Search results for: 3D imaging
417 Infectivity of Hyalomma Ticks for Theileria annulata Using 18s rRNA PCR
Authors: Muhammad S. Sajid, A. Iqbal, A. Kausar, M. Jawad-ul-Hassan, Z. Iqbal, Hafiz M. Rizwan, M. Saqib
Abstract:
Among the ixodid ticks, species of genus Hyalomma are of prime importance as they can survive in harsh conditions better than those of other species. Similarly, among various tick-borne pathogens, Theileria (T.) annulata, the causative agent of tropical theileriosis in large ruminants, is responsible for reduced productivity and ultimately substantial economic losses due to morbidity and mortality. The present study was planned to screening of vector ticks through molecular techniques for determination of tick-borne theileriosis in district Toba Tek Singh (T. T. Singh), Punjab, Pakistan. For this purpose, among the collected ticks (n = 2252) from livestock and their microclimate, Hyalomma spp. were subjected to dissection for procurement of salivary glands (SGs) and formation of pool (averaged 8 acini in each pool). Each pool of acini was used for DNA extraction, quantification and primer-specific amplification of 18S rRNA of Theileria (T.) annulata. The amplicons were electrophoresed using 1.8% agarose gel following by imaging to identify the band specific for T. annulata. For confirmation, the positive amplicons were subjected to sequencing, BLAST analysis and homology search using NCBI software. The number of Theileria-infected acini was significantly higher (P < 0.05) in female ticks vs male ticks, infesting ticks vs questing ticks and riverine-collected vs non-riverine collected. The data provides first attempt to quantify the vectoral capacity of ixodid ticks in Pakistan for T. annulata which can be helpful in estimation of risk analysis of theileriosis to the domestic livestock population of the country.Keywords: Hyalomma anatolicum, ixodids, PCR, Theileria annulata
Procedia PDF Downloads 288416 Trauma System in England: An Overview and Future Directions
Authors: Raheel Shakoor Siddiqui, Sanjay Narayana Murthy, Manikandar Srinivas Cheruvu, Kash Akhtar
Abstract:
Major trauma is a dynamic public health epidemic that is continuously evolving. Major trauma care services rely on multi-disciplinary team input involving highly trained pre and in-hospital critical care teams. Pre-hospital critical care teams (PHCCTs), major trauma centres (MTCs), trauma units, and rehabilitation facilities all form an efficient and organised trauma system. England comprises 27 MTCs funded by the National Health Service (NHS). Major trauma care entails enhanced resuscitation protocols coupled with the expertise of dedicated trauma teams and rapid radiological imaging to improve trauma outcomes. Literature reports a change in the demographic of major trauma as elderly patients (silver trauma) with injuries sustained from a fall of 2 metres or less commonly present to services. Evidence of an increasing population age with multiple comorbidities necessitates treatment within the first hour of injury (golden hour) to improve trauma survival outcomes. Staffing and funding pressures within the NHS have subsequently led to a shortfall of available physician-led PHCCTs. Thus, there is a strong emphasis on targeted research and funding to appropriately deploy resources to deprived areas. This review article will discuss the current English trauma system whilst critically appraising present challenges, identifying insufficiencies, and recommending aims for an improved future trauma system in England.Keywords: trauma, orthopaedics, major trauma, trauma system, trauma network
Procedia PDF Downloads 187415 Contrast-to-Noise Ratio Comparison of Different Calcification Types in Dual Energy Breast Imaging
Authors: Vaia N. Koukou, Niki D. Martini, George P. Fountos, Christos M. Michail, Athanasios Bakas, Ioannis S. Kandarakis, George C. Nikiforidis
Abstract:
Various substitute materials of calcifications are used in phantom measurements and simulation studies in mammography. These include calcium carbonate, calcium oxalate, hydroxyapatite and aluminum. The aim of this study is to compare the contrast-to-noise ratio (CNR) values of the different calcification types using the dual energy method. The constructed calcification phantom consisted of three different calcification types and thicknesses: hydroxyapatite, calcite and calcium oxalate of 100, 200, 300 thicknesses. The breast tissue equivalent materials were polyethylene and polymethyl methacrylate slabs simulating adipose tissue and glandular tissue, respectively. The total thickness was 4.2 cm with 50% fixed glandularity. The low- (LE) and high-energy (HE) images were obtained from a tungsten anode using 40 kV filtered with 0.1 mm cadmium and 70 kV filtered with 1 mm copper, respectively. A high resolution complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) X-ray detector was used. The total mean glandular dose (MGD) and entrance surface dose (ESD) from the LE and HE images were constrained to typical levels (MGD=1.62 mGy and ESD=1.92 mGy). On average, the CNR of hydroxyapatite calcifications was 1.4 times that of calcite calcifications and 2.5 times that of calcium oxalate calcifications. The higher CNR values of hydroxyapatite are attributed to its attenuation properties compared to the other calcification materials, leading to higher contrast in the dual energy image. This work was supported by Grant Ε.040 from the Research Committee of the University of Patras (Programme K. Karatheodori).Keywords: calcification materials, CNR, dual energy, X-rays
Procedia PDF Downloads 357414 Estimation of Effective Radiation Dose Following Computed Tomography Urography at Aminu Kano Teaching Hospital, Kano Nigeria
Authors: Idris Garba, Aisha Rabiu Abdullahi, Mansur Yahuza, Akintade Dare
Abstract:
Background: CT urography (CTU) is efficient radiological examination for the evaluation of the urinary system disorders. However, patients are exposed to a significant radiation dose which is in a way associated with increased cancer risks. Objectives: To determine Computed Tomography Dose Index following CTU, and to evaluate organs equivalent doses. Materials and Methods: A prospective cohort study was carried at a tertiary institution located in Kano northwestern. Ethical clearance was sought and obtained from the research ethics board of the institution. Demographic, scan parameters and CT radiation dose data were obtained from patients that had CTU procedure. Effective dose, organ equivalent doses, and cancer risks were estimated using SPSS statistical software version 16 and CT dose calculator software. Result: A total of 56 patients were included in the study, consisting of 29 males and 27 females. The common indication for CTU examination was found to be renal cyst seen commonly among young adults (15-44yrs). CT radiation dose values in DLP, CTDI and effective dose for CTU were 2320 mGy cm, CTDIw 9.67 mGy and 35.04 mSv respectively. The probability of cancer risks was estimated to be 600 per a million CTU examinations. Conclusion: In this study, the radiation dose for CTU is considered significantly high, with increase in cancer risks probability. Wide radiation dose variations between patient doses suggest that optimization is not fulfilled yet. Patient radiation dose estimate should be taken into consideration when imaging protocols are established for CT urography.Keywords: CT urography, cancer risks, effective dose, radiation exposure
Procedia PDF Downloads 345413 Vestibular Schwannoma: A Rare Cause of Trigeminal Nerve Paraesthesia
Authors: Jessie Justice
Abstract:
This is a case report of a vestibular schwannoma presenting with numbness to the left lower lip and tongue and altered taste. The aim of this case is to raise awareness of differential diagnoses for trigeminal nerve paraesthesia and, hence, prompt thorough investigation. A 65-year-old male was referred to the Oral and Maxillofacial department regarding sudden-onset of numbness to his left lower lip and left tongue, with altered taste sensation subsequently developing. The patient was simultaneously being investigated for severe hearing loss in his left ear. On examination, there was altered sensation in the distribution of the left inferior alveolar nerve and left lingual nerve. There was no palpable cervical lymphadenopathy and no intra-oral lesions or dental cause for the symptoms. Due to his hearing loss in the left ear, the patient was sent for magnetic resonance imaging of the internal auditory meatus by the Ear, Nose and Throat (ENT) department, revealing a 2.5cm mass within the left cerebellopontine angle presumed to be a vestibular schwannoma. This led to the diagnosis of trigeminal nerve compression by a medium vestibular schwannoma. Consequently, the patient was followed up by an ENT, who referred him for stereotactic radiosurgery. A literature review regarding vestibular schwannomas presenting with orofacial paraesthesia was then carried out. A review of the literature has shown the incidence of vestibular schwannoma to be 3-5 cases per 100,000. It has been reported that approximately 5% of vestibular schwannoma cases display orofacial dysaesthesia, and about 1-3% of cases exhibit trigeminal neuralgia symptoms. This is a rare case of vestibular schwannoma causing trigeminal nerve paraesthesia. The aim of this study is to raise awareness of alternative causes of trigeminal nerve paraesthesia and the available literature surrounding this.Keywords: acoustic neuroma, orofacial dysaesthesia, trigeminal nerve paraesthesia, vestibular schwannoma
Procedia PDF Downloads 14412 Osteoarthritis (OA): A Total Knee Replacement Surgery
Authors: Loveneet Kaur
Abstract:
Introduction: Osteoarthritis (OA) is one of the leading causes of disability, and the knee is the most commonly affected joint in the body. The last resort for treatment of knee OA is Total Knee Replacement (TKR) surgery. Despite numerous advances in prosthetic design, patients do not reach normal function after surgery. Current surgical decisions are made on 2D radiographs and patient interviews. Aims: The aim of this study was to compare knee kinematics pre and post-TKR surgery using computer-animated images of patient-specific models under everyday conditions. Methods: 7 subjects were recruited for the study. Subjects underwent 3D gait analysis during 4 everyday activities and medical imaging of the knee joint pre- and one-month post-surgery. A 3D model was created from each of the scans, and the kinematic gait analysis data was used to animate the images. Results: Improvements were seen in a range of motion in all 4 activities 1-year post-surgery. The preoperative 3D images provide detailed information on the anatomy of the osteoarthritic knee. The postoperative images demonstrate potential future problems associated with the implant. Although not accurate enough to be of clinical use, the animated data can provide valuable insight into what conditions cause damage to both the osteoarthritic and prosthetic knee joints. As the animated data does not require specialist training to view, the images can be utilized across the fields of health professionals and manufacturing in the assessment and treatment of patients pre and post-knee replacement surgery. Future improvements in the collection and processing of data may yield clinically useful data. Conclusion: Although not yet of clinical use, the potential application of 3D animations of the knee joint pre and post-surgery is widespread.Keywords: Orthoporosis, Ortharthritis, knee replacement, TKR
Procedia PDF Downloads 49411 Preparation of Polymer-Stabilized Magnetic Iron Oxide as Selective Drug Nanocarriers to Human Acute Myeloid Leukemia
Authors: Kheireddine El-Boubbou
Abstract:
Drug delivery to target human acute myeloid leukemia (AML) using a nanoparticulate chemotherapeutic formulation that can deliver drugs selectively to AML cancer is hugely needed. In this work, we report the development of a nanoformulation made of polymeric-stabilized multifunctional magnetic iron oxide nanoparticles (PMNP) loaded with the anticancer drug Doxorubicin (Dox) as a promising drug carrier to treat AML. Dox@PMNP conjugates simultaneously exhibited high drug content, maximized fluorescence, and excellent release properties. Nanoparticulate uptake and cell death following addition of Dox@PMNPs were then evaluated in different types of human AML target cells, as well as on normal human cells. While the unloaded MNPs were not toxic to any of the cells, Dox@PMNPs were found to be highly toxic to the different AML cell lines, albeit at different inhibitory concentrations (IC50 values), but showed very little toxicity towards the normal cells. In comparison, free Dox showed significant potency concurrently to all the cell lines, suggesting huge potentials for the use of Dox@PMNPs as selective AML anticancer cargos. Live confocal imaging, fluorescence and electron microscopy confirmed that Dox is indeed delivered to the nucleus in relatively short periods of time, causing apoptotic cell death. Importantly, this targeted payload may potentially enhance the effectiveness of the drug in AML patients and may further allow physicians to image leukemic cells exposed to Dox@PMNPs using MRI.Keywords: magnetic nanoparticles, drug delivery, acute myeloid leukemia, iron oxide, cancer nanotherapy
Procedia PDF Downloads 230410 3D Medical Printing the Key Component in Future of Medical Applications
Authors: Zahra Asgharpour, Eric Renteria, Sebastian De Boodt
Abstract:
There is a growing trend towards personalization of medical care, as evidenced by the emphasis on outcomes based medicine, the latest developments in CT and MR imaging and personalized treatment in a variety of surgical disciplines. 3D Printing has been introduced and applied in the medical field since 2000. The first applications were in the field of dental implants and custom prosthetics. According to recent publications, 3D printing in the medical field has been used in a wide range of applications which can be organized into several categories including implants, prosthetics, anatomical models and tissue bioprinting. Some of these categories are still in their infancy stage of the concept of proof while others are in application phase such as the design and manufacturing of customized implants and prosthesis. The approach of 3D printing in this category has been successfully used in the health care sector to make both standard and complex implants within a reasonable amount of time. In this study, some of the clinical applications of 3D printing in design and manufacturing of a patient-specific hip implant would be explained. In cases where patients have complex bone geometries or are undergoing a complex revision on hip replacement, the traditional surgical methods are not efficient, and hence these patients require patient-specific approaches. There are major advantages in using this new technology for medical applications, however, in order to get this technology widely accepted in medical device industry, there is a need for gaining more acceptance from the medical device regulatory offices. This is a challenge that is moving onward and will help the technology find its way at the end as an accepted manufacturing method for medical device industry in an international scale. The discussion will conclude with some examples describing the future directions of 3D Medical Printing.Keywords: CT/MRI, image processing, 3D printing, medical devices, patient specific implants
Procedia PDF Downloads 298409 Cytotoxic and Biocompatible Evaluation of Silica Coated Silver Nanoparticle Against Nih-3t3 Cells
Authors: Chen-En Lin, Lih-Rou Rau, Jiunn-Woei Liaw, Shiao-Wen Tsai
Abstract:
The unique optical properties of plasmon resonance metallic particles have attracted considerable applications in the fields of physics, chemistry and biology. Metal-Enhanced Fluorescence (MEF) effect is one of the useful applications. MEF effect stated that fluorescence intensity can be quenched or be enhanced depending on the distance between fluorophores and the metal nanoparticles. Silver nanoparticles have used widely in antibacterial studies. However, the major limitation for silver nanoparticles (AgNPs) in biomedical application is well-known cytotoxicity on cells. There were numerous literatures have been devoted to overcome the disadvantage. The aim of the study is to evaluate the cytotoxicity and biocompatibility of silica coated AgNPs against NIH-3T3 cells. The results were shown that NIH-3T3 cells started to detach, shrink, become rounded and finally be irregular in shape after 24 h of exposure at 10 µg/ml AgNPs. Besides, compared with untreated cells, the cell viability significantly decreased to 60% and 40% which were exposed to 10 µg/ml and 20 µg/ml AgNPs respectively. The result was consistent with previously reported findings that AgNPs induced cytotoxicity was concentration dependent. However, the morphology and cell viability of cells appeared similar to the control group when exposed to 20 µg/ml of silica coated AgNPs. We further utilized the dark-field hyperspectral imaging system to analysis the optical properties of the intracellular nanoparticles. The image displayed that the red shift of the surface plasmonic resonances band of the enclosed AgNPs further confirms the agglomerate of the AgNPs rather than their distribution in cytoplasm. In conclusion, the study demonstrated the silica coated of AgNPs showed well biocompatibility and significant lower cytotoxicity compared with bare AgNPs.Keywords: silver nanoparticles, silica, cell viability, morphology
Procedia PDF Downloads 394408 Intensity-Enhanced Super-Resolution Amplitude Apodization Effect on the Non-Spherical Near-Field Particle-Lenses
Authors: Liyang Yue, Bing Yan, James N. Monks, Rakesh Dhama, Zengbo Wang, Oleg V. Minin, Igor V. Minin
Abstract:
A particle can function as a refractive lens to focus a plane wave, generating a narrow, high intensive, weak-diverging beam within a sub-wavelength volume, known as the ‘photonic jet’. Refractive index contrast (particle to background media) and scaling effect of the dielectric particle (relative-to-wavelength size) play key roles in photonic jet formation, rather than the shape of particle-lens. Waist (full width of half maximum, FWHM) of a photonic jet could be beyond the diffraction limit and smaller than the Airy disk, which defines the minimum distance between two objects to be imaged as two instead of one. Many important applications for imaging and sensing have been afforded based upon the super-resolution characteristic of the photonic jet. It is known that apodization method, in the form of an amplitude pupil-mask centrally situated on a particle-lens, can further reduce the waist of a photonic nanojet, however, usually lower its intensity at the focus due to blocking of the incident light. In this paper, the anomalously intensity-enhanced apodization effect was discovered in the near-field via numerical simulation. It was also experimentally verified by a scale model using a copper-masked Teflon cuboid solid immersion lens (SIL) with 22 mm side length under radiation of a plane wave with 8 mm wavelength. Peak intensity enhancement and the lateral resolution of the produced photonic jet increased by about 36.0 % and 36.4 % in this approach, respectively. This phenomenon may possess the scale effect and would be valid in multiple frequency bands.Keywords: apodization, particle-lens, scattering, near-field optics
Procedia PDF Downloads 192407 Nanocomposites Based Micro/Nano Electro-Mechanical Systems for Energy Harvesters and Photodetectors
Authors: Radhamanohar Aepuru, R. V. Mangalaraja
Abstract:
Flexible electronic devices have drawn potential interest and provide significant new insights to develop energy conversion and storage devices such as photodetectors and nanogenerators. Recently, self-powered electronic systems have captivated huge attention for next generation MEMS/NEMS devices that can operate independently by generating built-in field without any need of external bias voltage and have wide variety of applications in telecommunication, imaging, environmental and defence sectors. The basic physical process involved in these devices are charge generation, separation, and charge flow across the electrodes. Many inorganic nanostructures have been exploring to fabricate various optoelectronic and electromechanical devices. However, the interaction of nanostructures and their excited charge carrier dynamics, photoinduced charge separation, and fast carrier mobility are yet to be studied. The proposed research is to address one such area and to realize the self-powered electronic devices. In the present work, nanocomposites of inorganic nanostructures based on ZnO, metal halide perovskites; and polyvinylidene fluoride (PVDF) based nanocomposites are realized for photodetectors and nanogenerators. The characterization of the inorganic nanostructures is carried out through steady state optical absorption and luminescence spectroscopies as well as X-ray diffraction and high-resolution transmission electron microscopy (TEM) studies. The detailed carrier dynamics is investigated using various spectroscopic techniques. The developed composite nanostructures exhibit significant optical and electrical properties, which have wide potential applications in various MEMS/NEMS devices such as photodetectors and nanogenerators.Keywords: dielectrics, nanocomposites, nanogenerators, photodetectors
Procedia PDF Downloads 129406 The Value of Dynamic Magnetic Resonance Defecography in Assessing the Severity of Defecation Disorders
Authors: Ge Sun, Monika Trzpis, Robbert J. de Haas, Paul M. A. Broens
Abstract:
Introduction: Dynamic magnetic resonance defecography is frequently used to assess defecation disorders. We aimed to investigate the usefulness of dynamic magnetic resonance defecography for assessing the severity of defecation disorder. Methods: We included patients retrospectively from our tertiary referral hospital who had undergone dynamic magnetic resonance defecography, anorectal manometry, and anal electrical sensitivity tests to assess defecation disorders between 2014 and 2020. The primary outcome was the association between the dynamic magnetic resonance defecography variables and the severity of defecation disorders. We assessed the severity of fecal incontinence and constipation with the Wexner incontinence and Agachan constipation scores. Results: Out of the 32 patients included, 24 completed the defecation questionnaire. During defecation, the M line length at magnetic resonance correlated with the Agachan score (r = 0.45, p = 0.03) and was associated with anal sphincter pressure (r=0.39, p=0.03) just before defecation. During rest and squeezing, the H line length at imaging correlated with the Wexner incontinence score (r=0.49, p=0.01 and r=0.69, p< 0.001, respectively). H line length also correlated positively with the anal electrical sensation threshold during squeezing (r=0.50, p=0.004) and during rest (r= 0.42, p=0.02). Conclusions: The M and H line lengths at dynamic magnetic resonance defecography can be used to assess the severity of constipation and fecal incontinence respectively and reflect anatomic changes of the pelvic floor. However, as these anatomic changes are generally late-stage and irreversible, anal manometry seems a better diagnostic approach to assess early and potentially reversible changes in patients with defecation disorders.Keywords: defecation disorders, dynamic magnetic resonance defecography, anorectal manometry, anal electrical sensitivity tests, H line, M line
Procedia PDF Downloads 106405 Reconstruction of Visual Stimuli Using Stable Diffusion with Text Conditioning
Authors: ShyamKrishna Kirithivasan, Shreyas Battula, Aditi Soori, Richa Ramesh, Ramamoorthy Srinath
Abstract:
The human brain, among the most complex and mysterious aspects of the body, harbors vast potential for extensive exploration. Unraveling these enigmas, especially within neural perception and cognition, delves into the realm of neural decoding. Harnessing advancements in generative AI, particularly in Visual Computing, seeks to elucidate how the brain comprehends visual stimuli observed by humans. The paper endeavors to reconstruct human-perceived visual stimuli using Functional Magnetic Resonance Imaging (fMRI). This fMRI data is then processed through pre-trained deep-learning models to recreate the stimuli. Introducing a new architecture named LatentNeuroNet, the aim is to achieve the utmost semantic fidelity in stimuli reconstruction. The approach employs a Latent Diffusion Model (LDM) - Stable Diffusion v1.5, emphasizing semantic accuracy and generating superior quality outputs. This addresses the limitations of prior methods, such as GANs, known for poor semantic performance and inherent instability. Text conditioning within the LDM's denoising process is handled by extracting text from the brain's ventral visual cortex region. This extracted text undergoes processing through a Bootstrapping Language-Image Pre-training (BLIP) encoder before it is injected into the denoising process. In conclusion, a successful architecture is developed that reconstructs the visual stimuli perceived and finally, this research provides us with enough evidence to identify the most influential regions of the brain responsible for cognition and perception.Keywords: BLIP, fMRI, latent diffusion model, neural perception.
Procedia PDF Downloads 69404 Neuroimaging Markers for Screening Former NFL Players at Risk for Developing Alzheimer's Disease / Dementia Later in Life
Authors: Vijaykumar M. Baragi, Ramtilak Gattu, Gabriela Trifan, John L. Woodard, K. Meyers, Tim S. Halstead, Eric Hipple, Ewart Mark Haacke, Randall R. Benson
Abstract:
NFL players, by virtue of their exposure to repetitive head injury, are at least twice as likely to develop Alzheimer's disease (AD) and dementia as the general population. Early recognition and intervention prior to onset of clinical symptoms could potentially avert/delay the long-term consequences of these diseases. Since AD is thought to have a long preclinical incubation period, the aim of the current research was to determine whether former NFL players, referred to a depression center, showed evidence of incipient dementia in their structural imaging prior to diagnosis of dementia. Thus, to identify neuroimaging markers of AD, against which former NFL players would be compared, we conducted a comprehensive volumetric analysis using a cohort of early stage AD patients (ADNI) to produce a set of brain regions demonstrating sensitivity to early AD pathology (i.e., the “AD fingerprint”). A cohort of 46 former NFL players’ brain MRIs were then interrogated using the AD fingerprint. Brain scans were done using a T1-weighted MPRAGE sequence. The Free Surfer image analysis suite (version 6.0) was used to obtain the volumetric and cortical thickness data. A total of 55 brain regions demonstrated significant atrophy or ex vacuo dilatation bilaterally in AD patients vs. healthy controls. Of the 46 former NFL players, 19 (41%) demonstrated a greater than expected number of atrophied/dilated AD regions when compared with age-matched controls, presumably reflecting AD pathology.Keywords: alzheimers, neuroimaging biomarkers, traumatic brain injury, free surfer, ADNI
Procedia PDF Downloads 154403 Effectiveness of Myofascial Release Technique in Treatment of Sacroiliac Joint Hypo-Mobility in Postnatal Women
Authors: Ahmed A. Abd El Rahim, Mohamed M. M. Essa, Magdy M. A. Shabana, Said A. Mohamed, Mohamed Ibrahim Mabrouk
Abstract:
Background: Sacroiliac joint (SIJ) dysfunction is considered the main cause of pregnancy-related back pain, which may continue to persist postnatally. Myofascial release technique (MFR) is an application of low-intensity, prolonged stretch to myofascial structures to improve function by increasing the sliding properties of restricted myofascial tissues. Purpose: This study was designed to investigate the effect of MFR on postnatal SIJ hypo-mobility. Materials and Methods: Fifty postnatal women complaining of SIJ hypo-mobility participated in this study. Their ages ranged from 26 to 35 yrs., and their body mass index (BMI) didn`t exceed 30 kg/m2. They were randomly assigned to two equal groups, group A (Gr. A) and group B (Gr. B). Both groups received three sessions per week for eight successive weeks. Gr. A received a traditional physical therapy program, while Gr. B received a traditional physical therapy program in addition to MFR. Doppler imaging of vibration was utilized to measure SIJ mobility pre- and post-intervention, and an electronic digital goniometer was used to measure back flexion and extension Range of motion. Results: Findings revealed a statistical improvement in post-intervention values of SIJ mobility in addition to trunk flexion and extension ROM in Gr. B compared to Gr. A (P<0.001). Conclusion: Adding MFR to traditional physical therapy programs is highly recommended in the treatment of SIJ hypo-mobility in postnatal women.Keywords: sacroiliac hypo-mobility, sacroiliac dysfunction, myofascial release technique, traditional physical therapy, postnatal
Procedia PDF Downloads 102402 A Case of Survival with Self-Draining Haemopericardium Secondary to Stabbing
Authors: Balakrishna Valluru, Ruth Suckling
Abstract:
A 16 year old male was found collapsed on the road following stab injuries to the chest and abdomen and was transported to the emergency department by ambulance. On arrival in the emergency department the patient was breathless and appeared pale. He was maintaining his airway with spontaneous breathing and had a heart rate of 122 beats per minute with a blood pressure of 83/63 mmHg. He was resuscitated initially with three units of packed red cells. Clinical examination identified three incisional wounds each measuring 2 cm. These were in the left para-sternal region, right infra-scapular region and left upper quadrant of the abdomen. The chest wound over the left parasternal area at the level of 4tth intercostal space was bleeding intermittently on leaning forwards and was relieving his breathlessness intermittently. CT imaging was performed to characterize his injuries and determine his management. CT scan of chest and abdomen showed moderate size haemopericardium with left sided haemopneumothorax. The patient underwent urgent surgical repair of the left ventricle and left anterior descending artery. He recovered without complications and was discharged from the hospital. This case highlights the fact that the potential to develop a life threatening cardiac tamponade was mitigated by the left parasternal stab wound. This injury fortuitously provided a pericardial window through which the bleeding from the injured left ventricle and left anterior descending artery could drain into the left hemithorax providing an opportunity for timely surgical intervention to repair the cardiac injuries.Keywords: stab, incisional, haemo-pericardium, haemo-pneumothorax
Procedia PDF Downloads 203401 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique
Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu
Abstract:
Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing
Procedia PDF Downloads 101400 Tractography Analysis of the Evolutionary Origin of Schizophrenia
Authors: Asmaa Tahiri, Mouktafi Amine
Abstract:
A substantial number of traditional medical research has been put forward to managing and treating mental disorders. At the present time, to our best knowledge, it is believed that fundamental understanding of the underlying causes of the majority psychological disorders needs to be explored further to inform early diagnosis, managing symptoms and treatment. The emerging field of evolutionary psychology is a promising prospect to address the origin of mental disorders, potentially leading to more effective treatments. Schizophrenia as a topical mental disorder has been linked to the evolutionary adaptation of the human brain represented in the brain connectivity and asymmetry directly linked to humans higher brain cognition in contrast to other primates being our direct living representation of the structure and connectivity of our earliest common African ancestors. As proposed in the evolutionary psychology scientific literature the pathophysiology of schizophrenia is expressed and directly linked to altered connectivity between the Hippocampal Formation (HF) and Dorsolateral Prefrontal Cortex (DLPFC). This research paper presents the results of the use of tractography analysis using multiple open access Diffusion Weighted Imaging (DWI) datasets of healthy subjects, schizophrenia-affected subjects and primates to illustrate the relevance of the aforementioned brain regions connectivity and the underlying evolutionary changes in the human brain. Deterministic fiber tracking and streamline analysis were used to generate connectivity matrices from the DWI datasets overlaid to compute distances and highlight disconnectivity patterns in conjunction with other fiber tracking metrics; Fractional Anisotropy (FA), Mean Diffusivity (MD) and Radial Diffusivity (RD).Keywords: tractography, evolutionary psychology, schizophrenia, brain connectivity
Procedia PDF Downloads 71399 Flood Devastation Assessment Through Mapping in Nigeria-2022 using Geospatial Techniques
Authors: Hafiz Muhammad Tayyab Bhatti, Munazza Usmani
Abstract:
One of nature's most destructive occurrences, floods do immense damage to communities and economic losses. Nigeria country, specifically southern Nigeria, is known for being prone to flooding. Even though periodic flooding occurs in Nigeria frequently, the floods of 2022 were the worst since those in 2012. Flood vulnerability analysis and mapping are still lacking in this region due to the very limited historical hydrological measurements and surveys on the effects of floods, which makes it difficult to develop and put into practice efficient flood protection measures. Remote sensing and Geographic Information Systems (GIS) are useful approaches to detecting, determining, and estimating the flood extent and its impacts. In this study, NOAA VIIR has been used to extract the flood extent using the flood water fraction data and afterward fused with GIS data for some zonal statistical analysis. The estimated possible flooding areas are validated using satellite imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS). The goal is to map and studied flood extent, flood hazards, and their effects on the population, schools, and health facilities for each state of Nigeria. The resulting flood hazard maps show areas with high-risk levels clearly and serve as an important reference for planning and implementing future flood mitigation and control strategies. Overall, the study demonstrated the viability of using the chosen GIS and remote sensing approaches to detect possible risk regions to secure local populations and enhance disaster response capabilities during natural disasters.Keywords: flood hazards, remote sensing, damage assessment, GIS, geospatial analysis
Procedia PDF Downloads 137398 Structural Characterization of the 3D Printed Silicon Carbon/Carbon Fibers Nanocomposites
Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao
Abstract:
A process that utilizes a combination of additive manufacturing (AM), a preceramic polymer, and a chopped carbon fiber precursorto fabricate Silicon Carbon/ Carbon fibers (SiC/C) composites have been developed. The study has shown a promising, cost-effective, and efficient route to fabricate complex SiC/C composites using additive manufacturing. A key part of this effort was the mapping of the material’s microstructure through the thickness of the composite. Microstructural features in the pyrolyzed composites through the successive AM layers, such as defects, crystal size and their distribution, interatomic spacing, chemical bonds, were investigated using high-resolution scanning and transmission electron microscopy. As a result, the microstructure developed in SiC/C composites after printing, cure, and pyrolysis has been successfully mapped through the thickness of the derived composites. Dense and nearly defect-free parts after polymer to ceramic conversion were observed. The ceramic matrix composite displayed three coexisting phases, including silicon carbide, silicon oxycarbide, and turbostratic carbon. Lattice fringes imaging and X-Ray Diffraction analysis showed well-defined SiC and turbostratic carbon features. The cross-sectional mapping of the printed-then-pyrolyzed structures has confirmed consistent structural and chemical features within the internal layers of the AM parts. Noteworthy, however, is that a crust-like area with high crystallinity has been observed in the first and last external layers. Not only do these crust-like regions have structural characteristics distinct from the internal layers, but they also have elemental distributions different than the internal layers.Keywords: SiC, preceramic polymer, additive manufacturing, ceramic
Procedia PDF Downloads 78397 Image Quality and Dose Optimisations in Digital and Computed Radiography X-ray Radiography Using Lumbar Spine Phantom
Authors: Elhussaien Elshiekh
Abstract:
A study was performed to management and compare radiation doses and image quality during Lumbar spine PA and Lumbar spine LAT, x- ray radiography using Computed Radiography (CR) and Digital Radiography (DR). Standard exposure factors such as kV, mAs and FFD used for imaging the Lumbar spine anthropomorphic phantom obtained from average exposure factors that were used with CR in five radiology centres. Lumbar spine phantom was imaged using CR and DR systems. Entrance surface air kerma (ESAK) was calculated X-ray tube output and patient exposure factor. Images were evaluated using visual grading system based on the European Guidelines on Quality Criteria for diagnostic radiographic images. The ESAK corresponding to each image was measured at the surface of the phantom. Six experienced specialists evaluated hard copies of all the images, the image score (IS) was calculated for each image by finding the average score of the Six evaluators. The IS value also was used to determine whether an image was diagnostically acceptable. The optimum recommended exposure factors founded here for Lumbar spine PA and Lumbar spine LAT, with respectively (80 kVp,25 mAs at 100 cm FFD) and (75 kVp,15 mAs at 100 cm FFD) for CR system, and (80 kVp,15 mAs at100 cm FFD) and (75 kVp,10 mAs at 100 cm FFD) for DR system. For Lumbar spine PA, the lowest ESAK value required to obtain a diagnostically acceptable image were 0.80 mGy for DR and 1.20 mGy for CR systems. Similarly for Lumbar spine LAT projection, the lowest ESAK values to obtain a diagnostically acceptable image were 0.62 mGy for DR and 0.76 mGy for CR systems. At standard kVp and mAs values, the image quality did not vary significantly between the CR and the DR system, but at higher kVp and mAs values, the DR images were found to be of better quality than CR images. In addition, the lower limit of entrance skin dose consistent with diagnostically acceptable DR images was 40% lower than that for CR images.Keywords: image quality, dosimetry, radiation protection, optimization, digital radiography, computed radiography
Procedia PDF Downloads 51396 Utility of CT Perfusion Imaging for Diagnosis and Management of Delayed Cerebral Ischaemia Following Subarachnoid Haemorrhage
Authors: Abdalla Mansour, Dan Brown, Adel Helmy, Rikin Trivedi, Mathew Guilfoyle
Abstract:
Introduction: Diagnosing delayed cerebral ischaemia (DCI) following aneurysmal subarachnoid haemorrhage (SAH) can be challenging, particularly in poor-grade patients. Objectives: This study sought to assess the value of routine CTP in identifying (or excluding) DCI and in guiding management. Methods: Eight-year retrospective neuroimaging study at a large UK neurosurgical centre. Subjects included a random sample of adult patients with confirmed aneurysmal SAH that had a CTP scan during their inpatient stay, over a 8-year period (May 2014 - May 2022). Data collected through electronic patient record and PACS. Variables included age, WFNS scale, aneurysm site, treatment, the timing of CTP, radiologist report, and DCI management. Results: Over eight years, 916 patients were treated for aneurysmal SAH; this study focused on 466 patients that were randomly selected. Of this sample, 181 (38.84%) had one or more CTP scans following brain aneurysm treatment (Total 318). The first CTP scan in each patient was performed at 1-20 days following ictus (median 4 days). There was radiological evidence of DCI in 83, and no reversible ischaemia was found in 80. Findings were equivocal in the remaining 18. Of the 103 patients treated with clipping, 49 had DCI radiological evidence, in comparison to 31 of 69 patients treated with endovascular embolization. The remaining 9 patients are either unsecured aneurysms or non-aneurysmal SAH. Of the patients with radiological evidence of DCI, 65 had a treatment change following the CTP directed at improving cerebral perfusion. In contrast, treatment was not changed for (61) patients without radiological evidence of DCI. Conclusion: CTP is a useful adjunct to clinical assessment in the diagnosis of DCI and is helpful in identifying patients that may benefit from intensive therapy and those in whom it is unlikely to be effective.Keywords: SAH, vasospasm, aneurysm, delayed cerebral ischemia
Procedia PDF Downloads 68395 Geophysical Approach in the Geological Characterization of a Dam Site: Case of the Chebabta-Dam, Meskiana, Oum El-Bouaghi
Authors: Benhammadi Hocine, Djamel Boubaya, Chaffai Hicham
Abstract:
Meskiana Area is characterized by a semi-arid climate where the water supply for irrigation and industry is not sufficient as the priority goes for domestic use. To meet the increasing population growth and development, the authorities have considered building a new water retaining structure on some major temporary water streams. For this purpose Chebabta site on Oued Meskiana was chosen as the future dam site. It is large enough to store the desired volume of water. This study comes to investigate the conditions of the site and the adequacy of the ground as a foundation for the projected dam. The conditions of the site include the geological structure and mainly the presence of discontinuities in the formation on which the dam will be built, the nature of the lithologies under the foundation and the future lake, and the presence of any hazard. This site characterization is usually carried out using different methods in order to highlight any underground buried problematic structure. In this context, the different geophysical technics remain the most used ones. Three geophysical methods were used in the case of the Chebabta dam site, namely, electric survey, seismic refraction, and tomography. The choice of the technics and the location of the scan line was made on the basis of the available geological data. In this sense, profiles have been established on both banks of Oued Meskiana. The obtained results have allowed a better characterization of the geological structure, defining the limit between the surface cover and the bedrock, which is, in other words, the limit between the weathered zone and the bedrock. Their respective thicknesses were also determined by seismic refraction and electrical resistivity sounding. However, the tomography imaging technic has succeeded in positioning a fault structure passing through the right bank of the wadi.Keywords: dam site, fault, geophysic, investigation, Meskiana
Procedia PDF Downloads 88394 Optimal Parameters of Two-Color Ionizing Laser Pulses for Terahertz Generation
Authors: I. D. Laryushin, V. A. Kostin, A. A. Silaev, N. V. Vvedenskii
Abstract:
Generation of broadband intense terahertz (THz) radiation attracts reasonable interest due to various applications, such as the THz time-domain spectroscopy, the probing and control of various ultrafast processes, the THz imaging with subwavelength resolution, and many others. One of the most promising methods for generating powerful and broadband terahertz pulses is based on focusing two-color femtosecond ionizing laser pulses in gases, including ambient air. For this method, the amplitudes of terahertz pulses are determined by the free-electron current density remaining in a formed plasma after the passage of the laser pulse. The excitation of this residual current density can be treated as multi-wave mixing: Аn effective generation of terahertz radiation is possible only when the frequency ratio of one-color components in the two-color pulse is close to irreducible rational fraction a/b with small odd sum a + b. This work focuses on the optimal parameters (polarizations and intensities) of laser components for the strongest THz generation. The optimal values of parameters are found numerically and analytically with the use of semiclassical approach for calculating the residual current density. For frequency ratios close to a/(a ± 1) with natural a, the strongest THz generation is shown to take place when the both laser components have circular polarizations and equal intensities. For this optimal case, an analytical formula for the residual current density was derived. For the frequency ratios such as 2/5, the two-color ionizing pulses with circularly polarized components practically do not excite the residual current density. However, the optimal parameters correspond generally to specific elliptical (not linear) polarizations of the components and intensity ratios close to unity.Keywords: broadband terahertz radiation, ionization, laser plasma, ultrashort two-color pulses
Procedia PDF Downloads 211393 Improvement of Microscopic Detection of Acid-Fast Bacilli for Tuberculosis by Artificial Intelligence-Assisted Microscopic Platform and Medical Image Recognition System
Authors: Hsiao-Chuan Huang, King-Lung Kuo, Mei-Hsin Lo, Hsiao-Yun Chou, Yusen Lin
Abstract:
The most robust and economical method for laboratory diagnosis of TB is to identify mycobacterial bacilli (AFB) under acid-fast staining despite its disadvantages of low sensitivity and labor-intensive. Though digital pathology becomes popular in medicine, an automated microscopic system for microbiology is still not available. A new AI-assisted automated microscopic system, consisting of a microscopic scanner and recognition program powered by big data and deep learning, may significantly increase the sensitivity of TB smear microscopy. Thus, the objective is to evaluate such an automatic system for the identification of AFB. A total of 5,930 smears was enrolled for this study. An intelligent microscope system (TB-Scan, Wellgen Medical, Taiwan) was used for microscopic image scanning and AFB detection. 272 AFB smears were used for transfer learning to increase the accuracy. Referee medical technicians were used as Gold Standard for result discrepancy. Results showed that, under a total of 1726 AFB smears, the automated system's accuracy, sensitivity and specificity were 95.6% (1,650/1,726), 87.7% (57/65), and 95.9% (1,593/1,661), respectively. Compared to culture, the sensitivity for human technicians was only 33.8% (38/142); however, the automated system can achieve 74.6% (106/142), which is significantly higher than human technicians, and this is the first of such an automated microscope system for TB smear testing in a controlled trial. This automated system could achieve higher TB smear sensitivity and laboratory efficiency and may complement molecular methods (eg. GeneXpert) to reduce the total cost for TB control. Furthermore, such an automated system is capable of remote access by the internet and can be deployed in the area with limited medical resources.Keywords: TB smears, automated microscope, artificial intelligence, medical imaging
Procedia PDF Downloads 230392 Development of Nanoparticulate Based Chimeric Drug Delivery System Using Drug Bioconjugated Plant Virus Capsid on Biocompatible Nanoparticles
Authors: Indu Barwal, Shloka Thakur, Subhash C. Yadav
Abstract:
The plant virus capsid protein based nanoparticles are extensively studied for their application in biomedical research for development of nanomedicines and drug delivery systems. We have developed a chimeric drug delivery system by controlled in vitro assembly of separately bioconjugated fluorescent dye (as reporting molecule), folic acid (as receptor binding biomolecule for targeted delivery) and doxorubicin (as anticancer drug) using modified EDC NHS chemistry on heterologously overexpressed (E. coli) capsid proteins of cowpea chlorotic mottle virus (CCMV). This chimeric vehicle was further encapsidated on gold nanoparticles (20nm) coated with 5≠ thiolated DNA probe to neutralize the positive charge of capsid proteins. This facilitates the in vitro assembly of modified capsid subunits on the gold nanoparticles to develop chimeric GNPs encapsidated targeted drug delivery system. The bioconjugation of functionalities, number of functionality on capsid subunits as well as virus like nanoparticles, structural stability and in vitro assembly were confirmed by SDS PAGE, relative absorbance, MALDI TOF, ESI-MS, Circular dichroism, intrinsic tryptophan fluorescence, zeta particle size analyzer and TEM imaging. This vehicle was stable at pH 4.0 to 8.0 suitable for many organelles targeting. This in vitro assembled chimeric plant virus like particles could be suitable for ideal drug delivery vehicles for subcutaneous cancer treatment and could be further modified for other type of cancer treatment by conjugating other functionalities (targeting, drug) on capsids.Keywords: chimeric drug delivery vehicles, bioconjugated plant, virus, capsid
Procedia PDF Downloads 493391 High-Frequency Modulation of Light-Emitting Diodes for New Ultraviolet Communications
Authors: Meng-Chyi Wu, Bonn Lin, Jyun-Hao Liao, Chein-Ju Chen, Yu-Cheng Jhuang, Mau-Phon Houng, Fang-Hsing Wang, Min-Chu Liu, Cheng-Fu Yang, Cheng-Shong Hong
Abstract:
Since the use of wireless communications has become critical nowadays, the available RF spectrum has become limited. Ultraviolet (UV) communication system can alleviate the spectrum constraint making UV communication system a potential alternative to future communication demands. Also, UV links can provide faster communication rate and can be used in combination with existing RF communication links, providing new communications diversity with higher user capacity. The UV region of electromagnetic spectrum has been of interest to detector, imaging and communication technologies because the stratospheric ozone layer effectively absorbs some solar UV radiation from reaching the earth surface. The wavebands where most of UV radiation is absorbed by the ozone are commonly known as the solar blind region. By operating in UV-C band (200-280 nm) the communication system can minimize the transmission power consumption since it will have less radiation noise. UV communication uses the UV ray as the medium. Electric signal is carried on this band after being modulated and then be transmitted within the atmosphere as channel. Though the background noise of UV-C communication is very low owing to the solar-blind feature, it leads to a large propagation loss. The 370 nm UV provides a much lower propagation loss than that the UV-C does and the recent device technology for UV source on this band is more mature. The fabricated 370 nm AlGaN light-emitting diodes (LEDs) with an aperture size of 45 m exhibit a modulation bandwidth of 165 MHz at 30 mA and a high power of 7 W/cm2 at 230 A/cm2. In order to solve the problem of low power in single UV LED, a UV LED array is presented in.Keywords: ultraviolet (UV) communication, light-emitting diodes (LEDs), modulation bandwidth, LED array, 370 nm
Procedia PDF Downloads 414390 Biophysical Features of Glioma-Derived Extracellular Vesicles as Potential Diagnostic Markers
Authors: Abhimanyu Thakur, Youngjin Lee
Abstract:
Glioma is a lethal brain cancer whose early diagnosis and prognosis are limited due to the dearth of a suitable technique for its early detection. Current approaches, including magnetic resonance imaging (MRI), computed tomography (CT), and invasive biopsy for the diagnosis of this lethal disease, hold several limitations, demanding an alternative method. Recently, extracellular vesicles (EVs) have been used in numerous biomarker studies, majorly exosomes and microvesicles (MVs), which are found in most of the cells and biofluids, including blood, cerebrospinal fluid (CSF), and urine. Remarkably, glioma cells (GMs) release a high number of EVs, which are found to cross the blood-brain-barrier (BBB) and impersonate the constituents of parent GMs including protein, and lncRNA; however, biophysical properties of EVs have not been explored yet as a biomarker for glioma. We isolated EVs from cell culture conditioned medium of GMs and regular primary culture, blood, and urine of wild-type (WT)- and glioma mouse models, and characterized by nano tracking analyzer, transmission electron microscopy, immunogold-EM, and differential light scanning. Next, we measured the biophysical parameters of GMs-EVs by using atomic force microscopy. Further, the functional constituents of EVs were examined by FTIR and Raman spectroscopy. Exosomes and MVs-derived from GMs, blood, and urine showed distinction biophysical parameters (roughness, adhesion force, and stiffness) and different from that of regular primary glial cells, WT-blood, and -urine, which can be attributed to the characteristic functional constituents. Therefore, biophysical features can be potential diagnostic biomarkers for glioma.Keywords: glioma, extracellular vesicles, exosomes, microvesicles, biophysical properties
Procedia PDF Downloads 142389 Malignant Idiopathic Intracranial Hypertension Revealed a Hidden Primary Spinal Leptomeningeal Medulloblastoma
Authors: Naim Izet Kajtazi
Abstract:
Context: Frequently, the cause of raised intracranial pressure remains unresolved and rarely is related to spinal tumors, moreover less to spinal medulloblastoma without primary brain focus. Process: An 18-year-old woman had a 3-month history of headaches and impaired vision. Neurological examination revealed bilateral sixth cranial nerve palsies with bilateral papilloedema of grade III. No focal brain or spine lesion was found on imaging. Consecutive lumbar punctures showed high opening pressure and subsequent increasing protein level. The meningeal biopsy was negative. At one point, she developed an increasing headache, vomiting and back pain. Spine MRI showed diffuse nodular leptomeningeal enhancement with the largest nodule at T6–T7. Malignant cells were detected in cerebrospinal fluid. She underwent laminectomy with excisional biopsy, and pathology showed medulloblastoma WHO grade IV. Outcome: She was treated with chemotherapy and craniospinal irradiation and made a good recovery. Relevance: Primary spinal leptomeningeal medulloblastoma is extremely rare, especially without primary brain focus, but may cause increased intracranial pressure, even in the early microscopic phases, and it should be considered in the differential diagnosis if conventional and aggressive treatment of idiopathic intracranial hypertension fails. We assume that arachnoiditis from tumor seeding caused increased intracranial pressure. Appropriate neurosurgical intervention and surgical biopsy are mandated if a suspicious lesion is detected. Consider proper rescreening of the whole neuroaxis in refractory cases of intracranial hypertension.Keywords: CNS infection, IIH, headache, primary spinal leptomeningeal medulloblastoma
Procedia PDF Downloads 67388 Mechanisms and Regulation of the Bi-directional Motility of Mitotic Kinesin Nano-motors
Authors: Larisa Gheber
Abstract:
Mitosis is an essential process by which duplicated genetic information is transmitted from mother to daughter cells. Incorrect chromosome segregation during mitosis can lead to genetic diseases, chromosome instability and cancer. This process is mediated by a dynamic microtubule-based intracellular structure, the mitotic spindle. One of the major factors that govern the mitotic spindle dynamics are the kinesin-5 biological nano motors that were believed to move unidirectionally on the microtubule filaments, using ATP hydrolysis, thus performing essential functions in mitotic spindle dynamics. Surprisingly, several reports from our and other laboratories have demonstrated that some kinesin-5 motors are bi-directional: they move in minus-end direction on the microtubules as single-molecules and can switch directionality under a number of conditions. These findings broke a twenty-five-years old dogma regarding kinesin directionality (1, 2). The mechanism of this bi-directional motility and its physiological significance remain unclear. To address this unresolved problem, we apply an interdisciplinary approach combining live cell imaging, biophysical single molecule, and structural experiments to examine the activity of these motors and their mutated variants in vivo and in vitro. Our data shows that factors such as protein phosphorylation (3, 4), motor clustering on the microtubules (5, 6) and structural elements (7, 8) regulate the bi-directional motility of kinesin motors. We also show, using Cryo-EM, that bi-directional kinesin motors obtain non-canonical microtubule binding, which is essential to their special motile properties and intracellular functions. We will discuss the implication of these findings to mechanism bi-directional motility and physiological roles in mitosis.Keywords: mitosis, cancer, kinesin, microtubules, biochemistry, biophysics
Procedia PDF Downloads 81