Search results for: Collective Intelligence
1389 GAILoc: Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 761388 Knowledge, Attitude, and Practice Related to Potential Application of Artificial Intelligence in Health Supply Chain
Authors: Biniam Bahiru Tufa, Hana Delil Tesfaye, Seife Demisse Legesse, Manaye Tamire
Abstract:
The healthcare industry is witnessing a digital transformation, with artificial intelligence (AI) offering potential solutions for challenges in health supply chain management (HSCM). However, the adoption of AI in this field remains limited. This research aimed to assess the knowledge, attitude, and practice of AI among students and employees in the health supply chain sector in Ethiopia. Using an explanatory case study research design with a concurrent mixed approach, quantitative and qualitative data were collected simultaneously. The study included 153 participants comprising students and employed health supply chain professionals working in various sectors. The majority had a pharmacy background, and one-third of the participants were male. Most respondents were under 35 years old, and around 68.6% had less than 10 years of experience. The findings revealed that 94.1% of participants had prior knowledge of AI, but only 35.3% were aware of its application in the supply chain. Moreover, the majority indicated that their training curriculum did not cover AI in health supply chain management. Participants generally held positive attitudes toward the necessity of AI for improving efficiency, effectiveness, and cost savings in the supply chain. However, many expressed concerns about its impact on job security and satisfaction, considering it as a burden Graduate students demonstrated higher knowledge of AI compared to employed staff, while graduate students also exhibited a more positive attitude toward AI. The study indicated low previous utilization and potential future utilization of AI in the health supply chain, suggesting untapped opportunities for improvement. Overall, while supply chain experts and graduate students lacked sufficient understanding of AI and its significance, they expressed favorable views regarding its implementation in the sector. The study recommends that the Ethiopian government and international organizations consider introducing AI in the undergraduate pharmacy curriculum and promote its integration into the health supply chain field.Keywords: knowledge, attitude, practice, supply chain, articifial intellegence
Procedia PDF Downloads 921387 Recovery of Rare Earths and Scandium from in situ Leaching Solutions
Authors: Maxim S. Botalov, Svetlana М. Titova, Denis V. Smyshlyaev, Grigory M. Bunkov, Evgeny V. Kirillov, Sergey V. Kirillov, Maxim A. Mashkovtsev, Vladimir N. Rychkov
Abstract:
In uranium production, in-situ leaching (ISL) with its relatively low cost has become an important technology. As the orebody containing uranium most often contains a considerable value of other metals, particularly rare earth metals it has rendered feasible to recover the REM from the barren ISL solutions, from which the major uranium content has been removed. Ural Federal University (UrFU, Ekaterinburg, Russia) have performed joint research on the development of industrial technologies for the extraction of REM and Scandium compounds from Uranium ISL solutions. Leaching experiments at UrFU have been supported with multicomponent solution model. The experimental work combines solvent extraction with advanced ion exchange methodology in a pilot facility capable of treating 500 kg/hr of solids. The pilot allows for the recovery of a 99% concentrate of scandium oxide and collective concentrate with over 50 % REM content, with further recovery of heavy and light REM concentrates (99%).Keywords: extraction, ion exchange, rare earth elements, scandium
Procedia PDF Downloads 2331386 The Role of Emotional Intelligence in the Manager's Psychophysiological Activity during a Performance-Review Discussion
Authors: Mikko Salminen, Niklas Ravaja
Abstract:
Emotional intelligence (EI) consists of skills for monitoring own emotions and emotions of others, skills for discriminating different emotions, and skills for using this information in thinking and actions. EI enhances, for example, work outcomes and organizational climate. We suggest that the role and manifestations of EI should also be studied in real leadership situations, especially during the emotional, social interaction. Leadership is essentially a process to influence others for reaching a certain goal. This influencing happens by managerial processes and computer-mediated communication (e.g. e-mail) but also by face-to-face, where facial expressions have a significant role in conveying emotional information. Persons with high EI are typically perceived more positively, and they have better social skills. We hypothesize, that during social interaction high EI enhances the ability to detect other’s emotional state and controlling own emotional expressions. We suggest, that emotionally intelligent leader’s experience less stress during social leadership situations, since they have better skills in dealing with the related emotional work. Thus the high-EI leaders would be more able to enjoy these situations, but also be more efficient in choosing appropriate expressions for building constructive dialogue. We suggest, that emotionally intelligent leaders show more positive emotional expressions than low-EI leaders. To study these hypotheses we observed performance review discussions of 40 leaders (24 female) with 78 (45 female) of their followers. Each leader held a discussion with two followers. Psychophysiological methods were chosen because they provide objective and continuous data from the whole duration of the discussions. We recorded sweating of the hands (electrodermal activation) by electrodes placed to the fingers of the non-dominant hand to assess the stress-related physiological arousal of the leaders. In addition, facial electromyography was recorded from cheek (zygomaticus major, activated during e.g. smiling) and periocular (orbicularis oculi, activated during smiling) muscles using electrode pairs placed on the left side of the face. Leader’s trait EI was measured with a 360 questionnaire, filled by each leader’s followers, peers, managers and by themselves. High-EI leaders had less sweating of the hands (p = .007) than the low-EI leaders. It is thus suggested that the high-EI leaders experienced less physiological stress during the discussions. Also, high scores in the factor “Using of emotions” were related to more facial muscle activation indicating positive emotional expressions (cheek muscle: p = .048; periocular muscle: p = .076, almost statistically significant). The results imply that emotionally intelligent managers are positively relaxed during s social leadership situations such as a performance review discussion. The current study also highlights the importance of EI in face-to-face social interaction, given the central role facial expressions have in interaction situations. The study also offers new insight to the biological basis of trait EI. It is suggested that the identification, forming, and intelligently using of facial expressions are skills that could be trained during leadership development courses.Keywords: emotional intelligence, leadership, performance review discussion, psychophysiology, social interaction
Procedia PDF Downloads 2461385 Gas Permeation Behavior of Single and Mixed Gas Components Using an Asymmetric Ceramic Membrane
Authors: Ngozi Claribelle Nwogu, Mohammed Nasir Kajama, Godson Osueke, Edward Gobina
Abstract:
A unique sol–gel dip-coating process to form an asymmetric silica membrane with improved membrane performance and reproducibility has been reported. First, we deposited repeatedly a silica solution on top of a commercial alumina membrane support to improve its structural make up. The coated membrane is further processed under clean room conditions to avoid dust impurity and subsequent drying in an oven for high thermal, chemical and physical stability. The resulting asymmetric membrane exhibits a gradual change in the membrane layer thickness. Compared to a single-layer process using only the membrane support, the dual-layer process improves both flux and selectivity. For the scientifically significant difficulties of natural gas purification, collective CO2, CH4 and H2 gas fluxes and separation factors obtained gave reasonably excellent values. In addition, the membrane selectively separated hydrogen as demonstrated by a high concentration of hydrogen recovery.Keywords: gas permeation, silica membrane, separation factor, membrane layer thickness
Procedia PDF Downloads 3591384 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 501383 Flexible and Integrated Transport System in India
Authors: Aayushi Patidar, Nishant Parihar
Abstract:
One of the principal causes of failure in existing vehicle brokerage solutions is that they require the introduction of a single trusted third party to whom transport offers and requirements are sent, and which solves the scheduling problem. Advances in planning and scheduling could be utilized to address the scalability issues inherent here, but such refinements do not address the key need to decentralize decision-making. This is not to say that matchmaking of potential transport suppliers to consumers is not essential, but information from such a service should inform rather than determining the transport options for customers. The approach that is proposed, is the use of intelligent commuters that act within the system and to identify options open to users, weighing the evidence for desirability of each option given a model of the user’s priorities, and to drive dialogue among commuters in aiding users to solve their individual (or collective) transport goals. Existing research in commuter support for transport resource management has typically been focused on the provider. Our vision is to explore both the efficient use of limited transport resources and also to support the passengers in the transportation flexibility & integration among various modes in India.Keywords: flexibility, integration, service design, technology
Procedia PDF Downloads 3541382 Life in Bequia in the Era of Climate Change: Societal Perception of Adaptation and Vulnerability
Authors: Sherry Ann Ganase, Sandra Sookram
Abstract:
This study examines adaptation measures and factors that influence adaptation decisions in Bequia by using multiple linear regression and a structural equation model. Using survey data, the results suggest that households are knowledgeable and concerned about climate change but lack knowledge about the measures needed to adapt. The findings from the SEM suggest that a positive relationship exist between vulnerability and adaptation, vulnerability and perception, along with a negative relationship between perception and adaptation. This suggests that being aware of the terms associated with climate change and knowledge about climate change is insufficient for implementing adaptation measures; instead the risk and importance placed on climate change, vulnerability experienced with household flooding, drainage and expected threat of future sea level are the main factors that influence the adaptation decision. The results obtained in this study are beneficial to all as adaptation requires a collective effort by stakeholders.Keywords: adaptation, Bequia, multiple linear regression, structural equation model
Procedia PDF Downloads 4641381 The Relevance of (Re)Designing Professional Paths with Unemployed Working-Age Adults
Authors: Ana Rodrigues, Maria Cadilhe, Filipa Ferreira, Claudia Pereira, Marta Santos
Abstract:
Professional paths must be understood in the multiplicity of their possible configurations. While some actors tend to represent their path as a harmonious succession of positions in the life cycle, most recognize the existence of unforeseen and uncontrollable bifurcations, caused, for example, by a work accident or by going through a period of unemployment. Considering the intensified challenges posed by the ongoing societal changes (e.g., technological and demographic), and looking at the Portuguese context, where the unemployment rate continues to be more evident in certain age groups, like in individuals aged 45 years or over, it is essential to support those adults by providing strategies capable of supporting them during professional transitions, being this a joint responsibility of governments, employers, workers, educational institutions, among others. Concerned about those issues, Porto City Council launched the challenge of designing and implementing a Lifelong Career Guidance program, which was answered with the presentation of a customized conceptual and operational model: groWing|Lifelong Career Guidance. A pilot project targeting working-age adults (35 or older) who were unemployed was carried out, aiming to support them to reconstruct their professional paths, through the recovery of their past experiences and through a reflection about dimensions such as skills, interests, constraints, and labor market. A research action approach was used to assess the proposed model, namely the perceived relevance of the theme and of the project, by adults themselves (N=44), employment professionals (N=15) and local companies (N=15), in an integrated manner. A set of activities were carried out: a train the trainer course and a monitoring session with employment professionals; collective and individual sessions with adults, including a monitoring session as well; and a workshop with local companies. Support materials for individual/collective reflection about professional paths were created and adjusted for each involved agent. An evaluation model was co-build by different stakeholders. Assessment was carried through a form created for the purpose, completed at the end of the different activities, which allowed us to collect quantitative and qualitative data. Statistical analysis was carried through SPSS software. Results showed that the participants, as well as the employment professionals and the companies involved, considered both the topic and the project as extremely relevant. Also, adults saw the project as an opportunity to reflect on their paths and become aware of the opportunities and the necessary conditions to achieve their goals; the professionals highlighted the support given by an integrated methodology and the existence of tools to assist the process; companies valued the opportunity to think about the topic and the possible initiatives they could implement within the company to diversify their recruitment pool. The results allow us to conclude that, in the local context under study, there is an alignment between different agents regarding the pertinence of supporting adults with work experience in professional transitions, seeing the project as a relevant strategy to address this issue, which justifies that it can be extended in time and to other working-age adults in the future.Keywords: professional paths, research action, turning points, lifelong career guidance, relevance
Procedia PDF Downloads 871380 Science of Social Work: Recognizing Its Existence as a Scientific Discipline by a Method Triangulation
Authors: Sandra Mendes
Abstract:
Social Work has encountered over time with multivariate requests in the field of its action, provisioning frameworks of knowledge and praxis. Over the years, we have observed a transformation of society and, consequently, of the public who deals with the social work practitioners. Both, training and profession have had need to adapt and readapt the ways of doing, bailing up theories to action, while action unfolds emancipation of new theories. The theoretical questioning of this subject lies on classical authors from social sciences, and contemporary authors of Social Work. In fact, both enhance, in the design of social work, an integration and social cohesion function, creating a culture of action and theory, attributing to its method a relevant function, which shall be promoter of social changes in various dimensions of both individual and collective life, as well as scientific knowledge. On the other hand, it is assumed that Social Work, through its professionalism and through the academy, is now closer to distinguish itself from other Social Sciences as an autonomous scientific field, being, however, in the center of power struggles. This paper seeks to fill the gap in social work literature about the study of the scientific field of this area of knowledge.Keywords: field theory, knowledge, science, social work
Procedia PDF Downloads 3571379 Reinventing Education Systems: Towards an Approach Based on Universal Values and Digital Technologies
Authors: Ilyes Athimni, Mouna Bouzazi, Mongi Boulehmi, Ahmed Ferchichi
Abstract:
The principles of good governance, universal values, and digitization are among the tools to fight corruption and improve the quality of service delivery. In recent years, these tools have become one of the most controversial topics in the field of education and a concern of many international organizations and institutions against the problem of corruption. Corruption in the education sector, particularly in higher education, has negative impacts on the quality of education systems and on the quality of administrative or educational services. Currently, the health crisis due to the spread of the COVID-19 pandemic reveals the difficulties encountered by education systems in most countries of the world. Due to the poor governance of these systems, many educational institutions were unable to continue working remotely. To respond to these problems encountered by most education systems in many countries of the world, our initiative is to propose a methodology to reinvent education systems based on global values and digital technologies. This methodology includes a work strategy for educational institutions, whether in the provision of administrative services or in the teaching method, based on information and communication technologies (ICTs), intelligence artificial, and intelligent agents. In addition, we will propose a supervisory law that will be implemented and monitored by intelligent agents to improve accountability, transparency, and accountability in educational institutions. On the other hand, we will implement and evaluate a field experience by applying the proposed methodology in the operation of an educational institution and comparing it to the traditional methodology through the results of teaching an educational program. With these specifications, we can reinvent quality education systems. We also expect the results of our proposal to play an important role at local, regional, and international levels in motivating governments of countries around the world to change their university governance policies.Keywords: artificial intelligence, corruption in education, distance learning, education systems, ICTs, intelligent agents, good governance
Procedia PDF Downloads 2131378 Open Source Software in Higher Education: Oman SQU Case Study
Authors: Amal S. Al-Badi, Ali H. Al-Badi
Abstract:
Many organizations are opting to adopt Open Source Software (OSS) as it is the current trend to rely on each other rather than on companies (Software vendors). It is a clear shift from organizations to individuals, the concept being to rely on collective participation rather than companies/vendors. The main objectives of this research are 1) to identify the current level of OSS usage in Sultan Qaboos University; 2) to identify the potential benefits of using OSS in educational institutes; 3) to identify the OSS applications that are most likely to be used within an educational institute; 4) to identify the existing and potential barriers to the successful adoption of OSS in education. To achieve these objectives a two-stage research method was conducted. First a rigorous literature review of previously published material was performed (interpretive/descriptive approach), and then a set of interviews were conducted with the IT professionals at Sultan Qaboos University in Oman in order to explore the extent and nature of their usage of OSS.Keywords: open source software, social software, e-learning 2.0, Web 2.0, connectivism, personal learning environment (PLE), OpenCourseWare
Procedia PDF Downloads 3051377 Re-Creating Women of the Past in Historical Series on Mexican Television: The Work of Patricia Arriaga Jordan
Authors: Maria De Los Angeles Rodriguez Cadena
Abstract:
This paper discusses how the fictional versions of women of the past contribute to advance today’s ideas of social justice, personal freedom and emancipation as well as to highlight the creative challenge of constructing people and events on fictional narratives on television that incorporate multiple and simultaneous layers of meaning and complexity. This project builds on existing scholarship on audiovisual texts by exploring an influential but under-studied director. In two Mexican television series, Patricia Arriaga Jordan, an award-winning television producer, scriptwriter and director, constructs the life of two outstanding women that have played an influential role in national history and captured Mexican’s popular imagination for generations: Sor Juana Inés de la Cruz, and Malinche. Malinche (2018) tells the story of an extraordinary indigenous woman, Malintzin, during the Spanish Conquest (1511-1550) that is considered to have played a key role in the fall of the Aztec empire by acting as translator, negotiator and cultural mediator for the Spanish conquerors. Juana Ines (2016) portrays Sor Juana, a poet, essayist, playwright, theologian, philosopher, nun, of XVII century colonial Mexico, one of the brightest minds of her time, and now recognized as the first feminist of the Americas who wrote on the rights of women to an education, religious authority and feminist advocacy. Both series, as fictional narratives that recreate defining historical periods, specific events and relevant characters in the History of Mexico can be read as an example of what is called texts of cultural memory. A cultural memory text is a narrative that bonds the concepts of history, identity and belonging, and that is realized and disseminated through symbolic systems such as written documents, visual images, and dramatic representation. Cultural memory, through its narratives of historical fiction, emphasizes memory processes (historiography) and its implications and artifacts (cultural memory) mainly through the medial frameworks of remembering, which are the medial process by which memories (narratives, documents) participate in public knowledge and become collective memory. Historical fiction on television not only creates a portrayal of the past related to the real lives of protagonists, but it also significantly contributes to understand the past as an ever-evolving entity that highlights both, the necessary connection with the present as part of a developing sense of collective identity and belonging, as well as the relevance of the medium in which the past is represented and that ultimately supports the process of historical awareness. Through the emblematic recreation of national heroines and historical events in the unique context of historical drama on television, those texts constitute a venue where concepts of the past and the traditionally established ideas about history and heroines are highlighted, questioned and transformed.Keywords: cultural memory, historical fiction, Mexico, television, women directors
Procedia PDF Downloads 1331376 Minimizing Mutant Sets by Equivalence and Subsumption
Authors: Samia Alblwi, Amani Ayad
Abstract:
Mutation testing is the art of generating syntactic variations of a base program and checking whether a candidate test suite can identify all the mutants that are not semantically equivalent to the base: this technique is widely used by researchers to select quality test suites. One of the main obstacles to the widespread use of mutation testing is cost: even small pro-grams (a few dozen lines of code) can give rise to a large number of mutants (up to hundreds): this has created an incentive to seek to reduce the number of mutants while preserving their collective effectiveness. Two criteria have been used to reduce the size of mutant sets: equiva-lence, which aims to partition the set of mutants into equivalence classes modulo semantic equivalence, and selecting one representative per class; subsumption, which aims to define a partial ordering among mutants that ranks mutants by effectiveness and seeks to select maximal elements in this ordering. In this paper we analyze these two policies using analytical and em-pirical criteria.Keywords: mutation testing, mutant sets, mutant equivalence, mutant subsumption, mutant set minimization
Procedia PDF Downloads 631375 Using Science, Technology, Engineering, Art and Mathematics (STEAM) Project-Based Learning Programs to Transition towards Whole School Pedagogical Shift
Authors: M. Richichi
Abstract:
Evidencing the learning and developmental needs of students in specific educational institutions is central to determining the type of whole school pedagogical shift required. Initiating this transition by designing and implementing STEAM (Science, technology, engineering, art, and mathematics) project-based learning opportunities, in collaboration with industry, exposes teachers to new pedagogical and assessment practices. This experience instills confidence and a renewed sense of energy, which contributes to greater efficacy. Championing teachers in such learning environments leads to “bleeding” of inventive pedagogical understanding and skills as well as motivation. This contributes positively to collective teacher efficacy and the transition towards more cross-disciplinary initiatives and opportunities, and hence an innovative pedagogical shift. Evidence of skill and knowledge development in students, combined with greater confidence, work ethic and interest in STEAM areas, are further indicators of the success of the transitioning process.Keywords: efficacy, pedagogy, transition, STEAM
Procedia PDF Downloads 1291374 The Various Legal Dimensions of Genomic Data
Authors: Amy Gooden
Abstract:
When human genomic data is considered, this is often done through only one dimension of the law, or the interplay between the various dimensions is not considered, thus providing an incomplete picture of the legal framework. This research considers and analyzes the various dimensions in South African law applicable to genomic sequence data – including property rights, personality rights, and intellectual property rights. The effective use of personal genomic sequence data requires the acknowledgement and harmonization of the rights applicable to such data.Keywords: artificial intelligence, data, law, genomics, rights
Procedia PDF Downloads 1401373 The Effects of Cardiovascular Risk on Age-Related Cognitive Decline in Healthy Older Adults
Authors: A. Badran, M. Hollocks, H. Markus
Abstract:
Background: Common risk factors for cardiovascular disease are associated with age-related cognitive decline. There has been much interest in treating modifiable cardiovascular risk factors in the hope of reducing cognitive decline. However, there is currently no validated neuropsychological test to assess the subclinical cognitive effects of vascular risk. The Brief Memory and Executive Test (BMET) is a clinical screening tool, which was originally designed to be sensitive and specific to Vascular Cognitive Impairment (VCI), an impairment characterised by decline in frontally-mediated cognitive functions (e.g. Executive Function and Processing Speed). Objective: To cross-sectionally assess the validity of the BMET as a measure of the subclinical effects of vascular risk on cognition, in an otherwise healthy elderly cohort. Methods: Data from 346 participants (57 ± 10 years) without major neurological or psychiatric disorders were included in this study, gathered as part of a previous multicentre validation study for the BMET. Framingham Vascular Age was used as a surrogate measure of vascular risk, incorporating several established risk factors. Principal Components Analysis of the subtests was used to produce common constructs: an index for Memory and another for Executive Function/Processing Speed. Univariate General Linear models were used to relate Vascular Age to performance on Executive Function/Processing Speed and Memory subtests of the BMET, adjusting for Age, Premorbid Intelligence and Ethnicity. Results: Adverse vascular risk was associated with poorer performance on both the Memory and Executive Function/Processing Speed indices, adjusted for Age, Premorbid Intelligence and Ethnicity (p=0.011 and p<0.001, respectively). Conclusions: Performance on the BMET reflects the subclinical effects of vascular risk on cognition, in age-related cognitive decline. Vascular risk is associated with decline in both Executive Function/Processing Speed and Memory groups of subtests. Future studies are needed to explore whether treating vascular risk factors can effectively reduce age-related cognitive decline.Keywords: age-related cognitive decline, vascular cognitive impairment, subclinical cerebrovascular disease, cognitive aging
Procedia PDF Downloads 4711372 Determination of the Content of Teachers’ Presentism through a Web-Based Delphi Method
Authors: Tsai-Hsiu Lin
Abstract:
Presentism is one of the orientations of teachers’ teaching culture. However, there are few researchers to explore it in Taiwan. The objective of this study is to establish an expert-based determination of the content of teachers’ presentism in Taiwan. The author reviewed the works of Jackson, Lortie, and Hargreaves and employed Hargreaves’ three forms of teachers’ presentism as a framework to design the questionnaire of this study. The questionnaire of teachers’ presentism comprised of 42 statements. A three-round web-based Delphi survey was proposed to 14 participants (two teacher educators, two educational administrators, three school principals, and seven schoolteachers), 13 participants (92.86%) completed the three-rounds of the study. The participants were invited to indicate the importance of each statement. The Delphi study used means and standard deviation to present information concerning the collective judgments of respondents. Finally, the author obtained consensual results for 67% (28/42). However, the outcome of this study could be the result of identifying a series of general statements rather than an in-depth exposition of the topic.Keywords: Delphi Method, Teachers’ Presentism, Sociology of Teaching, Teaching Culture
Procedia PDF Downloads 2231371 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging
Procedia PDF Downloads 881370 Assessing the Citizens' Adoption of E-Government Platforms in the North West Province Local Governments, South Africa
Authors: Matsobane Mosetja, Nehemiah Mavetera, Ernest Mnkandla
Abstract:
Local governments in South Africa are responsible for the provision of basic services. There are countless benefits that come with e-Government platforms if they are properly implemented to help local governments deliver these basic services to citizens. This study investigates factors influencing the adoption and use of e-Government platforms by citizens in the North West Province, South. The study is set against a background of significant change in South Africa where government services are electronically delivered. The outcome of the study revealed that: 1) decisions on the development of e-Government platforms are made based on a series of consultative forums; 2) the municipalities are open to constructive criticism on their online platform; 3) the municipalities have room for dialogue on how best to improve service delivery; 4) the municipalities are accessible to the citizens all the time; 5) the municipalities are making means and ways to empower them to be part of the collective and lastly e-Government provides room for online discussion.Keywords: e-government, e-government platforms, user acceptance, local government
Procedia PDF Downloads 3951369 An Approximation Technique to Automate Tron
Authors: P. Jayashree, S. Rajkumar
Abstract:
With the trend of virtual and augmented reality environments booming to provide a life like experience, gaming is a major tool in supporting such learning environments. In this work, a variant of Voronoi heuristics, employing supervised learning for the TRON game is proposed. The paper discusses the features that would be really useful when a machine learning bot is to be used as an opponent against a human player. Various game scenarios, nature of the bot and the experimental results are provided for the proposed variant to prove that the approach is better than those that are currently followed.Keywords: artificial Intelligence, automation, machine learning, TRON game, Voronoi heuristics
Procedia PDF Downloads 4681368 An Overview of Sustainable Development for Greening Roadmap in Asia
Authors: Robby Dwiko Juliardi, Queena K. Qian
Abstract:
Economic, environmental, and human considerations, as sustainable building design principles, are to be balanced and integrated into building design strategy. Building codes often suggest the efficient and sustainable building products, such as energy-efficient fixtures. However, building departments sometimes fail to manage the full range of requirements in the building assessment, such as siting, neighborhood proximity, and public facility, etc. Hence, it shows roadmap develops the future, an extended look at the future of a chosen field of inquiry composed from the collective knowledge and imagination of the brightest drivers of change in that field. This paper is taken from the best practice of green building implementation in a few countries of Asia (China, Malaysia, and India). Sustainable development will be presented on developing the roadmap of sustainability development of a country. Findings on the similarities and dissimilarities of those countries will show: (1) A general knowledge development on the sustainable green roadmap in Asia, (2) What are the components of developing the roadmap, and (3) What affects the government regulation in a political ecology.Keywords: developing roadmap, green building, political ecology, sustainable development
Procedia PDF Downloads 3171367 Harnessing the Power of Artificial Intelligence: Advancements and Ethical Considerations in Psychological and Behavioral Sciences
Authors: Nayer Mofidtabatabaei
Abstract:
Advancements in artificial intelligence (AI) have transformed various fields, including psychology and behavioral sciences. This paper explores the diverse ways in which AI is applied to enhance research, diagnosis, therapy, and understanding of human behavior and mental health. We discuss the potential benefits and challenges associated with AI in these fields, emphasizing the ethical considerations and the need for collaboration between AI researchers and psychological and behavioral science experts. Artificial Intelligence (AI) has gained prominence in recent years, revolutionizing multiple industries, including healthcare, finance, and entertainment. One area where AI holds significant promise is the field of psychology and behavioral sciences. AI applications in this domain range from improving the accuracy of diagnosis and treatment to understanding complex human behavior patterns. This paper aims to provide an overview of the various AI applications in psychological and behavioral sciences, highlighting their potential impact, challenges, and ethical considerations. Mental Health Diagnosis AI-driven tools, such as natural language processing and sentiment analysis, can analyze large datasets of text and speech to detect signs of mental health issues. For example, chatbots and virtual therapists can provide initial assessments and support to individuals suffering from anxiety or depression. Autism Spectrum Disorder (ASD) Diagnosis AI algorithms can assist in early ASD diagnosis by analyzing video and audio recordings of children's behavior. These tools help identify subtle behavioral markers, enabling earlier intervention and treatment. Personalized Therapy AI-based therapy platforms use personalized algorithms to adapt therapeutic interventions based on an individual's progress and needs. These platforms can provide continuous support and resources for patients, making therapy more accessible and effective. Virtual Reality Therapy Virtual reality (VR) combined with AI can create immersive therapeutic environments for treating phobias, PTSD, and social anxiety. AI algorithms can adapt VR scenarios in real-time to suit the patient's progress and comfort level. Data Analysis AI aids researchers in processing vast amounts of data, including survey responses, brain imaging, and genetic information. Privacy Concerns Collecting and analyzing personal data for AI applications in psychology and behavioral sciences raise significant privacy concerns. Researchers must ensure the ethical use and protection of sensitive information. Bias and Fairness AI algorithms can inherit biases present in training data, potentially leading to biased assessments or recommendations. Efforts to mitigate bias and ensure fairness in AI applications are crucial. Transparency and Accountability AI-driven decisions in psychology and behavioral sciences should be transparent and subject to accountability. Patients and practitioners should understand how AI algorithms operate and make decisions. AI applications in psychological and behavioral sciences have the potential to transform the field by enhancing diagnosis, therapy, and research. However, these advancements come with ethical challenges that require careful consideration. Collaboration between AI researchers and psychological and behavioral science experts is essential to harness AI's full potential while upholding ethical standards and privacy protections. The future of AI in psychology and behavioral sciences holds great promise, but it must be navigated with caution and responsibility.Keywords: artificial intelligence, psychological sciences, behavioral sciences, diagnosis and therapy, ethical considerations
Procedia PDF Downloads 721366 Healing (in) Relationship: The Theory and Practice of Inner-Outer Peacebuilding in North-Western India
Authors: Josie Gardner
Abstract:
The overall intention of this research is to reimagine peacebuilding in both in theory and practical application in light of the shortcomings and unsustainability of the current peacebuilding paradigm. These limitations are identified here as an overly rational-material approach to peacebuilding that neglects the inner dimension of peace for a fragmented rather than holistic model, and that espouses a conflict and violence-centric approach to peacebuilding. In counter, this presentation is purposed to investigate the dynamics of inner and outer peace as a holistic, complex system towards ‘inner-outer’ peacebuilding. This paper draws from primary research in the protracted conflict context of north-western India (Jammu, Kashmir & Ladakh) as a case study. This presentation has two central aims. First, to introduce the process of inner (psycho-spiritual) peacebuilding, which has thus far been neglected by mainstream and orthodox literature. Second, to examine why inner peacebuilding is essential for realising sustainable peace on a broader scale as outer (socio-political) peace and to better understand how the inner and outer dynamics of peace relate and affect one another. To these ends, Josephine (the researcher/author/presenter) partnered with Yakjah Reconciliation and Development Network to implement a series of action-oriented workshops and retreats centred around healing, reconciliation, leadership, and personal development for the dual purpose of collaboratively generating data, theory, and insights, as well as providing the youth leaders with an experiential, transformative experience. The research team created and used a novel methodological approach called Mapping Ritual Ecologies, which draws from Participatory Action Research and Digital Ethnography to form a collaborative research model with a group of 20 youth co-researchers who are emerging youth peace leaders in Kashmir, Jammu, and Ladakh. This research found significant intra- and inter-personal shifts towards an experience of inner peace through inner peacebuilding activities. Moreover, this process of inner peacebuilding affected their families and communities through interpersonal healing and peace leadership in an inside-out process of change. These insights have generated rich insights and have supported emerging theories about the dynamics between inner and outer peace, power, justice, and collective healing. This presentation argues that the largely neglected dimension of inner (psycho-spiritual) peacebuilding is imperative for broader socio-political (outer) change. Changing structures of oppression, injustice, and violence—i.e. structures of separation—requires individual, interpersonal, and collective healing. While this presentation primarily examines and advocates for inside-out peacebuilding and social justice, it will also touch upon the effect of systems of separation on the inner condition and human experience. This research reimagines peacebuilding as a holistic inner-outer approach. This offers an alternative path forward those weaves together self-actualisation and social justice. While contextualised within north-western India with a small case study population, the findings speak also to other conflict contexts as well as our global peacebuilding and social justice milieu.Keywords: holistic, inner peacebuilding, psycho-spiritual, systems youth
Procedia PDF Downloads 1211365 The National Idea and Selthindentification of Nation is the Foundation of the Society’s Development
Authors: K. Aisultanova, O. Abdimanuly
Abstract:
The article is told about the factors influencing the formation of the national idea and national identity. Paying attention to the idea and purpose of 'Eternal county', historical dates and examples are given. The structure of the idea 'The eternal country' by ancient Turks is discussed and the history of the legend prevalent among the Kazakh people, the image of the mythical historical figures are analyzed. Al-Farabi’s philosophical work 'Honest city', Zhysip Balasagun’s poem 'Happy Knowledge' are told, the opinions of scholars researching the nation's history, literature, and culture are given. As international experience shows, the idea of a new stage in the development of the country's great national society and the state for the purpose of political, social, economic, cultural, spiritual, and the other efforts are consolidated. The idea of the national, ethnic, religious, cultural and other communities united by a group of people sharing a collective memory, goals, ideas and dreams and , world view, a complex set of beliefs and values are expressed.Keywords: independence, historical process, national idea, the national ideology, society, state
Procedia PDF Downloads 3051364 Machine Learning in Agriculture: A Brief Review
Authors: Aishi Kundu, Elhan Raza
Abstract:
"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting
Procedia PDF Downloads 1071363 The Mediterranean Migration Crisis: The North East Hotspot Policy
Authors: Loizos A. Hadjivasiliou, May Chehab
Abstract:
Confronted with the human tragedy unfolding in the Mediterranean during the 2011-2016 period, the European Union introduced for the first time the “hotspot approach”, the establishment of facilities for initial reception, identification registration, and fingerprinting of asylum seekers and migrants arriving in the EU by sea, at the frontline Member States. However, the lack of a comprehensive collective policy on migration management and border security left the Mediterranean Member States, mainly Italy, Greece, and Cyprus, struggling to overcome these challenges. The current study sheds light on the implementation of the hotspot approach as the frontispiece of the European response to the migration challenges, which, limited to the operational and financial support of the hosting member states, leads to heterogeneous burden-sharing. Within this framework, it highlights the fact that the implementation of the hotspots as a panacea carries the risk of transforming the Mediterranean member states into giant hotspots with unpredictable consequences for the future of the Schengen area.Keywords: asylum, burden sharing, hotspots, migration management policy, Schengen area
Procedia PDF Downloads 1781362 Effects of AI-driven Applications on Bank Performance in West Africa
Authors: Ani Wilson Uchenna, Ogbonna Chikodi
Abstract:
This study examined the impact of artificial intelligence driven applications on banks’ performance in West Africa using Nigeria and Ghana as case studies. Specifically, the study examined the extent to which deployment of smart automated teller machine impacts the banks’ net worth within the reference period in Nigeria and Ghana. It ascertained the impact of point of sale on banks’ net worth within the reference period in Nigeria and Ghana. Thirdly, it verified the extent to which webpay services can influence banks’ performance in Nigeria and Ghana and finally, determined the impact of mobile pay services on banks’ performance in Nigeria and Ghana. The study used automated teller machine (ATM), Point of sale services (POS), Mobile pay services (MOP) and Web pay services (WBP) as proxies for explanatory variables while Bank net worth was used as explained variable for the study. The data for this study were sourced from central bank of Nigeria (CBN) Statistical Bulletin as well as Bank of Ghana (BoGH) Statistical Bulletin, Ghana payment systems oversight annual report and world development indicator (WDI). Furthermore, the mixed order of integration observed from the panel unit test result justified the use of autoregressive distributed lag (ARDL) approach to data analysis which the study adopted. While the cointegration test showed the existence of cointegration among the studied variables, bound test result justified the presence of long-run relationship among the series. Again, ARDL error correction estimate established satisfactory (13.92%) speed of adjustment from long run disequilibrium back to short run dynamic relationship. The study found that while Automated teller machine (ATM) had statistically significant impact on bank net worth (BNW) of Nigeria and Ghana, point of sale services application (POS) statistically and significantly impact on bank net worth within the study period, mobile pay services application was statistically significant in impacting the changes in the bank net worth of the countries of study while web pay services (WBP) had no statistically significant impact on bank net worth of the countries of reference. The study concluded that artificial intelligence driven application have significant an positive impact on bank performance with exception of web pay which had negative impact on bank net worth. The study recommended that management of banks both in Nigerian and Ghanaian should encourage more investments in AI-powered smart ATMs aimed towards delivering more secured banking services in order to increase revenue, discourage excessive queuing in the banking hall, reduced fraud and minimize error in processing transaction. Banks within the scope of this study should leverage on modern technologies to checkmate the excesses of the private operators POS in order to build more confidence on potential customers. Government should convert mobile pay services to a counter terrorism tool by ensuring that restrictions on over-the-counter withdrawals to a minimum amount is maintained and place sanctions on withdrawals above that limit.Keywords: artificial intelligence (ai), bank performance, automated teller machines (atm), point of sale (pos)
Procedia PDF Downloads 151361 Application of Data Driven Based Models as Early Warning Tools of High Stream Flow Events and Floods
Authors: Mohammed Seyam, Faridah Othman, Ahmed El-Shafie
Abstract:
The early warning of high stream flow events (HSF) and floods is an important aspect in the management of surface water and rivers systems. This process can be performed using either process-based models or data driven-based models such as artificial intelligence (AI) techniques. The main goal of this study is to develop efficient AI-based model for predicting the real-time hourly stream flow (Q) and apply it as early warning tool of HSF and floods in the downstream area of the Selangor River basin, taken here as a paradigm of humid tropical rivers in Southeast Asia. The performance of AI-based models has been improved through the integration of the lag time (Lt) estimation in the modelling process. A total of 8753 patterns of Q, water level, and rainfall hourly records representing one-year period (2011) were utilized in the modelling process. Six hydrological scenarios have been arranged through hypothetical cases of input variables to investigate how the changes in RF intensity in upstream stations can lead formation of floods. The initial SF was changed for each scenario in order to include wide range of hydrological situations in this study. The performance evaluation of the developed AI-based model shows that high correlation coefficient (R) between the observed and predicted Q is achieved. The AI-based model has been successfully employed in early warning throughout the advance detection of the hydrological conditions that could lead to formations of floods and HSF, where represented by three levels of severity (i.e., alert, warning, and danger). Based on the results of the scenarios, reaching the danger level in the downstream area required high RF intensity in at least two upstream areas. According to results of applications, it can be concluded that AI-based models are beneficial tools to the local authorities for flood control and awareness.Keywords: floods, stream flow, hydrological modelling, hydrology, artificial intelligence
Procedia PDF Downloads 2481360 Clash of Civilizations without Civilizational Groups: Revisiting Samuel P. Huntington's Clash of Civilizations Theory
Authors: Jamal Abdi
Abstract:
This paper offers a critique of Samuel P. Huntington's Clash of Civilizations thesis. The overriding argument is that Huntington's thesis is characterized by failure to distinguish between 'groups' and 'categories'. Multinational civilizations overcoming their internal collective action problems, which would enable them to pursue a unified strategy vis-à-vis the West, is a rather foundational assumption in his theory. Without assigning sufficient intellectual attention to the processes through which multinational civilizations may gain the capacity for concerted action, i.e., become a group, he contended that the post-cold-war world would be shaped in large measure by interactions among seven or eight major civilizations. Thus, failure in providing a convincing analysis of multi-national civilizations' transition from categories to groups is a significant weakness in Huntington's clash theory. It is also suggested that so-called Islamic terrorism and the war on terror is not to be taken as an expression of the presence of clash between a Western and an Islamic civilization, as terrorist organizations would be superfluous in a world characterized by clash of civilizations. Consequences of multinational civilizations becoming a group are discussed in relation to contemporary Western superiority.Keywords: clash of civilizations, groups, categories, groupism
Procedia PDF Downloads 207