impregnated carbon nanotubes (MnO₂-CNTs composite) is a catalyst having excellent electrochemical properties and offers a better alternative to the Platinum-based PEMFC. The catalyst is synthesized by impregnating the transition metal on large surface carbonaceous CNTs by hydrothermal synthesis techniques. To enhance the catalytic activity and increase the volumetric current density, the sample was pyrolyzed at 800ᵒC under a nitrogen atmosphere. During pyrolysis, the nitrogen was doped in the framework of CNTs. Then the material was treated with acid for removing the unreacted metals and adding oxygen functional group to the CNT framework. This process ameliorates the catalytic activity of the manganese-based catalyst. The catalyst has been characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and the catalyst activity has been examined by rotating disc electrode (RDE) experiment. The catalyst was strong enough to withstand an austere alkaline environment in experimental conditions and had a high electrocatalytic activity for oxygen reduction reaction (ORR). Linear Sweep Voltammetry (LSV) depicts an excellent current density of -4.0 mA/cm² and an overpotential of -0.3V vs. standard calomel electrode (SCE) in 0.1M KOH electrolyte. Rotating disk electrode (RDE) was conducted at 400, 800, 1200, and 1600 rpm. The catalyst exhibited a higher methanol tolerance and long term durability with respect to commercial Pt/C. The results for MnO₂-CNT show that the low-cost catalyst will supplant the expensive Pt/C catalyst in the fuel cell.Keywords: carbon nanotubes, methanol fuel cell, oxygen reduction reaction, MnO₂-CNTs
Procedia PDF Downloads 1252803 Morphology Evolution in Titanium Dioxide Nanotubes Arrays Prepared by Electrochemical Anodization
Authors: J. Tirano, H. Zea, C. Luhrs
Abstract:
Photocatalysis has established as viable option in the development of processes for the treatment of pollutants and clean energy production. This option is based on the ability of semiconductors to generate an electron flow by means of the interaction with solar radiation. Owing to its electronic structure, TiO₂ is the most frequently used semiconductors in photocatalysis, although it has a high recombination of photogenerated charges and low solar energy absorption. An alternative to reduce these limitations is the use of nanostructured morphologies which can be produced during the synthesis of TiO₂ nanotubes (TNTs). Therefore, if possible to produce vertically oriented nanostructures it will be possible to generate a greater contact area with electrolyte and better charge transfer. At present, however, the development of these innovative structures still presents an important challenge for the development of competitive photoelectrochemical devices. This research focuses on established correlations between synthesis variables and 1D nanostructure morphology which has a direct effect on the photocatalytic performance. TNTs with controlled morphology were synthesized by two-step potentiostatic anodization of titanium foil. The anodization was carried out at room temperature in an electrolyte composed of ammonium fluoride, deionized water and ethylene glycol. Consequent thermal annealing of as-prepared TNTs was conducted in the air between 450 °C-550 °C. Morphology and crystalline phase of the TNTs were carried out by SEM, EDS and XRD analysis. As results, the synthesis conditions were established to produce nanostructures with specific morphological characteristics. Anatase was the predominant phase of TNTs after thermal treatment. Nanotubes with 10 μm in length, 40 nm in pore diameter and a surface-volume ratio of 50 are important in photoelectrochemical applications based on TiO₂ due to their 1D characteristics, high surface-volume ratio, reduced radial dimensions and high oxide/electrolyte interface. Finally, this knowledge can be used to improve the photocatalytic activity of TNTs by making additional surface modifications with dopants that improve their efficiency.Keywords: electrochemical anodization, morphology, self-organized nanotubes, TiO₂ nanotubes
Procedia PDF Downloads 1582802 Study of the Influence of Refractory Nitride Additives on Hydrogen Storage Properties of Ti6Al4V-Based Materials Produced by Spark Plasma Sintering
Authors: John Olorunfemi Abe, Olawale Muhammed Popoola, Abimbola Patricia Idowu Popoola
Abstract:
Hydrogen is an appealing alternative to fossil fuels because of its abundance, low weight, high energy density, and relative lack of contaminants. However, its low density presents a number of storage challenges. Therefore, this work studies the influence of refractory nitride additives consisting of 5 wt. % each of hexagonal boron nitride (h-BN), titanium nitride (TiN), and aluminum nitride (AlN) on hydrogen storage and electrochemical characteristics of Ti6Al4V-based materials produced by spark plasma sintering. The microstructure and phase constituents of the sintered materials were characterized using scanning electron microscopy (in conjunction with energy-dispersive spectroscopy) and X-ray diffraction, respectively. Pressure-composition-temperature (PCT) measurements were used to assess the hydrogen absorption/desorption behavior, kinetics, and storage capacities of the sintered materials, respectively. The pure Ti6Al4V alloy displayed a two-phase (α+β) microstructure, while the modified composites exhibited apparent microstructural modifications with the appearance of nitride-rich secondary phases. It is found that the diffusion process controls the kinetics of the hydrogen absorption. Thus, a faster rate of hydrogen absorption at elevated temperatures ensued. The additives acted as catalysts, lowered the activation energy and accelerated the rate of hydrogen sorption in the composites relative to the monolithic alloy. Ti6Al4V-5 wt. % h-BN appears to be the most promising candidate for hydrogen storage (2.28 wt. %), followed by Ti6Al4V-5 wt. % TiN (2.09 wt. %), whereas Ti6Al4V-5 wt. % AlN shows the least hydrogen storage performance (1.35 wt. %). Accordingly, the developed hydride system (Ti6Al4V-5h-BN) may be competitive for use in applications involving short-range continuous vehicles (~50-100km) as well as stationary applications such as electrochemical devices, large-scale storage cylinders in hydrogen production locations, and hydrogen filling stations.Keywords: hydrogen storage, Ti6Al4V hydride system, pressure-composition-temperature measurements, refractory nitride additives, spark plasma sintering, Ti6Al4V-based materials
Procedia PDF Downloads 722801 Top-Down Approach for Fabricating Hematite Nanowire Arrays
Authors: Seungmin Shin, Jin-Baek Kim
Abstract:
Hematite (α-Fe2O3) has very good semiconducting properties with a band gap of 2.1 eV and is antiferromagnetic. Due to its electrochemical stability, low toxicity, wide abundance, and low-cost, hematite, it is a particularly attractive material for photoelectrochemical cells. Additionally, hematite has also found applications in gas sensing, field emission, heterogeneous catalysis, and lithium-ion battery electrodes. Here, we discovered a new universal top-down method for the synthesis of one-dimensional hematite nanowire arrays. Various shapes and lengths of hematite nanowire have been easily fabricated over large areas by sequential processes. The obtained hematite nanowire arrays are promising candidates as photoanodes in photoelectrochemical solar cells.Keywords: hematite, lithography, nanowire, top-down process
Procedia PDF Downloads 2492800 Influence of Sodium Acetate on Electroless Ni-P Deposits and Effect of Heat Treatment on Corrosion Behavior
Authors: Y. El Kaissi, M. Allam, A. Koulou, M. Galai, M. Ebn Touhami
Abstract:
The aim of our work is to develop an industrial bath of nickel alloy deposit on mild steel. The optimization of the operating parameters made it possible to obtain a stable Ni-P alloy deposition formulation. To understand the reaction mechanism of the deposition process, a kinetic study was performed by cyclic voltammetry and by electrochemical impedance spectroscopy (EIS). The coatings obtained have a very high corrosion resistance in a very aggressive acid medium which increases with the heat treatment.Keywords: cyclic voltammetry, EIS, electroless Ni–P coating, heat treatment, potentiodynamic polarization
Procedia PDF Downloads 3012799 Developing Manufacturing Process for the Graphene Sensors
Authors: Abdullah Faqihi, John Hedley
Abstract:
Biosensors play a significant role in the healthcare sectors, scientific and technological progress. Developing electrodes that are easy to manufacture and deliver better electrochemical performance is advantageous for diagnostics and biosensing. They can be implemented extensively in various analytical tasks such as drug discovery, food safety, medical diagnostics, process controls, security and defence, in addition to environmental monitoring. Development of biosensors aims to create high-performance electrochemical electrodes for diagnostics and biosensing. A biosensor is a device that inspects the biological and chemical reactions generated by the biological sample. A biosensor carries out biological detection via a linked transducer and transmits the biological response into an electrical signal; stability, selectivity, and sensitivity are the dynamic and static characteristics that affect and dictate the quality and performance of biosensors. In this research, a developed experimental study for laser scribing technique for graphene oxide inside a vacuum chamber for processing of graphene oxide is presented. The processing of graphene oxide (GO) was achieved using the laser scribing technique. The effect of the laser scribing on the reduction of GO was investigated under two conditions: atmosphere and vacuum. GO solvent was coated onto a LightScribe DVD. The laser scribing technique was applied to reduce GO layers to generate rGO. The micro-details for the morphological structures of rGO and GO were visualised using scanning electron microscopy (SEM) and Raman spectroscopy so that they could be examined. The first electrode was a traditional graphene-based electrode model, made under normal atmospheric conditions, whereas the second model was a developed graphene electrode fabricated under a vacuum state using a vacuum chamber. The purpose was to control the vacuum conditions, such as the air pressure and the temperature during the fabrication process. The parameters to be assessed include the layer thickness and the continuous environment. Results presented show high accuracy and repeatability achieving low cost productivity.Keywords: laser scribing, lightscribe DVD, graphene oxide, scanning electron microscopy
Procedia PDF Downloads 1202798 A 5G Architecture Based to Dynamic Vehicular Clustering Enhancing VoD Services Over Vehicular Ad hoc Networks
Authors: Lamaa Sellami, Bechir Alaya
Abstract:
Nowadays, video-on-demand (VoD) applications are becoming one of the tendencies driving vehicular network users. In this paper, considering the unpredictable vehicle density, the unexpected acceleration or deceleration of the different cars included in the vehicular traffic load, and the limited radio range of the employed communication scheme, we introduce the “Dynamic Vehicular Clustering” (DVC) algorithm as a new scheme for video streaming systems over VANET. The proposed algorithm takes advantage of the concept of small cells and the introduction of wireless backhauls, inspired by the different features and the performance of the Long Term Evolution (LTE)- Advanced network. The proposed clustering algorithm considers multiple characteristics such as the vehicle’s position and acceleration to reduce latency and packet loss. Therefore, each cluster is counted as a small cell containing vehicular nodes and an access point that is elected regarding some particular specifications.Keywords: video-on-demand, vehicular ad-hoc network, mobility, vehicular traffic load, small cell, wireless backhaul, LTE-advanced, latency, packet loss
Procedia PDF Downloads 1402797 Electrochemical and Microstructure Properties of Chromium-Graphene and SnZn-Graphene Oxide Composite Coatings
Authors: Rekha M. Y., Punith Kumar, Anshul Kamboj, Chandan Srivastava
Abstract:
Coatings plays an important role in providing protection for a substrate and in improving the surface quality. Graphene/graphene oxide (GO) using in coating systems provides an environmental friendly solution towards protection against corrosion. Issues such as, lack of scale, high cost, low quality limits the practical application of graphene/GO as corrosion resistant coating material. One other way to employ these materials for corrosion protection is to incorporate them into coatings that are conventionally used for corrosion protection. Due to the extraordinary properties of graphene/GO, it has been demonstrated that the coatings containing graphene/GO are more corrosion resistant than pure metal/alloy coatings. In the present work, Cr-graphene and SnZn-GO composite coatings were investigated in enhancing the corrosion resistant property when compared to pure Cr coating and pure SnZn coating respectively. All the coatings were electrodeposited over mild-steel substrate. Graphene and GO were synthesized by electrochemical exfoliation method and modified Hummers’ method respectively. In Cr coatings, the microstructural study revealed that the addition of formic acid in the coatings reduced the number of cracks in the coatings. Further addition of graphene in Cr coating enhanced the Cr coating’s morphology. Chemically synthesized ZnO nanoparticles were also embedded in the as-deposited Cr and Cr-graphene coatings to enhance the adhesion of the coating, to improve the surface finish and to increase the corrosion resistant property of the coatings. Diffraction analysis revealed that the addition of graphene also altered the texture of the Cr coatings. In SnZn alloy coatings, the morphological and topographical characterization revealed that the relative smoothness and compactness of the coatings increased with increase in the addition of GO in the coatings. The microstructural investigation revealed large-scale segregation of Zn-rich and Sn-rich phases in the pure SnZn coating. However, in SnZn-GO composite coating the uniform distribution of Zn phase in the Sn-rich matrix was observed. This distribution caused the early and uniform formation of ZnO, which is the corrosion product, yielding better corrosion resistance for the SnZn-GO composite coatings as compared to pure SnZn coating. A significant improvement in corrosion resistance in terms of reduction in corrosion current and corrosion rate and increase in the polarization resistance was observed in Cr coating containing graphene and in SnZn coatings containing GO.Keywords: coatings, corrosion, electrodeposition, graphene, graphene-oxide
Procedia PDF Downloads 1802796 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning
Authors: Umamaheswari Shanmugam, Silvia Ronchi, Radu Vornicu
Abstract:
Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that are able to use the large amount and variety of data generated during healthcare services every day. As we read the news, over 500 machine learning or other artificial intelligence medical devices have now received FDA clearance or approval, the first ones even preceding the year 2000. One of the big advantages of these new technologies is the ability to get experience and knowledge from real-world use and to continuously improve their performance. Healthcare systems and institutions can have a great benefit because the use of advanced technologies improves the same time efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and also to protect patients’ safety. The evolution and the continuous improvement of software used in healthcare must take into consideration the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device approval, but they are necessary to ensure performance, quality, and safety, and at the same time, they can be a business opportunity if the manufacturer is able to define in advance the appropriate regulatory strategy. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems.
Procedia PDF Downloads 892795 Reduction of Chlordecone Rates in Bioelectrochemicals Systems from Water and Sediment Swamp Mangrove in Absence of a Redox Mediator
Authors: Malory Beaujolais
Abstract:
Chlordecone is an organochlorine pesticide with a bishomocubane structure which led to high stability in organic matter. Microbial fuel cell is a type of electrochemical system that can convert organic matters into electricity thanks to electroactive bacteria. This technique has been used with mangrove swamp from Martinique to try to reduce chlordecone rates. Those experiments led to characterize the behavior of the electroactive biofilm formed at the cathode, without added redox mediator. The designed bioelectrochemical system seems to provide the necessary conditions for chlordecone degradation.Keywords: bioelectrochemistry, bioremediation, chlordecone, mangrove swamp
Procedia PDF Downloads 402794 Early Identification and Early Intervention: Pre and Post Diagnostic Tests in Mathematics Courses
Authors: Kailash Ghimire, Manoj Thapa
Abstract:
This study focuses on early identification of deficiencies in pre-required areas of students who are enrolled in College Algebra and Calculus I classes. The students were given pre-diagnostic tests on the first day of the class before they are provided with the syllabus. The tests consist of prerequisite, uniform and advanced content outlined by the University System of Georgia (USG). The results show that 48% of students in College Algebra are lacking prerequisite skills while 52% of Calculus I students are lacking prerequisite skills but, interestingly these students are prior exposed to uniform content and advanced content. The study is still in progress and this paper contains the outcome from Fall 2017 and Spring 2018. In this paper, early intervention used in these classes: two days vs three days meeting a week and students’ self-assessment using exam wrappers and their effectiveness on students’ learning will also be discussed. A result of this study shows that there is an improvement on Drop, Fail and Withdraw (DFW) rates by 7%-10% compared to those in previous semesters.Keywords: student at risk, diagnostic tests, identification, intervention, normalization gain, validity of tests
Procedia PDF Downloads 2082793 Mesoporous Na2Ti3O7 Nanotube-Constructed Materials with Hierarchical Architecture: Synthesis and Properties
Authors: Neumoin Anton Ivanovich, Opra Denis Pavlovich
Abstract:
Materials based on titanium oxide compounds are widely used in such areas as solar energy, photocatalysis, food industry and hygiene products, biomedical technologies, etc. Demand for them has also formed in the battery industry (an example of this is the commercialization of Li4Ti5O12), where much attention has recently been paid to the development of next-generation systems and technologies, such as sodium-ion batteries. This dictates the need to search for new materials with improved characteristics, as well as ways to obtain them that meet the requirements of scalability. One of the ways to solve these problems can be the creation of nanomaterials that often have a complex of physicochemical properties that radically differ from the characteristics of their counterparts in the micro- or macroscopic state. At the same time, it is important to control the texture (specific surface area, porosity) of such materials. In view of the above, among other methods, the hydrothermal technique seems to be suitable, allowing a wide range of control over the conditions of synthesis. In the present study, a method was developed for the preparation of mesoporous nanostructured sodium trititanate (Na2Ti3O7) with a hierarchical architecture. The materials were synthesized by hydrothermal processing and exhibit a complex hierarchically organized two-layer architecture. At the first level of the hierarchy, materials are represented by particles having a roughness surface, and at the second level, by one-dimensional nanotubes. The products were found to have high specific surface area and porosity with a narrow pore size distribution (about 6 nm). As it is known, the specific surface area and porosity are important characteristics of functional materials, which largely determine the possibilities and directions of their practical application. Electrochemical impedance spectroscopy data show that the resulting sodium trititanate has a sufficiently high electrical conductivity. As expected, the synthesized complexly organized nanoarchitecture based on sodium trititanate with a porous structure can be practically in demand, for example, in the field of new generation electrochemical storage and energy conversion devices.Keywords: sodium trititanate, hierarchical materials, mesoporosity, nanotubes, hydrothermal synthesis
Procedia PDF Downloads 1072792 Green Corrosion Inhibitor from Essential Oil of Linseed for Aluminum in Na2CO3 Solution
Authors: L. Bazzi, E. Azzouyahar, A. Lamiri, M. Essahli
Abstract:
Effect of addition of linseed oil (LSO) on the corrosion of aluminium in 0.1 M Na2CO3 has been studied by weight loss measurements, potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements. The inhibition efficiency was found to increase with inhibitor content to attain 70% for LSO at 4g/L. Inhibition efficiency E (%) obtained from the various methods is in good agreement. The temperature effect on the corrosion behavior of aluminium was studied by potentiodynamic technique in the range from 298 to 308 K.Keywords: aluminum, corrosion, green inhibitors, carbonate, linseed oil
Procedia PDF Downloads 360