Search results for: Al/Fe dissimilar metals
455 Optimal Formation of Metallic Nuggets during the Reduction of Coal-Composite Briquette
Authors: Chol Min Yu, Sok Chol Ri
Abstract:
The optimization of formation and growth of metallic nuggets during self-reduction of coal composite briquette (CCB here) is essential to increase the yield of valuable metals. The formation of metallic nuggets was investigated theoretically and experimentally during the reduction of coal composite briquette made from stainless steel dust and coal. The formation of metallic nuggets is influenced by slag viscosity and interfacial tension between the liquid metal and the slag in the reduced product. Surface tensions of liquid metal and slag are rather strong, respectively, due to the high basicity of its slag. Strong surface tensions of them lead to increase of interfacial tension between the liquid metal and the slag to be favorable to the growth of metallic nuggets. The viscosity of slag and interfacial tension between the liquid metal and the slag depends on the temperature and composition of the slag. The formation and the growth of metallic nuggets depend on carbon to oxygen ratio FC/O and temperature.Keywords: stainless steel dust, coal-composite briquette, temperature, high basicity, interfacial tension
Procedia PDF Downloads 80454 Swelling Hydrogels on the Base Nitron Fiber Wastes for Water Keeping in Sandy Soils
Authors: Alim Asamatdinov
Abstract:
Superabsorbent polymer hydrogels can swell to absorb huge volumes of water or aqueous solutions. This property has led to many practical applications of these new materials, particularly in agriculture for improving the water retention of soils and the water supply of plants. This article reviews the methods of polymeric hydrogels, measurements and treatments of their properties, as well as their effects on soil and on plant growth. The thermodynamic approach used to describe the swelling behaviour of polymer networks proves to be quite helpful in modelling the hydrogel efficiency of water-absorbing additives. The paper presents the results of a study of the physical and chemical properties of hydrogels based on of the production of "Nitron" (Polyacrylonitrile) wastes fibre and salts of the 3-rd transition metals and formalin. The developed hydrogels HG-Al, HG-Cr and HG-formalin have been tested for water holding the capacity of sand. Such a conclusion was also confirmed by data from the method of determining the wilting point by vegetative thumbnails. In the entering process using a dose of 0.1% of the swelling polymeric hydrogel in sand with a culture of barley the difference between the wilting point in comparison with the control was negligible. This indicates that the moisture which was contained in the hydrogel is involved in moisture availability for plant growth, to the same extent as that in the capillaries.Keywords: hydrogel, chemical, polymer, sandy, colloid
Procedia PDF Downloads 143453 Physicochemical, Heavy Metals Analysis of Some Multi-Floral Algerian Honeys
Authors: Assia Amri, Naima Layachi, Ali Ladjama
Abstract:
The characterization of some Algerian honey was carried out on the basis of their physico-chemical properties: moisture,hydroxy methyl furfural, diastase activity, pH,free, total and lactonic acidity, electrical conductivity, minerals and proline content. Studied samples are found to be low in moisture and therefore safe from fermentation, low in HMF level and high in diastase activity. Additionally the diastase activity and the HMF content are widely recognized parameters indicating the freshness of honey. Phenolic compounds present in honey are classified into two groups - simple phenols and polyphenols. The simple phenols in honey are various phenol acids, but polyphenols are various flavonoids and flavonides. The aim of our work was to determine antioxidant properties of various Algerian honey samples–the total phenol content, total flavonoids content, as well as honey anti radical activity.The quality of honey samples differs on account of various factors such as season, packaging and processing conditions, floral source, geographical origin and storage period. It is important that precautions should be taken to ensure standardization and rationalization of beekeeping techniques, manufacturing procedures and storing processes to improve honey quality.Keywords: honey, physico-chemical characterization, phenolic coumpound, HMF, diastase activity
Procedia PDF Downloads 423452 Modelling of Filters CO2 (Carbondioxide) and CO (Carbonmonoxide) Portable in Motor Vehicle's Exhaust with Absorbent Chitosan
Authors: Yuandanis Wahyu Salam, Irfi Panrepi, Nuraeni
Abstract:
The increased of greenhouse gases, that is CO2 (carbondioxide) in atmosphere induce the rising of earth’s surface average temperature. One of the largest contributors to greenhouse gases is motor vehicles. Smoke which is emitted by motor’s exhaust containing gases such as CO2 (carbondioxide) and CO (carbon monoxide). Chemically, chitosan is cellulose like plant fiber that has the ability to bind like absorbant foam. Chitosan is a natural antacid (absorb toxins), when chitosan is spread over the surface of water, chitosan is able to absorb fats, oils, heavy metals, and other toxic substances. Judging from the nature of chitosan is able to absorb various toxic substances, it is expected that chitosan is also able to filter out gas emission from the motor vehicles. This study designing a carbondioxide filter in the exhaust of motor vehicles using chitosan as its absorbant. It aims to filter out gases in the exhaust so that CO2 and CO can be reducted before emitted by exhaust. Form of this reseach is study of literature and applied with experimental research of tool manufacture. Data collected through documentary studies by studying books, magazines, thesis, search on the internet as well as the relevant reference. This study will produce a filters which has main function to filter out CO2 and CO emissions that generated by vehicle’s exhaust and can be used as portable.Keywords: filter, carbon, carbondioxide, exhaust, chitosan
Procedia PDF Downloads 351451 Investigation on the Effect of Welding Parameters in Additive Friction Stir Welding of Glass Fiber Reinforced Polyamide 66 Composite
Authors: Nandhini Ravi, Muthukumaran Shanmugam
Abstract:
Metals are being replaced by thermoplastic polymer composites in automotive industries because of their low density, easiness to fabricate, low cost and good wear resistance. Complex polymer components consist of assemblies of smaller parts which can be joined by friction stir welding. This study deals with the additive friction stir welding of 15 wt.% glass fiber reinforced polyamide 66 composite which is a modified technique of the conventional friction stir welding by the addition of a filler plate for the heating of the composite work piece through the tool during the welding process. Welding at different combinations of tool rotational speed, travel speed and tool plunge depth was done after which the tensile strength of the respective experiments was determined. The maximum tensile strength obtained was 77 MPa which was 80% of the strength of the base material. The process parameters were optimized using the L9 orthogonal array and also the effect of individual welding parameter on the tensile strength was studied. The optimum parameter combination was determined with the help of ANOVA studies. The hardness of the welded joints was studied with the help of Shore Durometer which yielded the maximum of D 75.Keywords: additive friction stir welding, polyamide 66, process parameters, thermoplastic polymer composite
Procedia PDF Downloads 159450 Preparation of Zno/Ag Nanocomposite and Coating on Polymers for Anti-Infection Biomaterial Application
Authors: Babak Sadeghi, Parisa Ghayomipour
Abstract:
ZnO/Ag nanocomposites coated with polyvinyl chloride (PVC) were prepared by chemical reduction method, for anti-infection biomaterial application. There is a growing interest in attempts in using biomolecular as the templates to grow inorganic nanocomposites in controlled morphology and structure. By optimizing the experiment conditions, we successfully fabricated high yield of ZnO/Ag nanocomposite with full coverage of high-density polyvinyl chloride (PVC) coating. More importantly, ZnO/Ag nanocomposites were shown to significantly inhibit the growth of S. aureus in solution. It was further shown that ZnO/Ag nanocomposites induced thiol depletion that caused death of S. aureus. The coatings were fully characterized using techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Most importantly, compared to uncoated metals, the coatings on PVC promoted healthy antibacterial activity. Importantly, compared to ZnO-Ag -uncoated PVC, the ZnO/Ag nanocomposites coated was approximately triplet more effective in preventing bacteria attachment. The result of Thermal Gravimetric Analysis (TGA) indicates that, the ZnO/Ag nanocomposites are chemically stable in the temperature range from 50 to 900 ºC. This result, for the first time, demonstrates the potential of using ZnO/Ag nanocomposites as a coating material for numerous anti-bacterial applications.Keywords: nanocomposites, antibacterial activity, scanning electron microscopy (SEM), x-ray diffraction (XRD)
Procedia PDF Downloads 473449 Reducing Greenhouse Gass Emissions by Recyclable Material Bank Project of Universities in Central Region of Thailand
Authors: Ronbanchob Apiratikul
Abstract:
This research studied recycled waste by the Recyclable Material Bank Project of 4 universities in the central region of Thailand for the evaluation of reducing greenhouse gas emissions compared with landfilling activity during July 2012 to June 2013. The results showed that the projects collected total amount of recyclable wastes of about 911,984.80 kilograms. Office paper had the largest amount among these recycled wastes (50.68% of total recycled waste). Groups of recycled waste can be prioritized from high to low according to their amount as paper, plastic, glass, mixed recyclables, and metal, respectively. The project reduced greenhouse gas emissions equivalent to about 2814.969 metric tons of carbon dioxide. The most significant recycled waste that affects the reduction of greenhouse gas emissions is office paper which is 70.16% of total reduced greenhouse gasses emission. According to amount of reduced greenhouse gasses emission, groups of recycled waste can be prioritized from high to low significances as paper, plastic, metals, mixed recyclables, and glass, respectively.Keywords: recycling, garbage bank, waste management, recyclable wastes, greenhouse gases
Procedia PDF Downloads 425448 Developing an Empirical Relationship to Predict Tensile Strength and Micro Hardness of Friction Stir Welded Aluminium Alloy Joints
Authors: Gurmeet Singh Cheema, Gurjinder Singh, Amardeep Singh Kang
Abstract:
Aluminium alloy 6061 is a medium to high strength heat-treatable alloy which has very good corrosion resistance and very good weldability. Friction Stir Welding was developed and this technique has attracted considerable interest from the aerospace and automotive industries since it is able to produce defect free joints particularly for light metals i.e aluminum alloy and magnesium alloy. In the friction stir welding process, welding parameters such as tool rotational speed, welding speed and tool shoulder diameter play a major role in deciding the weld quality. In this research work, an attempt has been made to understand the effect of tool rotational speed, welding speed and tool shoulder diameter on friction stir welded AA6061 aluminium alloy joints. Statistical tool such as central composite design is used to develop the mathematical relationships. The mathematical model was developed to predict mechanical properties of friction stir welded aluminium alloy joints at the 95% confidence level.Keywords: aluminium alloy, friction stir welding, central composite design, mathematical relationship
Procedia PDF Downloads 502447 Stabilizing Additively Manufactured Superalloys at High Temperatures
Authors: Keivan Davami, Michael Munther, Lloyd Hackel
Abstract:
The control of properties and material behavior by implementing thermal-mechanical processes is based on mechanical deformation and annealing according to a precise schedule that will produce a unique and stable combination of grain structure, dislocation substructure, texture, and dispersion of precipitated phases. The authors recently developed a thermal-mechanical technique to stabilize the microstructure of additively manufactured nickel-based superalloys even after exposure to high temperatures. However, the mechanism(s) that controls this stability is still under investigation. Laser peening (LP), also called laser shock peening (LSP), is a shock based (50 ns duration) post-processing technique used for extending performance levels and improving service life of critical components by developing deep levels of plastic deformation, thereby generating high density of dislocations and inducing compressive residual stresses in the surface and deep subsurface of components. These compressive residual stresses are usually accompanied with an increase in hardness and enhance the material’s resistance to surface-related failures such as creep, fatigue, contact damage, and stress corrosion cracking. While the LP process enhances the life span and durability of the material, the induced compressive residual stresses relax at high temperatures (>0.5Tm, where Tm is the absolute melting temperature), limiting the applicability of the technology. At temperatures above 0.5Tm, the compressive residual stresses relax, and yield strength begins to drop dramatically. The principal reason is the increasing rate of solid-state diffusion, which affects both the dislocations and the microstructural barriers. Dislocation configurations commonly recover by mechanisms such as climbing and recombining rapidly at high temperatures. Furthermore, precipitates coarsen, and grains grow; virtually all of the available microstructural barriers become ineffective.Our results indicate that by using “cyclic” treatments with sequential LP and annealing steps, the compressive stresses survive, and the microstructure is stable after exposure to temperatures exceeding 0.5Tm for a long period of time. When the laser peening process is combined with annealing, dislocations formed as a result of LPand precipitates formed during annealing have a complex interaction that provides further stability at high temperatures. From a scientific point of view, this research lays the groundwork for studying a variety of physical, materials science, and mechanical engineering concepts. This research could lead to metals operating at higher sustained temperatures enabling improved system efficiencies. The strengthening of metals by a variety of means (alloying, work hardening, and other processes) has been of interest for a wide range of applications. However, the mechanistic understanding of the often complex processes of interactionsbetween dislocations with solute atoms and with precipitates during plastic deformation have largely remained scattered in the literature. In this research, the elucidation of the actual mechanisms involved in the novel cyclic LP/annealing processes as a scientific pursuit is investigated through parallel studies of dislocation theory and the implementation of advanced experimental tools. The results of this research help with the validation of a novel laser processing technique for high temperature applications. This will greatly expand the applications of the laser peening technology originally devised only for temperatures lower than half of the melting temperature.Keywords: laser shock peening, mechanical properties, indentation, high temperature stability
Procedia PDF Downloads 149446 Conformal Noble Metal High-Entropy Alloy Nanofilms by Atomic Layer Deposition for Enhanced Hydrogen Evolution Reaction/Oxygen Evolution Reaction Electrocatalysis Applications
Authors: Jing Lin, Zou Yiming, Goei Ronn, Li Yun, Amanda Ong Jiamin, Alfred Tok Iing Yoong
Abstract:
High-entropy alloy (HEA) coatings comprise multiple (five or more) principal elements that give superior mechanical, electrical, and thermal properties. However, the current synthesis methods of HEA coating still face huge challenges in facile and controllable preparation, as well as conformal integration, which seriously restricts their potential applications. Herein, we report a controllable synthesis of conformal quinary HEA coating consisting of noble metals (Rh, Ru, Ir, Pt, and Pd) by using the atomic layer deposition (ALD) with a post-annealing approach. This approach realizes low temperature (below 200 °C), precise control (nanoscale), and conformal synthesis (over complex substrates) of HEA coating. Furthermore, the resulting quinary HEA coating shows promising potential as a platform for catalysis, exhibiting substantially enhanced electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances as compared to other noble metal-based structures such as single metal coating or multi-layered metal composites.Keywords: high-entropy alloy, thin-film, catalysis, water splitting, atomic layer deposition
Procedia PDF Downloads 124445 Synthetic, Characterization and Biological Studies of Bis(Tetrathiomolybdate) Compounds of Pt (II), Pd (II) and Ni (II)
Authors: V. K. Srivastava
Abstract:
The chemistry of compounds containing transition metals bound to sulfur containing ligands has been actively studied. Interest in these compounds arises from the identification of the biological importance of iron-sulfur containing proteins as well as the unusual behaviour of several types of synthetic metal-sulfur complexes. Metal complexes (C₆H₅)₄P)₂ Pt(Mos₄)₂, (C₆H₅)₄P)₂ Pd(MoS₄)₂, (C₆H₅)₄P)₂ Ni(MoS₄)₂ of bioinorganic relevance were investigated. The complexes [M(M'S₄)₂]²⁻ were prepared with high yield and purity as salts of the variety of organic cations. The diamagnetism and spectroscopic properties of these complexes confirmed that their structures are essentially equivalent with two bidentate M'S₄²⁻ ligands coordinated to the central d⁸ metal in a square planer geometry. The interaction of the complexes with CT-DNA was studied. Results showed that metal complexes increased DNA's relative viscosity and quench the fluorescence intensity of EB bound to DNA. In antimicrobial activities, all complexes showed good antimicrobial activity higher than ligand against gram positive, gram negative bacteria and fungi. The antitumor properties have been tested in vitro against two tumor human cell lines, Hela (derived from cervical cancer) and MCF-7 (derived from breast cancer) using metabolic activity tests. Result showed that the complexes are promising chemotherapeutic alternatives in the search of anticancer agents.Keywords: anti cancer, biocidal, DNA binding, spectra
Procedia PDF Downloads 159444 Structural Alteration of MoS₂ by Incorporating Fe, Co Composite for an Enhanced Oxygen Evolution Reaction
Authors: Krishnamoorthy Sathiyan, Shanti Gopal Patra, Ronen Bar-Ziv, Tomer Zidki
Abstract:
Developing efficient non-noble metal catalysts that are cheap and durable for oxygen evolution reaction (OER) is a great challenge. Moreover, altering the electronic structure of the catalyst and structural engineering of the materials provide a new direction for enhancing the OER. Herein, we have successfully synthesized Fe and Co incorporated MoS₂ catalysts, which show improved catalytic activity for OER when compared with MoS₂, Fe-MoS₂, and Co-MoS₂. It was found that at an optimal ratio of Fe and Co, the electronic and structural modification of MoS₂ occurs, which leads to change in orientation and thereby enhances the active catalytic sites on the edges, which are more exposed for OER. The nanocomposites have been well characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray analysis (EDX), Elemental Mapping, transmission electron microscope (TEM), and high-resolution transmission electron microscope (HR-TEM) analysis. Among all, a particular ratio of FeCo-MoS₂ exhibits a much smaller onset with better catalytic current density. The remarkable catalytic activity is mainly attributed to the synergistic effect from the Fe and Co. Most importantly, our work provides an essential insight in altering the electronic structure of MoS₂ based materials by incorporating promoters such as Co and Fe in an optimal amount, which enhances OER activity.Keywords: electrocatalysts, molybdenum disulfide, oxygen evolution reaction, transition metals
Procedia PDF Downloads 130443 Surface Segregation-Inspired Design for Bimetallic Nanoparticle Catalysts
Authors: Yaxin Tang, Mingao Hou, Qian He, Guangfu Luo
Abstract:
Bimetallic nanoparticles serve as a promising class of catalysts with tunable properties suitable for diverse catalytic reactions, yet a comprehensive understanding of their actual structures under operating conditions and the optimal design principles remains largely elusive. In this study, we unveil a prevalent surface segregation phenomenon in nearly 100 platinum-group-element-based bimetallic nanoparticles through first principles-based molecular dynamics simulations. Our findings highlight that two components in a nanoparticle with relatively lower surface energy tend to segregate to the surface. Motivated by this discovery, we propose a deliberate exploitation of surface segregation in designing bimetallic nanoparticle catalysts, aiming for heightened stability and reduced consumption of precious metals. To validate this strategy, we further investigate 36 platinum-based bimetallic nanoparticles for propane dehydrogenation catalysis. Through a systematic examination of catalytic sites on nanoparticles, we identify several systems as top candidates with Pt-enriched surfaces, remarkable thermal stability, and superior catalytic activity for propane dehydrogenation. The insights gained garnered from this study are anticipated to provide a valuable framework for the optimal design of other bimetallic nanoparticles.Keywords: bimetallic nanoparticles, platinum-group element, catalysis, surface segregation, first-principles calculations
Procedia PDF Downloads 50442 Total-Reflection X-Ray Spectroscopy as a Tool for Element Screening in Food Samples
Authors: Hagen Stosnach
Abstract:
The analytical demands on modern instruments for element analysis in food samples include the analysis of major, trace and ultra-trace essential elements as well as potentially toxic trace elements. In this study total reflection, X-ray fluorescence analysis (TXRF) is presented as an analytical technique, which meets the requirements, defined by the Association of Official Agricultural Chemists (AOAC) regarding the limit of quantification, repeatability, reproducibility and recovery for most of the target elements. The advantages of TXRF are the small sample mass required, the broad linear range from µg/kg up to wt.-% values, no consumption of gases or cooling water, and the flexible and easy sample preparation. Liquid samples like alcoholic or non-alcoholic beverages can be analyzed without any preparation. For solid food samples, the most common sample pre-treatment methods are mineralization, direct deposition of the sample onto the reflector without/with minimal treatment, mainly as solid suspensions or after extraction. The main disadvantages are due to the possible peaks overlapping, which may lower the accuracy of quantitative analysis and the limit in the element identification. This analytical technique will be presented by several application examples, covering a broad range of liquid and solid food types.Keywords: essential elements, toxic metals, XRF, spectroscopy
Procedia PDF Downloads 133441 Synthesis of Rare-Earth Pyrazolate Compounds
Authors: Nazli Eslamirad, Peter C. Junk, Jun Wang, Glen B. Deacon
Abstract:
Since coordination behavior of pyrazoles and pyrazolate ions are widely versatile towards a great range of metals such as d-block, f-block as well as main group elements; they attract interest as ligands for preparing compounds. A variety of rare-earth pyrazolate complexes have been synthesized by redox transmetalation/protolysis (RTP) previously, therefore, a variety of rare-earth pyrazolate complexes using two pyrazoles, 3,5-dimethylpyrazole (Me₂pzH) and 3,5-di-tert -butylpyrazolate (t-Bu₂pzH), in which the structures span the whole La-Lu array beside Sc and Y has been synthesized by RTP reaction. There have been further developments in this study: Synthesizing structure of [Tb(Me₂pz)₃(thf)]₂ which is isomorphous with those of the previously reported [Dy(Me₂pz)₃(thf)]₂ and [Lu(Me₂pz)₃(thf)]₂ analogous that has two µ-1(N):2(Nʹ)-Me2pz ligands (the most common pyrazolate ligation for non-rare-earth complexes). Previously most of the reported compounds using t-Bu2pzH were monomeric compounds however the lanthanum derivative [La(Me₂pz)₃thf₂] ,which has been reported previously without crystal structure, has now been structurally characterized, along with cerium and lutetium analogue. Also a polymeric structure with samarium has now been synthesized which the neodymium analogue has been reported previously and comparing these polymeric structures can support the idea that the geometry of Sm(tBu₂pz)₃ affect the coordination of the solvent. Also, by using 1,2-dimethoxyethane (DME) instead of tetrahydrofuran (THF) new [Er(tBu₂pz)₃ (dme)₂] has now been reported.Keywords: lanthanoid complexes, pyrazolate, redox transmetalation/protolysis, x-ray crystal structures
Procedia PDF Downloads 220440 Inerting and Upcycling of Foundry Fines
Authors: Chahinez Aissaoui, Cecile Diliberto, Jean-Michel Mechling
Abstract:
The manufacture of metal foundry products requires the use of sand moulds, which are destroyed, and new ones made each time metal is poured. However, recycled sand requires a regeneration process that produces a polluted fine mineral phase. Particularly rich in heavy metals and organic residues, this foundry co-product is disposed of in hazardous waste landfills and requires an expensive stabilisation process. This paper presents the results of research that valorises this fine fraction of foundry sand by inerting it in a cement phase. The fines are taken from the bag filter suction systems of a foundry. The sample is in the form of filler, with a fraction of less than 140µm, the D50 is 43µm. The Blaine fineness is 3120 cm²/g, and the fines are composed mainly of SiO₂, Al₂O₃ and Fe₂O₃. The loss on ignition at 1000°C of this material is 20%. The chosen inerting technique is to manufacture cement pastes which, once hardened, will be crushed for use as artificial aggregates in new concrete formulations. Different percentages of volume substitutions of Portland cement were tested: 30, 50 and 65%. The substitution rates were chosen to obtain the highest possible recycling rate while satisfying the European discharge limits (these values are assessed by leaching). They were also optimised by adding water-reducing admixtures to increase the compressive strengths of the mixes.Keywords: leaching, upcycling, waste, residuals
Procedia PDF Downloads 68439 Cu Nanoparticle Embedded-Zno Nanoplate Thin Films for Highly Efficient Photocatalytic Hydrogen Production
Authors: Premrudee Promdet, Fan Cui, Gi Byoung Hwang, Ka Chuen To, Sanjayan Sathasivam, Claire J. Carmalt, Ivan P. Parkin
Abstract:
A novel single-step fabrication of Cu nanoparticle embedded ZnO (Cu.ZnO) thin films was developed by aerosol-assisted chemical vapor deposition for stable and efficient hydrogen production in Photoelectrochemical (PEC) cell. In this approach, the Cu.ZnO nanoplate thin films were grown by using acetic acid to promote preferential growth and enhance surface active sites, where Cu nanoparticles can be formed under chemical deposition by reduction of Cu salt. Studies using photoluminescence spectroscopy indicate the enhanced photocatalytic performance is attributed to hot electron generated from SPR. The Cu metal in the composite material is functioning as a sensitizer to supply electrons to the semiconductor resulting in enhanced electron density for redox reaction. This work not only describes a way to obtain photoanodes with high photocatalytic activity but also suggests a low-cost route towards production of photocatalysts for hydrogen production. This work also supports a vital need to understand electron transfer between photoexcited semiconductor materials and metals, a requirement for tailoring the properties of semiconductor/metal composites.Keywords: photocatalysis, photoelectrochemical cell (PEC), aerosol-assisted chemical vapor deposition (AACVD), surface plasmon resonance (SPR)
Procedia PDF Downloads 219438 Mechanical Characterization and Metallography of Sintered Aluminium-Titanium Diboride Metal Matrix Composite
Authors: Sai Harshini Irigineni, Suresh Kumar Reddy Narala
Abstract:
The industrial applicability of aluminium metal matrix composites (AMMCs) has been rapidly growing due to their exceptional materials traits such as low weight, high strength, excellent thermal performance, and corrosion resistance. The increasing demand for AMMCs in automobile, aviation, aerospace and defence ventures has opened up windows of opportunity for the development of processing methods that facilitate low-cost production of AMMCs with superior properties. In the present work, owing to its economy, efficiency, and suitability, powder metallurgy (P/M) technique was employed to develop AMMCs with pure aluminium as matrix material and titanium diboride (TiB₂) as reinforcement. AMMC samples with different weight compositions (Al-0.1%TiB₂, Al-5%TiB₂, Al-10%TiB₂, and Al-15% TiB₂) were prepared through hot press compacting followed by traditional sintering. The developed AMMC was subjected to metallographic studies and mechanical characterization. Experimental evidences show significant improvement in mechanical properties such as tensile strength, hardness with increasing reinforcement content. The current study demonstrates the superiority of AMMCs over conventional metals and alloys and the results obtained may be of immense in material selection for different structural applications.Keywords: AMMCs, mechanical characterization, powder metallurgy, TiB₂
Procedia PDF Downloads 131437 Some Metal Levels in Muscle Tissue of Seven Fish Species from the Suğla and Beyşehir Lakes, Turkey
Authors: Haluk Özparlak, Murad Aydın Şanda, Gülşin Arslan
Abstract:
Phoxinellus anatolicus, Carassius gibelio, Sander lucioperca, Vimba vimba tenella, Capoeta capoeta, Tinca tinca from Suğla Lake (Turkey) and Phoxinellus anatolicus, Scardinius erythrophthalmus, Tinca tinca from Beyşehir Lake (Turkey) are economically important fish species and these fish have been consumed as food by local people. P. anatolicus is also endangered and endemic species from Turkey. In this study, concentrations of Cd, Co, Cr, Fe, Mn, Ni, Pb and Zn were determined in muscle tissue of these fish by using atomic absorption spectrophotometer. Levels of metals in the muscle tissue of all the fish specimens were compared with results of previous studies, the tolerance levels of national and international guidelines and the levels of Provisional Tolerable Weekly Intake (PTWI) limits set by FAO/WHO. Concentrations of Cd, Cr, Ni and Pb in the muscle tissue of all the fish specimens from Suğla and Beyşehir Lakes exceeded the tolerance levels of national and international guidelines. However, concentrations of Cd, Fe, Pb and Zn were below PTWI limits. Therefore, in terms of these metal levels, consumption of fresh filet of examined seven fish species (weekly up to about 300 g/person) doesn’t seem to be objectionable for human health.Keywords: Beyşehir Lake, fish, metal levels, Suğla Lake
Procedia PDF Downloads 333436 Nutritional Quality Assessment and Safety Evaluation of Food Crops
Authors: Olawole Emmanuel Aina, Liziwe Lizbeth Mugivhisa, Joshua Oluwole Olowoyo, Chikwela Lawrence Obi
Abstract:
In sustained and consistent efforts to improve food security, numerous and different methods are proposed and used in the production of food crops, and farm produce to meet the demands of consumers. However, unregulated and indiscriminate methods of production present another problem that may expose consumers of these food crops to potential health risks. Therefore, it is imperative that a thorough assessment of farm produce is carried out due to the growing trend of health-conscious consumers preference for minimally processed or raw farm produce. This study evaluated the safety and nutritional quality of food crops. The objectives were to compare the nutritional quality of organic and inorganic farm produce in one hand and, on the other, evaluate the safety of farm produce with respect to trace metal and pathogenic contamination. We conducted a broad systematic search of peer-reviewed published literatures from databases and search engines such as science direct, web-of-science, Google scholar, and Scopus. This study concluded that there is no conclusive evidence to support the notion of nutritional superiority of organic food crops over their inorganic counterparts and there are documented reports of pathogenic and metal contaminations of food crops.Keywords: food crops, fruits and vegetables, pathogens, nutrition, trace metals
Procedia PDF Downloads 80435 Tungsten-Based Powders Produced in Plasma Systems
Authors: Andrey V. Samokhin, Nikolay V. Alekseev, Mikhail A. Sinaiskii
Abstract:
The report presents the results of R&D of plasma-chemical production of W, W-Cu, W-Ni-Fe nanopowders as well as spherical micropowders of these compounds for their use in modern 3D printing technologies. Plasma-chemical synthesis of nanopowdersis based on the reduction of tungsten oxide compounds powders in a stream of hydrogen-containing low-temperature thermal plasma generated in an electric arc plasma torch. The synthesis of W-Cu and W-Ni-Fe nanocompositesiscarried out using the reduction of a mixture of the metal oxides. Using the synthesized tungsten-based nanocomposites powders, spherical composite micropowders with a submicron structure canbe manufactured by spray dryinggranulation of nanopowder suspension and subsequent densification and spheroidization of granules by melting in a low-temperature thermal plasma flow. The DC arc plasma systems are usedfor the synthesis of nanopowdersas well as for the spheroidization of microgranuls. Plasma systems have a capacity of up to 1 kg/h for nanopowder and up to 5 kg/h for spheroidized powder. All synthesized nanopowders consist of aggregated particles with sizes less than 100 nm, and nanoparticles of W-Cu and W-Ni-Fe composites have core (W) –shell (Cu or Ni-Fe) structures. The resulting dense spherical microparticles with a size of 20-60 microns have a submicron structure with a uniform distribution of metals over the particle volume. The produced tungsten-based nano- and spherical micropowderscan be used to develop new materials and manufacture products using advanced modern technologies.Keywords: plasma, powders, production, tungsten-based
Procedia PDF Downloads 120434 Carbon Fibre Reinforced Polymers Modified with PET-G/MWCNTs Nonwovens
Authors: Kamil Dydek, Szymon Demski, Kamil Majchrowicz, Paulina Kozera, Bogna Sztorch, Dariusz Brząkalski, Zuzanna Krawczyk, Robert Przekop, Anna Boczkowska
Abstract:
Carbon fibre reinforced polymers (CFRPs) are characterized by very high strength and stiffness in relation to their weight. In addition, properties such as corrosion resistance and low thermal expansion allow them to replace traditional materials, i.e., wood or metals, in many industries such as aerospace, automotive, marine, and sports goods. However, CFRPs, have some disadvantages -they have relatively low electrical conductivity and break brittle, which significantly limits their application possibilities. Moreover, conventional CFRPs are usually manufactured based on thermosets, which makes them difficult to recycle. The solution to these drawbacks is the use of the innovative thermoplastic resin (ELIUM from ARKEMA) as a matrix of composites and the modification by introducing into their structure thermoplastic nonwovens based on PET-G with the addition of multi-wall carbon nanotubes (MWCNTs). The acrylic-carbon composites, which were produced by the infusion technique, were tested for mechanical, thermo-mechanical, and electrical properties, and the effect of modifications on their microstructure was studied. Acknowledgment: This study was carried out with funding from grant no. LIDER/46/0185/L-11/19/NCBR/2020, financed by The National Centre for Research and Development.Keywords: CFRP, MWCNT, ELIUM, electrical properties, infusion
Procedia PDF Downloads 135433 Cellulose Containing Metal Organic Frameworks in Environmental Applications
Authors: Hossam El-Sayed Emam
Abstract:
As an essential issue for life, water while it’s important for all living organisms. However, the world is dangerously facing the serious problem for the deficiency of the sources of drinking water. Within the aquatic systems, there are various gases, microbes, and other toxic ingredients (chemical compounds and heavy metals) occurred owing to the draining of agricultural and industrial wastewater, resulting in water pollution. On the other hand, fuel (gaseous, liquid, or in solid phase) is one of the extensively consumable energy sources, and owing to its origin from fossil, it contains some sulfur-, nitrogen- and oxygen-based compounds that cause serious problems (toxicity, catalyst poisoning, corrosion, and gum formation andcarcinogenic effects), to be ascribed as undesirable pollutants.MOFs as porous coordinating polymers are superiorly exploited in the adsorption and separationof contaminants for wastewater treatment and fuel purification. The inclusion of highly adsorbent materials like MOFs to be immobilized within cellulosic materialscould be investigated as a new challenge for the separation of contaminants with high efficiency and opportunity for recyclability. Therefore, the current approach ascribes the exploitation of different MOFsimmobilized within cellulose (powder, films, and fabrics)for applications in environmental. Herein, using cellulose containing MOFs in dye removal (degradation and adsorption), pharmaceutical intermediates removal, and fuel purification were summarized.Keywords: cellulose, MOFs, dye removal, pharmaceutical intermediates, fuel purification
Procedia PDF Downloads 154432 Effect of Cadmium and Zinc on Initial Insect Food Chain in Wheat Agroecosystem
Authors: Muhammad Xaaceph Khan, Abida Butt, Farah Kausar
Abstract:
Due to geogenic and anthropogenic factors, heavy metals concentrations increased throughout the world and deposit into soil. Thus available to different plants and travel in different food chains. The present study was designed to achieve bioaccumulation of Cd and Zn in the wheat-aphid-beetle food chain. For this purpose, wheat plants were grown in three different treatments: Cd, Zn, Cd+Zn. Data showed that Cd content in soil and wheat plant increases with increase in Cd concentration while plant weighs, panicle weight, seed number per panicle and seed weight per panicle decreases with increase in Cd content in the soil. Zn content in soil and wheat plant increases with increase in Cd concentration while plant weighs, panicle weight, seed number per panicle, and seed weight per panicle increase with an increase in Zn content in the soil. With the addition of Zn in Cd-treated soil, the uptake of Cd decreases in all parts of wheat plants. Bioaccumulation from wheat plant to aphids and then its predators were also studied. Cd concentration increases from low to high concentration in all arthropods. Same was observed in Zn concentrations, while in Cd+Zn, Cd accumulation decreases but Zn accumulates increases. Health risk index (HRI) also showed that in the presence of Zn, the HRI improves and can help to reduce health risks associated with Cd.Keywords: aphid, beetle, bioaccumulation, cadmium, wheat, zinc
Procedia PDF Downloads 161431 Design, Analysis and Construction of a 250vac 8amps Arc Welding Machine
Authors: Anthony Okechukwu Ifediniru, Austin Ikechukwu Gbasouzor, Isidore Uche Uju
Abstract:
This article is centered on the design, analysis, construction, and test of a locally made arc welding machine that operates on 250vac with 8 amp output taps ranging from 60vac to 250vac at a fixed frequency, which is of benefit to urban areas; while considering its cost-effectiveness, strength, portability, and mobility. The welding machine uses a power supply to create an electric arc between an electrode and the metal at the welding point. A current selector coil needed for current selection is connected to the primary winding. Electric power is supplied to the primary winding of its transformer and is transferred to the secondary winding by induction. The voltage and current output of the secondary winding are connected to the output terminal, which is used to carry out welding work. The output current of the machine ranges from 110amps for low current welding to 250amps for high current welding. The machine uses a step-down transformer configuration for stepping down the voltage in order to obtain a high current level for effective welding. The welder can adjust the output current within a certain range. This allows the welder to properly set the output current for the type of welding that is being performed. The constructed arc welding machine was tested by connecting the work piece to it. Since there was no shock or spark from the transformer’s laminated core and was successfully used to join metals, it confirmed and validated the design.Keywords: AC current, arc welding machine, DC current, transformer, welds
Procedia PDF Downloads 181430 Physicochemistry of Pozzolanic Stabilization of a Class A-2-7 Lateritic Soil
Authors: Ahmed O. Apampa, Yinusa A. Jimoh
Abstract:
The paper examines the mechanism of pozzolan-soil reactions, using a recent study on the chemical stabilization of a Class A-2-7 (3) lateritic soil, with corn cob ash (CCA) as case study. The objectives are to establish a nexus between cation exchange capacity of the soil, the alkaline forming compounds in CCA and percentage CCA addition to soil beyond which no more improvement in strength properties can be achieved; and to propose feasible chemical reactions to explain the chemical stabilization of the lateritic soil with CCA alone. The lateritic soil, as well as CCA of pozzolanic quality Class C were separately analysed for their metallic oxide composition using the X-Ray Fluorescence technique. The cation exchange capacity (CEC) of the soil and the CCA were computed theoretically using the percentage composition of the base cations Ca2+, Mg2+ K+ and Na2+ as 1.48 meq/100 g and 61.67 meq/100 g respectively, thus indicating a ratio of 0.024 or 2.4%. This figure, taken as the theoretical amount required to just fill up the exchangeable sites of the clay molecules, compares well with the laboratory observation of 1.5% for the optimum level of CCA addition to lateritic soil. The paper went on to present chemical reaction equations between the alkaline earth metals in the CCA and the silica in the lateritic soil to form silicates, thereby proposing an extension of the theory of mechanism of soil stabilization to cover chemical stabilization with pozzolanic ash only. The paper concluded by recommending further research on the molecular structure of soils stabilized with pozzolanic waste ash alone, with a view to confirming the chemical equations advanced in the study.Keywords: cation exchange capacity, corn cob ash, lateritic soil, soil stabilization
Procedia PDF Downloads 248429 Using Pyrolitic Carbon Black Obtained from Scrap Tires as an Adsorbent for Chromium (III) Removal from Water
Authors: Mercedeh Malekzadeh
Abstract:
Scrap tires are the source of wastes that cause the environmental problems. The major components of these tires are rubber and carbon black. These components can be used again for different applications by utilizing physical and chemical processes. Pyrolysis is a way that converts rubber portion of scrap tires to oil and gas and the carbon black recovers to pyrolytic carbon black. This pyrolytic carbon black can be used to reinforce rubber and metal, coating preparation, electronic thermal manager and so on. The porous structure of this carbon black also makes it as a suitable choice for heavy metals removal from water. In this work, the application of base treated pyrolytic carbon black was studied as an adsorbent for chromium (III) removal from water in a batch process. Pyrolytic carbon blacks in two natural and base treated forms were characterized by scanning electron microscopy and energy dispersive analysis x-ray. The effects of adsorbent dosage, contact time, initial concentration of chromium (III) and pH were considered on the adsorption process. The adsorption capacity was 19.76 mg/g. Maximum adsorption was seen after 120 min at pH=3. The equilibrium data were considered and better fitted to Langmuir model. The adsorption kinetic was evaluated and confirmed with the pseudo second order kinetic. Results have shown that the base treated pyrolytic carbon black obtained from scrap tires can be used as a cheap adsorbent for removal of chromium (III) from the water.Keywords: chromium (III), pyrolytic carbon, scrap tire, water
Procedia PDF Downloads 200428 Preparation and Cutting Performance of Boron-Doped Diamond Coating on Cemented Carbide Cutting Tools with High Cobalt Content
Authors: Zhaozhi Liu, Feng Xu, Junhua Xu, Xiaolong Tang, Ying Liu, Dunwen Zuo
Abstract:
Chemical vapor deposition (CVD) diamond coated cutting tool has excellent cutting performance, it is the most ideal tool for the processing of nonferrous metals and alloys, composites, nonmetallic materials and other difficult-to-machine materials efficiently and accurately. Depositing CVD diamond coating on the cemented carbide with high cobalt content can improve its toughness and strength, therefore, it is very important to research on the preparation technology and cutting properties of CVD diamond coated cemented carbide cutting tool with high cobalt content. The preparation technology of boron-doped diamond (BDD) coating has been studied and the coated drills were prepared. BDD coating were deposited on the drills by using the optimized parameters and the SEM results show that there are no cracks or collapses in the coating. Cutting tests with the prepared drills against the silumin and aluminum base printed circuit board (PCB) have been studied. The results show that the wear amount of the coated drill is small and the machined surface has a better precision. The coating does not come off during the test, which shows good adhesion and cutting performance of the drill.Keywords: cemented carbide with high cobalt content, CVD boron-doped diamond, cutting test, drill
Procedia PDF Downloads 420427 Preparation of Hyperbranched Polymers for Application in Light Emitting Diodes
Authors: Amal Aljohani, Ahmed Iraqi
Abstract:
Emitting materials with thermally activated delayed fluorescence (TADF) properties as the third generation of organic light-emitting diodes (OLEDs) have received much attention as a modern class of highly efficient emitters because such properties enable the harvesting of both singlet and triplet excitons in EL applications without the doping with complexes of scarce noble metals such as platinum and iridium. Improved molecular design of TADF molecules and applied materials exhibiting internal electroluminescence (EL) with quantum efficiencies of nearly 100% has been achieved being. A2B3 hyperbranched polymers based on new derivatives containing silane core units serving as host materials for thermally activated delayed fluorescence (TADF) guest molecules have been designed and synthesized through several steps, including the synthesis of tetrakis(4-bromophenyl)silane, bis(4-(9H-carbazol-9-yl)phenyl)bis(4-bromophenyl)silane,bis(4-(9H-carbazol-9 yl)phenyl)bis(4-methoxyphenyl)silane and bis(4-(9H-carbazol-9-yl)phenyl)bis(4hydroxyphenyl)silane. This monomer has been used successfully used along with 1,1,1-tri-(p-tosyloxymethyl)-propane to prepare A2B3 hyperbranched polymers via step-growth polymerization. The characterization and the properties of these new host polymers will be presented and discussed in this contribution.Keywords: carbazole, organic light emitting diodes, thermally activated delayed fluorescence, donor-acceptor, host and guest interaction
Procedia PDF Downloads 153426 Microstructural and Mechanical Property Investigation on SS316L-Cu Graded Deposition Prepared using Wire Arc Additive Manufacturing
Authors: Bunty Tomar, Shiva S.
Abstract:
Fabrication of steel and copper-based functionally graded material (FGM) through cold metal transfer-based wire arc additive manufacturing is a novel exploration. Components combining Cu and steel show significant usage in many industrial applications as they combine high corrosion resistance, ductility, thermal conductivity, and wear resistance to excellent mechanical properties. Joining steel and copper is challenging due to the mismatch in their thermo-mechanical properties. In this experiment, a functionally graded material (FGM) structure of pure copper (Cu) and 316L stainless steel (SS) was successfully developed using cold metal transfer-based wire arc additive manufacturing (CMT-WAAM). The interface of the fabricated samples was characterized under optical microscopy, field emission scanning electron microscopy, and X-ray diffraction techniques. Detailed EBSD and TEM analysis was performed to analyze the grain orientation, strain distribution, grain boundary misorientations, and formation of metastable and intermetallic phases. Mechanical characteristics of deposits was also analyzed using tensile and wear testing. This works paves the way to use CMT-WAAM to fabricate steel/copper FGMs.Keywords: wire arc additive manufacturing (waam), cold metal transfer (cmt), metals and alloys, mechanical properties, characterization
Procedia PDF Downloads 80