Search results for: Mehrdad Faizi
3 Analyzing Consumer Preferences and Brand Differentiation in the Notebook Market via Social Media Insights and Expert Evaluations
Authors: Mohammadreza Bakhtiari, Mehrdad Maghsoudi, Hamidreza Bakhtiari
Abstract:
This study investigates consumer behavior in the notebook computer market by integrating social media sentiment analysis with expert evaluations. The rapid evolution of the notebook industry has intensified competition among manufacturers, necessitating a deeper understanding of consumer priorities. Social media platforms, particularly Twitter, have become valuable sources for capturing real-time user feedback. In this research, sentiment analysis was performed on Twitter data gathered in the last two years, focusing on seven major notebook brands. The PyABSA framework was utilized to extract sentiments associated with various notebook components, including performance, design, battery life, and price. Expert evaluations, conducted using fuzzy logic, were incorporated to assess the impact of these sentiments on purchase behavior. To provide actionable insights, the TOPSIS method was employed to prioritize notebook features based on a combination of consumer sentiments and expert opinions. The findings consistently highlight price, display quality, and core performance components, such as RAM and CPU, as top priorities across brands. However, lower-priority features, such as webcams and cooling fans, present opportunities for manufacturers to innovate and differentiate their products. The analysis also reveals subtle but significant brand-specific variations, offering targeted insights for marketing and product development strategies. For example, Lenovo's strong performance in display quality points to a competitive edge, while Microsoft's lower ranking in battery life indicates a potential area for R&D investment. This hybrid methodology demonstrates the value of combining big data analytics with expert evaluations, offering a comprehensive framework for understanding consumer behavior in the notebook market. The study emphasizes the importance of aligning product development and marketing strategies with evolving consumer preferences, ensuring competitiveness in a dynamic market. It also underscores the potential for innovation in seemingly less important features, providing companies with opportunities to create unique selling points. By bridging the gap between consumer expectations and product offerings, this research equips manufacturers with the tools needed to remain agile in responding to market trends and enhancing customer satisfaction.Keywords: consumer behavior, customer preferences, laptop industry, notebook computers, social media analytics, TOPSIS
Procedia PDF Downloads 232 Analyzing Global User Sentiments on Laptop Features: A Comparative Study of Preferences Across Economic Contexts
Authors: Mohammadreza Bakhtiari, Mehrdad Maghsoudi, Hamidreza Bakhtiari
Abstract:
The widespread adoption of laptops has become essential to modern lifestyles, supporting work, education, and entertainment. Social media platforms have emerged as key spaces where users share real-time feedback on laptop performance, providing a valuable source of data for understanding consumer preferences. This study leverages aspect-based sentiment analysis (ABSA) on 1.5 million tweets to examine how users from developed and developing countries perceive and prioritize 16 key laptop features. The analysis reveals that consumers in developing countries express higher satisfaction overall, emphasizing affordability, durability, and reliability. Conversely, users in developed countries demonstrate more critical attitudes, especially toward performance-related aspects such as cooling systems, battery life, and chargers. The study employs a mixed-methods approach, combining ABSA using the PyABSA framework with expert insights gathered through a Delphi panel of ten industry professionals. Data preprocessing included cleaning, filtering, and aspect extraction from tweets. Universal issues such as battery efficiency and fan performance were identified, reflecting shared challenges across markets. However, priorities diverge between regions, while users in developed countries demand high-performance models with advanced features, those in developing countries seek products that offer strong value for money and long-term durability. The findings suggest that laptop manufacturers should adopt a market-specific strategy by developing differentiated product lines. For developed markets, the focus should be on cutting-edge technologies, enhanced cooling solutions, and comprehensive warranty services. In developing markets, emphasis should be placed on affordability, versatile port options, and robust designs. Additionally, the study highlights the importance of universal charging solutions and continuous sentiment monitoring to adapt to evolving consumer needs. This research offers practical insights for manufacturers seeking to optimize product development and marketing strategies for global markets, ensuring enhanced user satisfaction and long-term competitiveness. Future studies could explore multi-source data integration and conduct longitudinal analyses to capture changing trends over time.Keywords: consumer behavior, durability, laptop industry, sentiment analysis, social media analytics
Procedia PDF Downloads 151 An Efficient Algorithm for Solving the Transmission Network Expansion Planning Problem Integrating Machine Learning with Mathematical Decomposition
Authors: Pablo Oteiza, Ricardo Alvarez, Mehrdad Pirnia, Fuat Can
Abstract:
To effectively combat climate change, many countries around the world have committed to a decarbonisation of their electricity, along with promoting a large-scale integration of renewable energy sources (RES). While this trend represents a unique opportunity to effectively combat climate change, achieving a sound and cost-efficient energy transition towards low-carbon power systems poses significant challenges for the multi-year Transmission Network Expansion Planning (TNEP) problem. The objective of the multi-year TNEP is to determine the necessary network infrastructure to supply the projected demand in a cost-efficient way, considering the evolution of the new generation mix, including the integration of RES. The rapid integration of large-scale RES increases the variability and uncertainty in the power system operation, which in turn increases short-term flexibility requirements. To meet these requirements, flexible generating technologies such as energy storage systems must be considered within the TNEP as well, along with proper models for capturing the operational challenges of future power systems. As a consequence, TNEP formulations are becoming more complex and difficult to solve, especially for its application in realistic-sized power system models. To meet these challenges, there is an increasing need for developing efficient algorithms capable of solving the TNEP problem with reasonable computational time and resources. In this regard, a promising research area is the use of artificial intelligence (AI) techniques for solving large-scale mixed-integer optimization problems, such as the TNEP. In particular, the use of AI along with mathematical optimization strategies based on decomposition has shown great potential. In this context, this paper presents an efficient algorithm for solving the multi-year TNEP problem. The algorithm combines AI techniques with Column Generation, a traditional decomposition-based mathematical optimization method. One of the challenges of using Column Generation for solving the TNEP problem is that the subproblems are of mixed-integer nature, and therefore solving them requires significant amounts of time and resources. Hence, in this proposal we solve a linearly relaxed version of the subproblems, and trained a binary classifier that determines the value of the binary variables, based on the results obtained from the linearized version. A key feature of the proposal is that we integrate the binary classifier into the optimization algorithm in such a way that the optimality of the solution can be guaranteed. The results of a study case based on the HRP 38-bus test system shows that the binary classifier has an accuracy above 97% for estimating the value of the binary variables. Since the linearly relaxed version of the subproblems can be solved with significantly less time than the integer programming counterpart, the integration of the binary classifier into the Column Generation algorithm allowed us to reduce the computational time required for solving the problem by 50%. The final version of this paper will contain a detailed description of the proposed algorithm, the AI-based binary classifier technique and its integration into the CG algorithm. To demonstrate the capabilities of the proposal, we evaluate the algorithm in case studies with different scenarios, as well as in other power system models.Keywords: integer optimization, machine learning, mathematical decomposition, transmission planning
Procedia PDF Downloads 85