Search results for: structured and unstructured data
26442 Computational Code for Solving the Navier-Stokes Equations on Unstructured Meshes Applied to the Leading Edge of the Brazilian Hypersonic Scramjet 14-X
Authors: Jayme R. T. Silva, Paulo G. P. Toro, Angelo Passaro, Giannino P. Camillo, Antonio C. Oliveira
Abstract:
An in-house C++ code has been developed, at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics from the Institute of Advanced Studies (Brazil), to estimate the aerothermodynamic properties around the Hypersonic Vehicle Integrated to the Scramjet. In the future, this code will be applied to the design of the Brazilian Scramjet Technological Demonstrator 14-X B. The first step towards accomplishing this objective, is to apply the in-house C++ code at the leading edge of a flat plate, simulating the leading edge of the 14-X Hypersonic Vehicle, making possible the wave phenomena of oblique shock and boundary layer to be analyzed. The development of modern hypersonic space vehicles requires knowledge regarding the characteristics of hypersonic flows in the vicinity of a leading edge of lifting surfaces. The strong interaction between a shock wave and a boundary layer, in a high supersonic Mach number 4 viscous flow, close to the leading edge of the plate, considering no slip condition, is numerically investigated. The small slip region is neglecting. The study consists of solving the fluid flow equations for unstructured meshes applying the SIMPLE algorithm for Finite Volume Method. Unstructured meshes are generated by the in-house software ‘Modeler’ that was developed at Virtual’s Engineering Laboratory from the Institute of Advanced Studies, initially developed for Finite Element problems and, in this work, adapted to the resolution of the Navier-Stokes equations based on the SIMPLE pressure-correction scheme for all-speed flows, Finite Volume Method based. The in-house C++ code is based on the two-dimensional Navier-Stokes equations considering non-steady flow, with nobody forces, no volumetric heating, and no mass diffusion. Air is considered as calorically perfect gas, with constant Prandtl number and Sutherland's law for the viscosity. Solutions of the flat plate problem for Mach number 4 include pressure, temperature, density and velocity profiles as well as 2-D contours. Also, the boundary layer thickness, boundary conditions, and mesh configurations are presented. The same problem has been solved by the academic license of the software Ansys Fluent and for another C++ in-house code, which solves the fluid flow equations in structured meshes, applying the MacCormack method for Finite Difference Method, and the results will be compared.Keywords: boundary-layer, scramjet, simple algorithm, shock wave
Procedia PDF Downloads 49326441 The Right to Data Portability and Its Influence on the Development of Digital Services
Authors: Roman Bieda
Abstract:
The General Data Protection Regulation (GDPR) will come into force on 25 May 2018 which will create a new legal framework for the protection of personal data in the European Union. Article 20 of GDPR introduces a right to data portability. This right allows for data subjects to receive the personal data which they have provided to a data controller, in a structured, commonly used and machine-readable format, and to transmit this data to another data controller. The right to data portability, by facilitating transferring personal data between IT environments (e.g.: applications), will also facilitate changing the provider of services (e.g. changing a bank or a cloud computing service provider). Therefore, it will contribute to the development of competition and the digital market. The aim of this paper is to discuss the right to data portability and its influence on the development of new digital services.Keywords: data portability, digital market, GDPR, personal data
Procedia PDF Downloads 47526440 Collision Theory Based Sentiment Detection Using Discourse Analysis in Hadoop
Authors: Anuta Mukherjee, Saswati Mukherjee
Abstract:
Data is growing everyday. Social networking sites such as Twitter are becoming an integral part of our daily lives, contributing a large increase in the growth of data. It is a rich source especially for sentiment detection or mining since people often express honest opinion through tweets. However, although sentiment analysis is a well-researched topic in text, this analysis using Twitter data poses additional challenges since these are unstructured data with abbreviations and without a strict grammatical correctness. We have employed collision theory to achieve sentiment analysis in Twitter data. We have also incorporated discourse analysis in the collision theory based model to detect accurate sentiment from tweets. We have also used the retweet field to assign weights to certain tweets and obtained the overall weightage of a topic provided in the form of a query. Hadoop has been exploited for speed. Our experiments show effective results.Keywords: sentiment analysis, twitter, collision theory, discourse analysis
Procedia PDF Downloads 53526439 Generation of Catalytic Films of Zeolite Y and ZSM-5 on FeCrAlloy Metal
Authors: Rana Th. A. Al-Rubaye, Arthur A. Garforth
Abstract:
This work details the generation of thin films of structured zeolite catalysts (ZSM–5 and Y) onto the surface of a metal substrate (FeCrAlloy) using in-situ hydrothermal synthesis. In addition, the zeolite Y is post-synthetically modified by acidified ammonium ion exchange to generate US-Y. Finally the catalytic activity of the structured ZSM-5 catalyst films (Si/Al = 11, thickness 146 µm) and structured US–Y catalyst film (Si/Al = 8, thickness 23µm) were compared with the pelleted powder form of ZSM–5 and USY catalysts of similar Si/Al ratios. The structured catalyst films have been characterised using a range of techniques, including X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X–ray analysis (EDX) and Thermogravimetric Analysis (TGA). The transition from oxide-on-alloy wires to hydrothermally synthesised uniformly zeolite coated surfaces was followed using SEM and XRD. In addition, the robustness of the prepared coating was confirmed by subjecting these to thermal cycling (ambient to 550°C). The cracking of n–heptane over the pellets and structured catalysts for both ZSM–5 and Y zeolite showed very similar product selectivities for similar amounts of catalyst with an apparent activation energy of around 60 kJ mol-1. This paper demonstrates that structured catalysts can be manufactured with excellent zeolite adherence and when suitably activated/modified give comparable cracking results to the pelleted powder forms. These structured catalysts will improve temperature distribution in highly exothermic and endothermic catalysed processes.Keywords: FeCrAlloy, structured catalyst, zeolite Y, zeolite ZSM-5
Procedia PDF Downloads 38126438 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm
Authors: Ameur Abdelkader, Abed Bouarfa Hafida
Abstract:
Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm
Procedia PDF Downloads 14226437 A Study of Various Ontology Learning Systems from Text and a Look into Future
Authors: Fatima Al-Aswadi, Chan Yong
Abstract:
With the large volume of unstructured data that increases day by day on the web, the motivation of representing the knowledge in this data in the machine processable form is increased. Ontology is one of the major cornerstones of representing the information in a more meaningful way on the semantic Web. The goal of Ontology learning from text is to elicit and represent domain knowledge in the machine readable form. This paper aims to give a follow-up review on the ontology learning systems from text and some of their defects. Furthermore, it discusses how far the ontology learning process will enhance in the future.Keywords: concept discovery, deep learning, ontology learning, semantic relation, semantic web
Procedia PDF Downloads 52526436 Text Mining Past Medical History in Electrophysiological Studies
Authors: Roni Ramon-Gonen, Amir Dori, Shahar Shelly
Abstract:
Background and objectives: Healthcare professionals produce abundant textual information in their daily clinical practice. The extraction of insights from all the gathered information, mainly unstructured and lacking in normalization, is one of the major challenges in computational medicine. In this respect, text mining assembles different techniques to derive valuable insights from unstructured textual data, so it has led to being especially relevant in Medicine. Neurological patient’s history allows the clinician to define the patient’s symptoms and along with the result of the nerve conduction study (NCS) and electromyography (EMG) test, assists in formulating a differential diagnosis. Past medical history (PMH) helps to direct the latter. In this study, we aimed to identify relevant PMH, understand which PMHs are common among patients in the referral cohort and documented by the medical staff, and examine the differences by sex and age in a large cohort based on textual format notes. Methods: We retrospectively identified all patients with abnormal NCS between May 2016 to February 2022. Age, gender, and all NCS attributes reports were recorded, including the summary text. All patients’ histories were extracted from the text report by a query. Basic text cleansing and data preparation were performed, as well as lemmatization. Very popular words (like ‘left’ and ‘right’) were deleted. Several words were replaced with their abbreviations. A bag of words approach was used to perform the analyses. Different visualizations which are common in text analysis, were created to easily grasp the results. Results: We identified 5282 unique patients. Three thousand and five (57%) patients had documented PMH. Of which 60.4% (n=1817) were males. The total median age was 62 years (range 0.12 – 97.2 years), and the majority of patients (83%) presented after the age of forty years. The top two documented medical histories were diabetes mellitus (DM) and surgery. DM was observed in 16.3% of the patients, and surgery at 15.4%. Other frequent patient histories (among the top 20) were fracture, cancer (ca), motor vehicle accident (MVA), leg, lumbar, discopathy, back and carpal tunnel release (CTR). When separating the data by sex, we can see that DM and MVA are more frequent among males, while cancer and CTR are less frequent. On the other hand, the top medical history in females was surgery and, after that, DM. Other frequent histories among females are breast cancer, fractures, and CTR. In the younger population (ages 18 to 26), the frequent PMH were surgery, fractures, trauma, and MVA. Discussion: By applying text mining approaches to unstructured data, we were able to better understand which medical histories are more relevant in these circumstances and, in addition, gain additional insights regarding sex and age differences. These insights might help to collect epidemiological demographical data as well as raise new hypotheses. One limitation of this work is that each clinician might use different words or abbreviations to describe the same condition, and therefore using a coding system can be beneficial.Keywords: abnormal studies, healthcare analytics, medical history, nerve conduction studies, text mining, textual analysis
Procedia PDF Downloads 9626435 Exploring the Types of Infants and Toddlers' Reading Responses in Nursery Centers: A Qualitative Study
Authors: Ming Fang Hsieh
Abstract:
The purpose of this study was to investigate the reading responses of infants and toddlers across different contexts in nursery centers. The study adopted Sipe’s framework for children’s literacy education to explore the reading behavior of infants and toddlers. The study was conducted at two nurseries. The sample comprised 46 infants and toddlers and 6 caregivers. The methods of data collection included observation of various reading activities, including shared reading in a group, one-on-one reading, and unstructured reading activities, as well as interviews with caregivers. The data obtained through observations and interviews were transcribed and analyzed. The caregivers and the children’s parents signed an informed consent form before the start of the study. There was no risk anticipated during the course of the study. The analysis revealed five types of reading responses exhibited by the infants and toddlers: (1) linguistic- verbally responding to reading, repeating vocabulary, and answering questions; (2) affective- concentrating on reading or requesting for repeated reading, leaning on books, and gazing at caregivers; (3) explosive- children under 18 months were observed manipulating books through their bodies or different movements like flipping, rotating, or tapping on books; (4) social- during unstructured reading context, children were seen interacting with peers or following the rules of reading, sitting properly, and choosing one book at a time; and (5) distracted responses- paying attention to something else instead of reading, walking around, and playing, which was usually observed during shared reading in a group. The study concluded that children’s distraction and explosive reading behaviors may be a part of the process of their emergent reading behavior. As children develop, they demonstrate an increase in verbal responses, improved concentration, and better behavior. The study suggests that adults should continue to provide appropriate reading opportunities beginning from infancy to nurture children’s reading behaviors.Keywords: reading response, infants and toddlers, early reading, picture books
Procedia PDF Downloads 11026434 Recommender System Based on Mining Graph Databases for Data-Intensive Applications
Authors: Mostafa Gamal, Hoda K. Mohamed, Islam El-Maddah, Ali Hamdi
Abstract:
In recent years, many digital documents on the web have been created due to the rapid growth of ’social applications’ communities or ’Data-intensive applications’. The evolution of online-based multimedia data poses new challenges in storing and querying large amounts of data for online recommender systems. Graph data models have been shown to be more efficient than relational data models for processing complex data. This paper will explain the key differences between graph and relational databases, their strengths and weaknesses, and why using graph databases is the best technology for building a realtime recommendation system. Also, The paper will discuss several similarity metrics algorithms that can be used to compute a similarity score of pairs of nodes based on their neighbourhoods or their properties. Finally, the paper will discover how NLP strategies offer the premise to improve the accuracy and coverage of realtime recommendations by extracting the information from the stored unstructured knowledge, which makes up the bulk of the world’s data to enrich the graph database with this information. As the size and number of data items are increasing rapidly, the proposed system should meet current and future needs.Keywords: graph databases, NLP, recommendation systems, similarity metrics
Procedia PDF Downloads 10526433 Ontology Expansion via Synthetic Dataset Generation and Transformer-Based Concept Extraction
Authors: Andrey Khalov
Abstract:
The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.Keywords: ontology expansion, synthetic dataset, transformer fine-tuning, concept extraction, DOLCE, BERT, taxonomy, LLM, NER
Procedia PDF Downloads 1726432 Reducing Defects through Organizational Learning within a Housing Association Environment
Authors: T. Hopkin, S. Lu, P. Rogers, M. Sexton
Abstract:
Housing Associations (HAs) contribute circa 20% of the UK’s housing supply. HAs are however under increasing pressure as a result of funding cuts and rent reductions. Due to the increased pressure, a number of processes are currently being reviewed by HAs, especially how they manage and learn from defects. Learning from defects is considered a useful approach to achieving defect reduction within the UK housebuilding industry. This paper contributes to our understanding of how HAs learn from defects by undertaking an initial round table discussion with key HA stakeholders as part of an ongoing collaborative research project with the National House Building Council (NHBC) to better understand how house builders and HAs learn from defects to reduce their prevalence. The initial discussion shows that defect information runs through a number of groups, both internal and external of a HA during both the defects management process and organizational learning (OL) process. Furthermore, HAs are reliant on capturing and recording defect data as the foundation for the OL process. During the OL process defect data analysis is the primary enabler to recognizing a need for a change to organizational routines. When a need for change has been recognized, new options are typically pursued to design out defects via updates to a HAs Employer’s Requirements. Proposed solutions are selected by a review board and committed to organizational routine. After implementing a change, both structured and unstructured feedback is sought to establish the change’s success. The findings from the HA discussion demonstrates that OL can achieve defect reduction within the house building sector in the UK. The paper concludes by outlining a potential ‘learning from defects model’ for the housebuilding industry as well as describing future work.Keywords: defects, new homes, housing association, organizational learning
Procedia PDF Downloads 31626431 Developing Structured Sizing Systems for Manufacturing Ready-Made Garments of Indian Females Using Decision Tree-Based Data Mining
Authors: Hina Kausher, Sangita Srivastava
Abstract:
In India, there is a lack of standard, systematic sizing approach for producing readymade garments. Garments manufacturing companies use their own created size tables by modifying international sizing charts of ready-made garments. The purpose of this study is to tabulate the anthropometric data which covers the variety of figure proportions in both height and girth. 3,000 data has been collected by an anthropometric survey undertaken over females between the ages of 16 to 80 years from some states of India to produce the sizing system suitable for clothing manufacture and retailing. This data is used for the statistical analysis of body measurements, the formulation of sizing systems and body measurements tables. Factor analysis technique is used to filter the control body dimensions from a large number of variables. Decision tree-based data mining is used to cluster the data. The standard and structured sizing system can facilitate pattern grading and garment production. Moreover, it can exceed buying ratios and upgrade size allocations to retail segments.Keywords: anthropometric data, data mining, decision tree, garments manufacturing, sizing systems, ready-made garments
Procedia PDF Downloads 13426430 Enhance the Power of Sentiment Analysis
Authors: Yu Zhang, Pedro Desouza
Abstract:
Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modelling and testing work was done in R and Greenplum in-database analytic tools.Keywords: sentiment analysis, social media, Twitter, Amazon, data mining, machine learning, text mining
Procedia PDF Downloads 35326429 Evolving Knowledge Extraction from Online Resources
Authors: Zhibo Xiao, Tharini Nayanika de Silva, Kezhi Mao
Abstract:
In this paper, we present an evolving knowledge extraction system named AKEOS (Automatic Knowledge Extraction from Online Sources). AKEOS consists of two modules, including a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and automatically harvests knowledge from online unstructured resources in an unsupervised way. The output of the one-time learning is a structured vector representing the harvested knowledge. The evolving learning module automatically schedules and performs repeated one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module summarizes the knowledge learned at different time points to produce a final knowledge vector about the event. With the evolving learning, we are able to visualize the key information of the event, discover the trends, and track the development of an event.Keywords: evolving learning, knowledge extraction, knowledge graph, text mining
Procedia PDF Downloads 45826428 Numerical Method for Fin Profile Optimization
Authors: Beghdadi Lotfi
Abstract:
In the present work a numerical method is proposed in order to optimize the thermal performance of finned surfaces. The bidimensional temperature distribution on the longitudinal section of the fin is calculated by restoring to the finite volumes method. The heat flux dissipated by a generic profile fin is compared with the heat flux removed by the rectangular profile fin with the same length and volume. In this study, it is shown that a finite volume method for quadrilaterals unstructured mesh is developed to predict the two dimensional steady-state solutions of conduction equation, in order to determine the sinusoidal parameter values which optimize the fin effectiveness. In this scheme, based on the integration around the polygonal control volume, the derivatives of conduction equation must be converted into closed line integrals using same formulation of the Stokes theorem. The numerical results show good agreement with analytical results. To demonstrate the accuracy of the method, the absolute and root-mean square errors versus the grid size are examined quantitatively.Keywords: Stokes theorem, unstructured grid, heat transfer, complex geometry, effectiveness
Procedia PDF Downloads 26926427 Trust: The Enabler of Knowledge-Sharing Culture in an Informal Setting
Authors: Emmanuel Ukpe, S. M. F. D. Syed Mustapha
Abstract:
Trust in an organization has been perceived as one of the key factors behind knowledge sharing, mainly in an unstructured work environment. In an informal working environment, to instill trust among individuals is a challenge and even more in the virtual environment. The study has contributed in developing the framework for building trust in an unstructured organization in performing knowledge sharing in a virtual environment. The artifact called KAPE (Knowledge Acquisition, Processing, and Exchange) was developed for knowledge sharing for the informal organization where the framework was incorporated. It applies to Cassava farmers to facilitate knowledge sharing using web-based platform. A survey was conducted; data were collected from 382 farmers from 21 farm communities. Multiple regression technique, Cronbach’s Alpha reliability test; Tukey’s Honestly significant difference (HSD) analysis; one way Analysis of Variance (ANOVA), and all trust acceptable measures (TAM) were used to test the hypothesis and to determine noteworthy relationships. The results show a significant difference when there is a trust in knowledge sharing between farmers, the ones who have high in trust acceptable factors found in the model (M = 3.66 SD = .93) and the ones who have low on trust acceptable factors (M = 2.08 SD = .28), (t (48) = 5.69, p = .00). Furthermore, when applying Cognitive Expectancy Theory, the farmers with cognitive-consonance show higher level of trust and satisfaction with knowledge and information from KAPE, as compared with a low level of cognitive-dissonance. These results imply that the adopted trust model KAPE positively improved knowledge sharing activities in an informal environment amongst rural farmers.Keywords: trust, knowledge, sharing, knowledge acquisition, processing and exchange, KAPE
Procedia PDF Downloads 12126426 Exploring Students' Alternative Conception in Vector Components
Authors: Umporn Wutchana
Abstract:
An open ended problem and unstructured interview had been used to explore students’ conceptual and procedural understanding of vector components. The open ended problem had been designed based on research instrument used in previous physics education research. Without physical context, we asked students to find out magnitude and draw graphical form of vector components. The open ended problem was given to 211 first year students of faculty of science during the third (summer) semester in 2014 academic year. The students spent approximately 15 minutes of their second time of the General Physics I course to complete the open ended problem after they had failed. Consequently, their responses were classified based on the similarity of errors performed in the responses. Then, an unstructured interview was conducted. 7 students were randomly selected and asked to reason and explain their answers. The study results showed that 53% of 211 students provided correct numerical magnitude of vector components while 10.9% of them confused and punctuated the magnitude of vectors in x- with y-components. Others 20.4% provided just symbols and the last 15.6% gave no answer. When asking to draw graphical form of vector components, only 10% of 211 students made corrections. A majority of them produced errors and revealed alternative conceptions. 46.5% drew longer and/or shorter magnitude of vector components. 43.1% drew vectors in different forms or wrote down other symbols. Results from the unstructured interview indicated that some students just memorized the method to get numerical magnitude of x- and y-components. About graphical form of component vectors, some students though that the length of component vectors should be shorter than those of the given one. So then, it could be combined to be equal length of the given vectors while others though that component vectors should has the same length as the given vectors. It was likely to be that many students did not develop a strong foundation of understanding in vector components but just learn by memorizing its solution or the way to compute its magnitude and attribute little meaning to such concept.Keywords: graphical vectors, vectors, vector components, misconceptions, alternative conceptions
Procedia PDF Downloads 18926425 Numerical Method of Heat Transfer in Fin Profiles
Authors: Beghdadi Lotfi, Belkacem Abdellah
Abstract:
In this work, a numerical method is proposed in order to solve the thermal performance problems of heat transfer of fins surfaces. The bidimensional temperature distribution on the longitudinal section of the fin is calculated by restoring to the finite volumes method. The heat flux dissipated by a generic profile fin is compared with the heat flux removed by the rectangular profile fin with the same length and volume. In this study, it is shown that a finite volume method for quadrilaterals unstructured mesh is developed to predict the two dimensional steady-state solutions of conduction equation, in order to determine the sinusoidal parameter values which optimize the fin effectiveness. In this scheme, based on the integration around the polygonal control volume, the derivatives of conduction equation must be converted into closed line integrals using same formulation of the Stokes theorem. The numerical results show good agreement with analytical results. To demonstrate the accuracy of the method, the absolute and root-mean square errors versus the grid size are examined quantitatively.Keywords: Stokes theorem, unstructured grid, heat transfer, complex geometry
Procedia PDF Downloads 40626424 Decision-Making Tool for Planning the Construction of Infrastructure Projects
Authors: Rolla Monib, Chris I. Goodier, Alistair Gibbs
Abstract:
The aim of this paper is to investigate the key drivers in planning the construction phase for infrastructure projects to reduce project delays. To achieve this aim, the research conducted three case studies using semi-structured and unstructured interviews (n=36). The results conclude that a lack of modularisation awareness is among the key factors attributed to project delays. The current emotive and ill-informed approach to decision-making, coupled with the lack of knowledge regarding appropriate construction method selection, prevents the potential benefits of modularisation being fully realised. To assist with decision-making for the best construction method, the research presents project management tools to help decision makers to choose the most appropriate construction approach through optimising the use of modularisation in EC. A decision-making checklist and diagram are presented in this paper. These checklist tools and diagrams assist the project team in determining the best construction method, taking into consideration the module type.Keywords: infrastructure, modularization, decision support, decision-making
Procedia PDF Downloads 6326423 Using Computational Fluid Dynamics (CFD) Modeling to Predict the Impact of Nuclear Reactor Mixed Tank Flows Using the Momentum Equation
Authors: Joseph Amponsah
Abstract:
This research proposes an equation to predict and determine the momentum source equation term after factoring in the radial friction between the fluid and the blades and the impeller's propulsive power. This research aims to look at how CFD software can be used to predict the effect of flows in nuclear reactor stirred tanks through a momentum source equation and the concentration distribution of tracers that have been introduced in reactor tanks. The estimated findings, including the dimensionless concentration curves, power, and pumping numbers, dimensionless velocity profiles, and mixing times 4, were contrasted with results from tests in stirred containers. The investigation was carried out in Part I for vessels that were agitated by one impeller on a central shaft. The two types of impellers employed were an ordinary Rushton turbine and a 6-bladed 45° pitched blade turbine. The simulations made use of numerous reference frame techniques and the common k-e turbulence model. The impact of the grid type was also examined; unstructured, structured, and unique user-defined grids were looked at. The CFD model was used to simulate the flow field within the Rushton turbine nuclear reactor stirred tank. This method was validated using experimental data that were available close to the impeller tip and in the bulk area. Additionally, analyses of the computational efficiency and time using MRF and SM were done.Keywords: Ansys fluent, momentum equation, CFD, prediction
Procedia PDF Downloads 8026422 The Relations between Language Diversity and Similarity and Adults' Collaborative Creative Problem Solving
Authors: Z. M. T. Lim, W. Q. Yow
Abstract:
Diversity in individual problem-solving approaches, culture and nationality have been shown to have positive effects on collaborative creative processes in organizational and scholastic settings. For example, diverse graduate and organizational teams consisting of members with both structured and unstructured problem-solving styles were found to have more creative ideas on a collaborative idea generation task than teams that comprised solely of members with either structured or unstructured problem-solving styles. However, being different may not always provide benefits to the collaborative creative process. In particular, speaking different languages may hinder mutual engagement through impaired communication and thus collaboration. Instead, sharing similar languages may have facilitative effects on mutual engagement in collaborative tasks. However, no studies have explored the relations between language diversity and adults’ collaborative creative problem solving. Sixty-four Singaporean English-speaking bilingual undergraduates were paired up into similar or dissimilar language pairs based on the second language they spoke (e.g., for similar language pairs, both participants spoke English-Mandarin; for dissimilar language pairs, one participant spoke English-Mandarin and the other spoke English-Korean). Each participant completed the Ravens Progressive Matrices Task individually. Next, they worked in pairs to complete a collaborative divergent thinking task where they used mind-mapping techniques to brainstorm ideas on a given problem together (e.g., how to keep insects out of the house). Lastly, the pairs worked on a collaborative insight problem-solving task (Triangle of Coins puzzle) where they needed to flip a triangle of ten coins around by moving only three coins. Pairs who had prior knowledge of the Triangle of Coins puzzle were asked to complete an equivalent Matchstick task instead, where they needed to make seven squares by moving only two matchsticks based on a given array of matchsticks. Results showed that, after controlling for intelligence, similar language pairs completed the collaborative insight problem-solving task faster than dissimilar language pairs. Intelligence also moderated these relations. Among adults of lower intelligence, similar language pairs solved the insight problem-solving task faster than dissimilar language pairs. These differences in speed were not found in adults with higher intelligence. No differences were found in the number of ideas generated in the collaborative divergent thinking task between similar language and dissimilar language pairs. In conclusion, sharing similar languages seem to enrich collaborative creative processes. These effects were especially pertinent to pairs with lower intelligence. This provides guidelines for the formation of groups based on shared languages in collaborative creative processes. However, the positive effects of shared languages appear to be limited to the insight problem-solving task and not the divergent thinking task. This could be due to the facilitative effects of other factors of diversity as found in previous literature. Background diversity, for example, may have a larger facilitative effect on the divergent thinking task as compared to the insight problem-solving task due to the varied experiences individuals bring to the task. In conclusion, this study contributes to the understanding of the effects of language diversity in collaborative creative processes and challenges the general positive effects that diversity has on these processes.Keywords: bilingualism, diversity, creativity, collaboration
Procedia PDF Downloads 31726421 2D Structured Non-Cyclic Fuzzy Graphs
Authors: T. Pathinathan, M. Peter
Abstract:
Fuzzy graphs incorporate concepts from graph theory with fuzzy principles. In this paper, we make a study on the properties of fuzzy graphs which are non-cyclic and are of two-dimensional in structure. In particular, this paper presents 2D structure or the structure of double layer for a non-cyclic fuzzy graph whose underlying crisp graph is non-cyclic. In any graph structure, introducing 2D structure may lead to an inherent cycle. We propose relevant conditions for 2D structured non-cyclic fuzzy graphs. These conditions are extended even to fuzzy graphs of the 3D structure. General theoretical properties that are studied for any fuzzy graph are verified to 2D structured or double layered fuzzy graphs. Concepts like Order, Degree, Strong and Size for a fuzzy graph are studied for 2D structured or double layered non-cyclic fuzzy graphs. Using different types of fuzzy graphs, the proposed concepts relating to 2D structured fuzzy graphs are verified.Keywords: double layered fuzzy graph, double layered non–cyclic fuzzy graph, order, degree and size
Procedia PDF Downloads 40326420 Role of GM1 in the Interaction between Amyloid Prefibrillar Oligomers of Salmon Calcitonin and Model Membranes
Authors: Cristiano Giordani, Marco Diociaiuti, Cecilia Bombelli, Laura Zanetti-Polzi, Marcello Belfiore, Raoul Fioravanti, Gianfranco Macchia
Abstract:
We investigated induced functional effects by evaluating Ca2+-influx in liposomes and cell viability in HT22-DIFF neurons. Only solutions rich in unstructured Prefibrillar-Oligomers (PFOs) were able, in the presence of Monosialoganglioside-GM1 (GM1), to induce Ca2+-influx and were also neurotoxic, suggesting a correlation between the two phenomena. Thus, in the presence of GM1, we investigated the protein conformation and liposome modification due to the interaction. Circular Dichroism showed that GM1 fostered the formation of β-structures and Energy Filtered-Transmission Electron Microscopy that PFOs formed “amyloid-channels” as reported for Aβ. We speculate that electrostatic forces occurring between the positive PFOs and negative GM1 drive the initial binding, while the hydrophobic profile of the flexible PFO is responsible for the subsequent pore formation. Conversely, the rigid β-structured mature/fibers (MFs) and proto-fibers (PFs) were unable to induce membrane damage and Ca2+- influx.Keywords: amyloid proteins, neurotoxicity, lipid-rafts, GM1
Procedia PDF Downloads 18926419 Text Mining of Twitter Data Using a Latent Dirichlet Allocation Topic Model and Sentiment Analysis
Authors: Sidi Yang, Haiyi Zhang
Abstract:
Twitter is a microblogging platform, where millions of users daily share their attitudes, views, and opinions. Using a probabilistic Latent Dirichlet Allocation (LDA) topic model to discern the most popular topics in the Twitter data is an effective way to analyze a large set of tweets to find a set of topics in a computationally efficient manner. Sentiment analysis provides an effective method to show the emotions and sentiments found in each tweet and an efficient way to summarize the results in a manner that is clearly understood. The primary goal of this paper is to explore text mining, extract and analyze useful information from unstructured text using two approaches: LDA topic modelling and sentiment analysis by examining Twitter plain text data in English. These two methods allow people to dig data more effectively and efficiently. LDA topic model and sentiment analysis can also be applied to provide insight views in business and scientific fields.Keywords: text mining, Twitter, topic model, sentiment analysis
Procedia PDF Downloads 17926418 PID Sliding Mode Control with Sliding Surface Dynamics based Continuous Control Action for Robotic Systems
Authors: Wael M. Elawady, Mohamed F. Asar, Amany M. Sarhan
Abstract:
This paper adopts a continuous sliding mode control scheme for trajectory tracking control of robot manipulators with structured and unstructured uncertain dynamics and external disturbances. In this algorithm, the equivalent control in the conventional sliding mode control is replaced by a PID control action. Moreover, the discontinuous switching control signal is replaced by a continuous proportional-integral (PI) control term such that the implementation of the proposed control algorithm does not require the prior knowledge of the bounds of unknown uncertainties and external disturbances and completely eliminates the chattering phenomenon of the conventional sliding mode control approach. The closed-loop system with the adopted control algorithm has been proved to be globally stable by using Lyapunov stability theory. Numerical simulations using the dynamical model of robot manipulators with modeling uncertainties demonstrate the superiority and effectiveness of the proposed approach in high speed trajectory tracking problems.Keywords: PID, robot, sliding mode control, uncertainties
Procedia PDF Downloads 50926417 Flood Modeling in Urban Area Using a Well-Balanced Discontinuous Galerkin Scheme on Unstructured Triangular Grids
Authors: Rabih Ghostine, Craig Kapfer, Viswanathan Kannan, Ibrahim Hoteit
Abstract:
Urban flooding resulting from a sudden release of water due to dam-break or excessive rainfall is a serious threatening environment hazard, which causes loss of human life and large economic losses. Anticipating floods before they occur could minimize human and economic losses through the implementation of appropriate protection, provision, and rescue plans. This work reports on the numerical modelling of flash flood propagation in urban areas after an excessive rainfall event or dam-break. A two-dimensional (2D) depth-averaged shallow water model is used with a refined unstructured grid of triangles for representing the urban area topography. The 2D shallow water equations are solved using a second-order well-balanced discontinuous Galerkin scheme. Theoretical test case and three flood events are described to demonstrate the potential benefits of the scheme: (i) wetting and drying in a parabolic basin (ii) flash flood over a physical model of the urbanized Toce River valley in Italy; (iii) wave propagation on the Reyran river valley in consequence of the Malpasset dam-break in 1959 (France); and (iv) dam-break flood in October 1982 at the town of Sumacarcel (Spain). The capability of the scheme is also verified against alternative models. Computational results compare well with recorded data and show that the scheme is at least as efficient as comparable second-order finite volume schemes, with notable efficiency speedup due to parallelization.Keywords: dam-break, discontinuous Galerkin scheme, flood modeling, shallow water equations
Procedia PDF Downloads 17526416 Qualitative Study of Pre-Service Teachers' Imagined Professional World vs. Real Experiences of In-Service Teachers
Authors: Masood Monjezi
Abstract:
The English teachers’ pedagogical identity construction is the way teachers go through the process of becoming teachers and how they maintain their teaching selves. The pedagogical identity of teachers is influenced by several factors within the individual and the society. The purpose of this study was to compare the imagined social world of the pre-service teachers with the real experiences the in-service teachers had in the context of Iran to see how prepared the pre-service teachers are with a view to their identity being. This study used a qualitative approach to collection and analysis of the data. Structured and semi-structured interviews, focus groups and process logs were used to collect the data. Then, using open coding, the data were analyzed. The findings showed that the imagined world of the pre-service teachers partly corresponded with the real world experiences of the in-service teachers leaving the pre-service teachers unprepared for their real world teaching profession. The findings suggest that the current approaches to English teacher training are in need of modification to better prepare the pre-service teachers for the future that expects them.Keywords: imagined professional world, in-service teachers, pre-service teachers, real experiences, community of practice, identity
Procedia PDF Downloads 33626415 Investigating the Contribution of Road Construction on Soil Erosion, a Case Study of Engcobo Local Municipality, Chris Hani District, South Africa
Authors: Yamkela Zitwana
Abstract:
Soil erosion along the roads and/or road riparian areas has become a norm in the Eastern Cape. Soil erosion refers to the detachment and transportation of soil from one area (onsite) to another (offsite). This displacement or removal of soil can be caused by water, air and sometimes gravity. This will focus on accelerated soil erosion which is the result of human interference with the environment. Engcobo local municipality falls within the Eastern Cape Province in the eastern side of CHRIS HANI District municipality. The focus road is R61 protruding from the Engcobo town outskirts along the Nyanga SSS on the way to Umtata although it will cover few Kilometers away from Engcobo. This research aims at looking at the contribution made by road construction to soil erosion. Steps to achieve the result will involve revisiting the phases of road construction through unstructured interviews, identifying the types of soil erosion evident in the area by doing a checklist, checking the material, utensils and equipment used for road construction and the contribution of road construction through stratified random sampling checking the soil color and texture. This research will use a pragmatic approach which combines related methods and consider the flaws of each method so as to ensure validity, precision and accuracy. Both qualitative and quantitative methods will be used. Statistical methods and GIS analysis will be used to analyze the collected data.Keywords: soil erosion, road riparian, accelerated soil erosion, road construction, sampling, universal soil loss model, GIS analysis, focus groups, qualitative, quantitative method, research, checklist questionnaires, unstructured interviews, pragmatic approach
Procedia PDF Downloads 39426414 Time Efficient Color Coding for Structured-Light 3D Scanner
Authors: Po-Hao Huang, Pei-Ju Chiang
Abstract:
The structured light 3D scanner is commonly used for measuring the 3D shape of an object. Through projecting designed light patterns on the object, deformed patterns can be obtained and used for the geometric shape reconstruction. At present, Gray code is the most reliable and commonly used light pattern in the structured light 3D scanner. However, the trade-off between scanning efficiency and accuracy is a long-standing and challenging problem. The design of light patterns plays a significant role in the scanning efficiency and accuracy. Thereby, we proposed a novel encoding method integrating color information and Gray-code to improve the scanning efficiency. We will demonstrate that with the proposed method, the scanning time can be reduced to approximate half of the one needed by Gray-code without reduction of precision.Keywords: gray-code, structured light scanner, 3D shape acquisition, 3D reconstruction
Procedia PDF Downloads 46026413 Programming Language Extension Using Structured Query Language for Database Access
Authors: Chapman Eze Nnadozie
Abstract:
Relational databases constitute a very vital tool for the effective management and administration of both personal and organizational data. Data access ranges from a single user database management software to a more complex distributed server system. This paper intends to appraise the use a programming language extension like structured query language (SQL) to establish links to a relational database (Microsoft Access 2013) using Visual C++ 9 programming language environment. The methodology used involves the creation of tables to form a database using Microsoft Access 2013, which is Object Linking and Embedding (OLE) database compliant. The SQL command is used to query the tables in the database for easy extraction of expected records inside the visual C++ environment. The findings of this paper reveal that records can easily be accessed and manipulated to filter exactly what the user wants, such as retrieval of records with specified criteria, updating of records, and deletion of part or the whole records in a table.Keywords: data access, database, database management system, OLE, programming language, records, relational database, software, SQL, table
Procedia PDF Downloads 187