Search results for: Breast radiotherapy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 828

Search results for: Breast radiotherapy

768 Dynamic Contrast-Enhanced Breast MRI Examinations: Clinical Use and Technical Challenges

Authors: Janet Wing-Chong Wai, Alex Chiu-Wing Lee, Hailey Hoi-Ching Tsang, Jeffrey Chiu, Kwok-Wing Tang

Abstract:

Background: Mammography has limited sensitivity and specificity though it is the primary imaging technique for detection of early breast cancer. Ultrasound imaging and contrast-enhanced MRI are useful adjunct tools to mammography. The advantage of breast MRI is high sensitivity for invasive breast cancer. Therefore, indications for and use of breast magnetic resonance imaging have increased over the past decade. Objectives: 1. Cases demonstration on different indications for breast MR imaging. 2. To review of the common artifacts and pitfalls in breast MR imaging. Materials and Methods: This is a retrospective study including all patients underwent dynamic contrast-enhanced breast MRI examination in our centre, performed from Jan 2011 to Dec 2017. The clinical data and radiological images were retrieved from the EPR (electronic patient record), RIS (Radiology Information System) and PACS (Picture Archiving and Communication System). Results and Discussion: Cases including (1) Screening of the contralateral breast in patient with a new breast malignancy (2) Breast augmentation with free injection of unknown foreign materials (3) Finding of axillary adenopathy with an unknown site of primary malignancy (4) Neo-adjuvant chemotherapy: before, during, and after chemotherapy to evaluate treatment response and extent of residual disease prior to operation. Relevant images will be included and illustrated in the presentation. As with other types of MR imaging, there are different artifacts and pitfalls that can potentially limit interpretation of the images. Because of the coils and software specific to breast MR imaging, there are some other technical considerations that are unique to MR imaging of breast regions. Case demonstration images will be available in presentation. Conclusion: Breast MR imaging is a highly sensitive and reasonably specific method for the detection of breast cancer. Adherent to appropriate clinical indications and technical optimization are crucial for achieving satisfactory images for interpretation.

Keywords: MRI, breast, clinical, cancer

Procedia PDF Downloads 241
767 The impact of Breast Cancer Polymorphism on Breast Cancer

Authors: Roudabeh Vakil Monfared, Farhad Mashayekhi

Abstract:

Breast cancer is the most common malignancy type among women with about 1 million new cases each year. The immune system plays an important role in the breast cancer development. OX40L (also known as TNFSF4), a membrane protein, which is a member of the tumor necrosis factor super family binds to its receptor OX40 and this co-stimulation has a crucial role in T-cell proliferation, survival and cytokine release. Due to the importance of the T-cells in anti-tumor activities of OX40L we studied the association of rs3850641 (T→C) polymorphism of OX40L gene with breast cancer. The study included 123 women with breast cancer and 126 healthy volunteers with no signs of cancer. Genomic DNA was extracted from blood leucocytes. Genotype and allele frequencies were determined in patients and control cases with the method of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and the analysis was performed by Med Calc. The prevalence of genotype frequencies of TT, CT and CC were 60.9%, 30.08% and 8.9 % in patients with breast cancer and 74.6 %, 18.25 % and 7.14 % in healthy volunteers while the T and C allelic frequency was 76.01% and 23.98 % in patients and 83.73% and 16.26% in healthy controls. Respectively Statistical analysis has shown no significant difference from the comparison of either genotype (P=0.06). According to these results, the rs3850641 SNP has no association with the susceptibility of breast cancer in a population in northern Iran. However, further studies in larger populations including other genetic and environmental factors are required to achieve conclusion.

Keywords: OX40L, gene, polymorphism, breast cancer

Procedia PDF Downloads 535
766 Tocilizumab Suppresses the Pro-carcinogenic Effects of Breast Cancer-associated Fibroblasts Through Inhibition of the STAT3/AUF1 Pathway

Authors: Naif Al-Jomah, Falah H Al-Mohanna, Abdelilah Aboussekhra

Abstract:

Active breast cancer-associated fibroblasts (CAFs), the most influential cells in breast tumor microenvironment, express/secrete high levels of the proinvasive/metastatic interleukin-6 (IL-6). Therefore, we have tested here the effect of the IL-6 receptor (IL-6R) inhibitor tocilizumab (TCZ; Actemra) on different active breast CAFs. We have shown that TCZ potently and persistently suppresses the expression of various CAF biomarkers, namely α-SMA, SDF-1 as well as the STAT3 pathway and its downstream target AUF1. TCZ also inhibited the proliferation, migration and invasion abilities of active breast CAF cells. Additionally, TCZ repressed the ability of CAF cells in promoting epithelial-to-mesenchymal transition, and enhancing the migratory/invasive and proliferative capacities of breast cancer cells in vitro. Importantly, these findings were confirmed in orthotopic humanized breast tumors in mice. Furthermore, TCZ suppressed the expression of the pro-angiogenic factor VEGF-A and its transactivator HIF-1α in CAF cells, and consequently inhibited the angiogenic-promoting effect of active CAFs both in vitro and in orthotopic tumor xenografts. These results indicate that inhibition of the IL-6/STAT3/AUF1 pathway by TCZ can normalize active breast CAFs and suppress their paracrine pro-carcinogenic effects, which paves the way toward development of specific CAF-targeting therapy, badly needed for more efficient breast cancer treatments.

Keywords: angiogenesis, interleukin-6, paracrine, cancer-associated fibroblasts

Procedia PDF Downloads 97
765 Aspects and Studies of Fractal Geometry in Automatic Breast Cancer Detection

Authors: Mrinal Kanti Bhowmik, Kakali Das Jr., Barin Kumar De, Debotosh Bhattacharjee

Abstract:

Breast cancer is the most common cancer and a leading cause of death for women in the 35 to 55 age group. Early detection of breast cancer can decrease the mortality rate of breast cancer. Mammography is considered as a ‘Gold Standard’ for breast cancer detection and a very popular modality, presently used for breast cancer screening and detection. The screening of digital mammograms often leads to over diagnosis and a consequence to unnecessary traumatic & painful biopsies. For that reason recent studies involving the use of thermal imaging as a screening technique have generated a growing interest especially in cases where the mammography is limited, as in young patients who have dense breast tissue. Tumor is a significant sign of breast cancer in both mammography and thermography. The tumors are complex in structure and they also exhibit a different statistical and textural features compared to the breast background tissue. Fractal geometry is a geometry which is used to describe this type of complex structure as per their main characteristic, where traditional Euclidean geometry fails. Over the last few years, fractal geometrics have been applied mostly in many medical image (1D, 2D, or 3D) analysis applications. In breast cancer detection using digital mammogram images, also it plays a significant role. Fractal is also used in thermography for early detection of the masses using the thermal texture. This paper presents an overview of the recent aspects and initiatives of fractals in breast cancer detection in both mammography and thermography. The scope of fractal geometry in automatic breast cancer detection using digital mammogram and thermogram images are analysed, which forms a foundation for further study on application of fractal geometry in medical imaging for improving the efficiency of automatic detection.

Keywords: fractal, tumor, thermography, mammography

Procedia PDF Downloads 388
764 Breast Cancer Risk is Predicted Using Fuzzy Logic in MATLAB Environment

Authors: S. Valarmathi, P. B. Harathi, R. Sridhar, S. Balasubramanian

Abstract:

Machine learning tools in medical diagnosis is increasing due to the improved effectiveness of classification and recognition systems to help medical experts in diagnosing breast cancer. In this study, ID3 chooses the splitting attribute with the highest gain in information, where gain is defined as the difference between before the split versus after the split. It is applied for age, location, taluk, stage, year, period, martial status, treatment, heredity, sex, and habitat against Very Serious (VS), Very Serious Moderate (VSM), Serious (S) and Not Serious (NS) to calculate the gain of information. The ranked histogram gives the gain of each field for the breast cancer data. The doctors use TNM staging which will decide the risk level of the breast cancer and play an important decision making field in fuzzy logic for perception based measurement. Spatial risk area (taluk) of the breast cancer is calculated. Result clearly states that Coimbatore (North and South) was found to be risk region to the breast cancer than other areas at 20% criteria. Weighted value of taluk was compared with criterion value and integrated with Map Object to visualize the results. ID3 algorithm shows the high breast cancer risk regions in the study area. The study has outlined, discussed and resolved the algorithms, techniques / methods adopted through soft computing methodology like ID3 algorithm for prognostic decision making in the seriousness of the breast cancer.

Keywords: ID3 algorithm, breast cancer, fuzzy logic, MATLAB

Procedia PDF Downloads 518
763 Atomic Absorption Spectroscopic Analysis of Heavy Metals in Cancerous Breast Tissues among Women in Jos, Nigeria

Authors: Opeyemi Peter Idowu

Abstract:

Breast cancer is prevalent in northern Nigerian women, most especially in Jos, Plateau State, owing to anthropogenic activities such as solid earth mineral mining as far back as 1904. In this study, atomic absorption spectrometry was used to determine the concentration of eight heavy metals (Cd, As, Cr, Cu, Fe, Pb, Ni, and Zn) in cancerous and non-cancerous breast tissues of Jos Nigerian Women. The levels of heavy metals ranged from 1.08 to 29.34 mg/kg, 0.29 to 10.76 mg/kg, 0.35 to 51.93 mg/kg, 5.15 to 62.93 mg/kg, 11.64 to 51.10 mg/kg, 0.42 to 83.16 mg/kg, 2.08 to 43.07 mg/kg and 1.67 to 71.53 mg/kg for Cd, As, Cr, Cu, Fe, Pb, Ni and Zn respectively. Using MATLAB R2016a, significant differences (tᵥ = 0.0041 - 0.0317) existed between the levels of all the heavy metals in cancerous and non-cancerous breast tissues except Fe. At 0.01 level of significance, a positive significant correlation existed between Pb and Fe, Pb and Cu, Pb and Fe, Ni and Fe, Cr and Pb, as well as Ni and Cr (r = 0.583 – 0.998) in cancerous breast tissues. Using ANOVA, significant differences also occurred in the levels of these heavy metals in cancerous breast tissues (p = 1.910510×10⁻²⁶). The relatively high levels of the cancer-induced heavy metals (Cd, As, Cr, and Pb) compared with control indicated contamination or exposure to heavy metals, which could be the major cause of cancer in these female subjects. This was evidence of contamination as a result of exposure by ingestion, inhalation, or other means to one anthropogenic activity of the other. Therapeutic measures such as gastric lavage, ascorbic acid consumption, and divalent cation treatment are all effective ways to manage heavy metal toxicity in the subjects to lower the risk of breast cancer.

Keywords: breast cancer, heavy metals, spectroscopy, bio-accumulation

Procedia PDF Downloads 26
762 KAP Study on Breast Cancer Among Women in Nirmala Educational Institutions-A Prospective Observational Study

Authors: Shaik Asha Begum, S. Joshna Rani, Shaik Abdul Rahaman

Abstract:

INTRODUCTION: Breast cancer is a disease that creates in breast cells. "KAP" study estimates the Knowledge, Attitude, and Practices of a local area. More than 1.5 million ladies (25% of all ladies with malignancy) are determined to have bosom disease consistently all through the world. Understanding the degrees of Knowledge, Attitude and Practice will empower a more effective cycle of mindfulness creation as it will permit the program to be custom-made all the more properly to the necessities of the local area. OBJECTIVES: The objective of this study is to assess the knowledge on signs and symptoms, risk factors, provide awareness on the practicing of the early detection techniques of breast cancer and provide knowledge on the overall breast cancer including preventive techniques. METHODOLOGY: This is an expressive cross-sectional investigation. This investigation of KAP was done in the Nirmala Educational Institutions from January to April 2021. A total of 300 participants are included from women students in pharmacy graduates & lecturers, and also from graduates other than the pharmacy. The examiners are taken from the BCAM (Breast Cancer Awareness Measure), tool compartment (Version 2). RESULT: According to the findings of the study, the majority of the participants were not well informed about breast cancer. A lump in the breast was the most commonly mentioned sign of breast cancer, followed by pain in the breast or nipple. The percentage of knowledge related to the breast cancer risk factors was also very less. The correct answers for breast cancer risk factors were radiation exposure (58.20 percent), a positive family history (47.6 percent), obesity (46.9 percent), a lack of physical activity (43.6 percent), and smoking (43.2 percent). Breast cancer screening, on the other hand, was uncommon (only 30 and 11.3 percent practiced clinical breast examination and mammography respectively). CONCLUSION: In this study, the knowledge on the signs and symptoms, risk factors of breast cancer - pharmacy graduates have more knowledge than the non-pharmacy graduates but in the preventive techniques and early detective tools of breast cancer -had poor knowledge in the pharmacy and non-pharmacy graduate. After the awareness program, pharmacy and non-pharmacy graduates got supportive knowledge on the preventive techniques and also practiced the early detective techniques of breast cancer.

Keywords: breast cancer, mammography, KAP study, early detection

Procedia PDF Downloads 138
761 Integrating AI into Breast Cancer Diagnosis: Aligning Perspectives for Effective Clinical Practice

Authors: Mehrnaz Mostafavi, Mahtab Shabani, Alireza Azani, Fatemeh Ghafari

Abstract:

Artificial intelligence (AI) can transform breast cancer diagnosis and therapy by providing sophisticated solutions for screening, imaging interpretation, histopathological analysis, and treatment planning. This literature review digs into the many uses of AI in breast cancer treatment, highlighting the need for collaboration between AI scientists and healthcare practitioners. It emphasizes advances in AI-driven breast imaging interpretation, such as computer-aided detection and diagnosis (CADe/CADx) systems and deep learning algorithms. These have shown significant potential for improving diagnostic accuracy and lowering radiologists' workloads. Furthermore, AI approaches such as deep learning have been used in histopathological research to accurately predict hormone receptor status and categorize tumor-associated stroma from regular H&E stains. These AI-powered approaches simplify diagnostic procedures while providing insights into tumor biology and prognosis. As AI becomes more embedded in breast cancer care, it is crucial to ensure its ethical, efficient, and patient-focused implementation to improve outcomes for breast cancer patients ultimately.

Keywords: breast cancer, artificial intelligence, cancer diagnosis, clinical practice

Procedia PDF Downloads 68
760 Identification of Biological Pathways Causative for Breast Cancer Using Unsupervised Machine Learning

Authors: Karthik Mittal

Abstract:

This study performs an unsupervised machine learning analysis to find clusters of related SNPs which highlight biological pathways that are important for the biological mechanisms of breast cancer. Studying genetic variations in isolation is illogical because these genetic variations are known to modulate protein production and function; the downstream effects of these modifications on biological outcomes are highly interconnected. After extracting the SNPs and their effect on different types of breast cancer using the MRBase library, two unsupervised machine learning clustering algorithms were implemented on the genetic variants: a k-means clustering algorithm and a hierarchical clustering algorithm; furthermore, principal component analysis was executed to visually represent the data. These algorithms specifically used the SNP’s beta value on the three different types of breast cancer tested in this project (estrogen-receptor positive breast cancer, estrogen-receptor negative breast cancer, and breast cancer in general) to perform this clustering. Two significant genetic pathways validated the clustering produced by this project: the MAPK signaling pathway and the connection between the BRCA2 gene and the ESR1 gene. This study provides the first proof of concept showing the importance of unsupervised machine learning in interpreting GWAS summary statistics.

Keywords: breast cancer, computational biology, unsupervised machine learning, k-means, PCA

Procedia PDF Downloads 146
759 Topic-Specific Differences and Lexical Variations in the Use of Violence Metaphors: A Cognitive Linguistic Study of YouTube Breast Cancer Discourse in New Zealand and Pakistan

Authors: Sara Malik, Andreea. S. Calude, Joseph Ulatowski

Abstract:

This paper explores how speakers from New Zealand and Pakistan with breast cancer use violence metaphors to communicate the intensity of their experiences during various stages of illness. With the theoretical foundation in Conceptual Metaphor Theory and the use of Metaphor Identification Procedure for metaphor analysis, this study investigates how speakers with breast cancer use violence metaphors in different cultural contexts. it collected a corpus of forty-six personal narratives from New Zealand and thirty-six from Pakistan, posted between 2011 and 2023 on YouTube by breast cancer organisations, such as ‘NZ Breast Cancer Foundation’ and ‘Pink Ribbon Pakistan’. The data was transcribed using the Whisper AI tool and then curated to include only patients’ discourse, further organised into eight narrative topics: testing phase, treatment phase, remission phase, family support, campaigns and awareness efforts, government support and funding, general information and religious discourse. In this talk, it discuss two aspects of the use of violence metaphors, a) differences in the use of violence metaphors across various narrative topics, and b) lexical variations in the choice of such metaphors. The findings suggest that violence metaphors were used differently across various stages of illness experience. For instance, during the ‘testing phase,’ violence metaphors were employed to convey a sense of punishment as reflected in statements like, ‘Feeling like it was a death sentence, an immediate death sentence’ (NZ Example) and ‘Jese hi aap ko na breast cancer ka pata chalta hai logon ko yeh hona shuru ho jata hai ke oh bas ab to moat ka parwana mil gaya hai’ (Because as soon as you find out you have breast cancer people start to feel that you have received a death warrant) (PK Example). On the other hand, violence metaphor during the ‘treatment phase’ highlighted negative experiences related to chemotherapy as seen in statements like ‘The first lot of chemo I had was disastrous’ (NZ Example) and ‘...chemotherapy ke to, it's the worst of all, it's like a healing poison’ (chemotherapy, it's the worst of all, it's like a healing poison) (PK Example). Second, lexical variations revealed how ‘sunburn’ (a common phenomenon in the NZ) was used as a metaphor to describe the effects of radiotherapy, whereas in the discourse from Pakistan, a more general term, 'burn,' was used instead. In this talk, we will explore the possible reasons behind the different word choices made by speakers from both countries to describe the same process. This study contributes to understanding the use of violence metaphors across various narrative topics of the illness experience and explains how and why speakers from two different countries use lexical variations to describe the same process.

Keywords: metaphors, breast cancer discourse, cognitive linguistics, lexical variations, New zealand english, pakistani urdu

Procedia PDF Downloads 31
758 Early Detection of Breast Cancer in Digital Mammograms Based on Image Processing and Artificial Intelligence

Authors: Sehreen Moorat, Mussarat Lakho

Abstract:

A method of artificial intelligence using digital mammograms data has been proposed in this paper for detection of breast cancer. Many researchers have developed techniques for the early detection of breast cancer; the early diagnosis helps to save many lives. The detection of breast cancer through mammography is effective method which detects the cancer before it is felt and increases the survival rate. In this paper, we have purposed image processing technique for enhancing the image to detect the graphical table data and markings. Texture features based on Gray-Level Co-Occurrence Matrix and intensity based features are extracted from the selected region. For classification purpose, neural network based supervised classifier system has been used which can discriminate between benign and malignant. Hence, 68 digital mammograms have been used to train the classifier. The obtained result proved that automated detection of breast cancer is beneficial for early diagnosis and increases the survival rates of breast cancer patients. The proposed system will help radiologist in the better interpretation of breast cancer.

Keywords: medical imaging, cancer, processing, neural network

Procedia PDF Downloads 259
757 Marker-Controlled Level-Set for Segmenting Breast Tumor from Thermal Images

Authors: Swathi Gopakumar, Sruthi Krishna, Shivasubramani Krishnamoorthy

Abstract:

Contactless, painless and radiation-free thermal imaging technology is one of the preferred screening modalities for detection of breast cancer. However, poor signal to noise ratio and the inexorable need to preserve edges defining cancer cells and normal cells, make the segmentation process difficult and hence unsuitable for computer-aided diagnosis of breast cancer. This paper presents key findings from a research conducted on the appraisal of two promising techniques, for the detection of breast cancer: (I) marker-controlled, Level-set segmentation of anisotropic diffusion filtered preprocessed image versus (II) Segmentation using marker-controlled level-set on a Gaussian-filtered image. Gaussian-filtering processes the image uniformly, whereas anisotropic filtering processes only in specific areas of a thermographic image. The pre-processed (Gaussian-filtered and anisotropic-filtered) images of breast samples were then applied for segmentation. The segmentation of breast starts with initial level-set function. In this study, marker refers to the position of the image to which initial level-set function is applied. The markers are generally placed on the left and right side of the breast, which may vary with the breast size. The proposed method was carried out on images from an online database with samples collected from women of varying breast characteristics. It was observed that the breast was able to be segmented out from the background by adjustment of the markers. From the results, it was observed that as a pre-processing technique, anisotropic filtering with level-set segmentation, preserved the edges more effectively than Gaussian filtering. Segmented image, by application of anisotropic filtering was found to be more suitable for feature extraction, enabling automated computer-aided diagnosis of breast cancer.

Keywords: anisotropic diffusion, breast, Gaussian, level-set, thermograms

Procedia PDF Downloads 380
756 Significance of Tridimensional Volume of Tumor in Breast Cancer Compared to Conventional TNM Stage

Authors: Jaewoo Choi, Ki-Tae Hwang, Eunyoung Ko

Abstract:

Backgrounds/Aims: Patients with breast cancer are currently classified according to TNM stage. Nevertheless, the actual volume would be mis-estimated, and it would bring on inappropriate diagnosis. Tridimensional volume-stage derived from the ellipsoid formula was presented as useful measure. Methods: The medical records of 480 consecutive breast cancer between January 2001 and March 2013 were retrospectively reviewed. All patients were divided into three groups according to tumor volume by receiver operating characteristic analysis, and the ranges of each volume-stage were that V1 was below 2.5 cc, V2 was exceeded 2.5 and below 10.9 cc, and V3 was exceeded 10.9 cc. We analyzed outcomes of volume-stage and compared disease-free survival (DFS) and overall survival (OS) between size-stage and volume-stage with variant intrinsic factor. Results: In the T2 stage, there were patients who had a smaller volume than 4.2 cc known as maximum value of T1. These findings presented that patients in T1c had poorer DFS than T2-lesser (mean of DFS 48.7 vs. 51.8, p = 0.011). Such is also the case in OS (mean of OS 51.1 vs. 55.3, p = 0.006). The cumulative survival curves for V1, V2 compared T1, T2 showed similarity in DFS (HR 1.9 vs. 1.9), and so did it for V3 compared T3 (HR 3.5 vs. 2.6) significantly. Conclusion: This study demonstrated that tumor volume had good feasibility on the prognosis of patients with breast cancer. We proposed that volume-stage should be considered for an additional stage indicator, particularly in early breast cancer.

Keywords: breast cancer, tridimensional volume of tumor, TNM stage, volume stage

Procedia PDF Downloads 403
755 Thermalytix: An Advanced Artificial Intelligence Based Solution for Non-Contact Breast Screening

Authors: S. Sudhakar, Geetha Manjunath, Siva Teja Kakileti, Himanshu Madhu

Abstract:

Diagnosis of breast cancer at early stages has seen better clinical and survival outcomes. Survival rates in developing countries like India are very low due to accessibility and affordability issues of screening tests such as Mammography. In addition, Mammography is not much effective in younger women with dense breasts. This leaves a gap in current screening methods. Thermalytix is a new technique for detecting breast abnormality in a non-contact, non-invasive way. It is an AI-enabled computer-aided diagnosis solution that automates interpretation of high resolution thermal images and identifies potential malignant lesions. The solution is low cost, easy to use, portable and is effective in all age groups. This paper presents the results of a retrospective comparative analysis of Thermalytix over Mammography and Clinical Breast Examination for breast cancer screening. Thermalytix was found to have better sensitivity than both the tests, with good specificity as well. In addition, Thermalytix identified all malignant patients without palpable lumps.

Keywords: breast cancer screening, radiology, thermalytix, artificial intelligence, thermography

Procedia PDF Downloads 291
754 Survival Analysis of Identifying the Risk Factors of Affecting the First Recurrence Time of Breast Cancer: The Case of Tigray, Ethiopia

Authors: Segen Asayehegn

Abstract:

Introduction: In Tigray, Ethiopia, next to cervical cancer, breast cancer is one of the most common cancer health problems for women. Objectives: This article is proposed to identify the prospective and potential risk factors affecting the time-to-first-recurrence of breast cancer patients in Tigray, Ethiopia. Methods: The data were taken from the patient’s medical record that registered from January 2010 to January 2020. The study considered a sample size of 1842 breast cancer patients. Powerful non-parametric and parametric shared frailty survival regression models (FSRM) were applied, and model comparisons were performed. Results: Out of 1842 breast cancer patients, about 1290 (70.02%) recovered/cured the disease. The median cure time from breast cancer is found at 12.8 months. The model comparison suggested that the lognormal parametric shared a frailty survival regression model predicted that treatment, stage of breast cancer, smoking habit, and marital status significantly affects the first recurrence of breast cancer. Conclusion: Factors like treatment, stages of cancer, and marital status were improved while smoking habits worsened the time to cure breast cancer. Recommendation: Thus, the authors recommend reducing breast cancer health problems, the regional health sector facilities need to be improved. More importantly, concerned bodies and medical doctors should emphasize the identified factors during treatment. Furthermore, general awareness programs should be given to the community on the identified factors.

Keywords: acceleration factor, breast cancer, Ethiopia, shared frailty survival models, Tigray

Procedia PDF Downloads 135
753 18 F-FDG PET/CT: Utility in Breast Cancer Surgery

Authors: R. Sonda, F. Pellini, A. Invento, S. Mirandola, F. Riolfatti, D. Grigolato, G. P. Pollini

Abstract:

The purpose of study is to assess utility of 18F-FDG PET/CT in patients with breast heteroplasia and possibility of changing the surgery/therapeutic treatment. Among these "under fourty-five" candidated for NAC, the prevalence of change in therapeutic approach in comparison with first and second level exams has been: 43.75%, while by 22% among the "over forty-five". The surgical timing according to first-level exams have been deferred in 31.46% cases; PET/CT has led to a change in therapeutic treatment of 48.31% on the previous given; then the addition of MRI has led to a similar variation. For all the total patients, the prevalent choice was found to the debulking approach by increasing from a prevalence of 12.92% to 15.17%, resulting in a reduction of conservative one.The present study set itself the objective to demonstrate how the FDG PET/CT could improve on breast imaging according to a more appropriate surgery.

Keywords: breast cancer, FGD PET/CT, preoperative staging, surgical approach

Procedia PDF Downloads 339
752 A Ferutinin Analogue with Enhanced Potency and Selectivity against Estrogen Receptor Positive Breast Cancer Cells in vitro

Authors: Remi Safi, Aline Hamade, Najat Bteich, Jamal El Saghir, Mona Diab Assaf, Marwan El-Sabban, Fadia Najjar

Abstract:

Estrogen is considered a risk factor for breast cancer since it promotes breast-cell proliferation. The jaesckeanadiol-3-p-hydroxyphenylpropanoate, a hemi-synthetic analogue of the natural phytoestrogen ferutinin (jaesckeanadiol-p-hydroxybenzoate), is designed to be devoid of estrogenic activity. This analogue induces a cytotoxic effect 30 times higher than that of ferutinin towards MCF-7 breast cancer cell line. We compared these two compounds with respect to their effect on proliferation, cell cycle distribution and cancer stem-like cells in the MCF-7 cell line. Treatment with ferutinin (30 μM) and its analogue (1 μM) produced a significant accumulation of cells at the pre G0/G1 cell cycle phase and triggered apoptosis. Importantly, this compound retains its anti-proliferative activity against breast cancer stem/progenitor cells that are naturally insensitive to ferutinin at the same dose. These results position ferutinin analogue as an effective compound inhibiting the proliferation of estrogen-dependent breast cancer cells and consistently targeting their stem-like cells.

Keywords: ferutinin, hemi-synthetic analogue, breast cancer, estrogen, stem/progenitor cells

Procedia PDF Downloads 189
751 Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors

Authors: Ayyaz Hussain, Tariq Sadad

Abstract:

Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy.

Keywords: breast cancer, DCNN, KNN, mammography

Procedia PDF Downloads 136
750 Computer Aided Diagnosis Bringing Changes in Breast Cancer Detection

Authors: Devadrita Dey Sarkar

Abstract:

Regardless of the many technologic advances in the past decade, increased training and experience, and the obvious benefits of uniform standards, the false-negative rate in screening mammography remains unacceptably high .A computer aided neural network classification of regions of suspicion (ROS) on digitized mammograms is presented in this abstract which employs features extracted by a new technique based on independent component analysis. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral breast images has the potential to improve the overall performance in the detection of breast lumps. Because breast lumps can be detected reliably by computer on lateral breast mammographs, radiologists’ accuracy in the detection of breast lumps would be improved by the use of CAD, and thus early diagnosis of breast cancer would become possible. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for breast CAD may include the computerized detection of breast nodules, as well as the computerized classification of benign and malignant nodules. In order to assist in the differential diagnosis, it would be possible to search for and retrieve images (or lesions) with these CAD systems, which would be reliable and useful method for quantifying the similarity of a pair of images for visual comparison by radiologists.

Keywords: CAD(computer-aided design), lesions, neural network, ROS(region of suspicion)

Procedia PDF Downloads 456
749 99mTc Scintimammography in an Equivocal Breast Lesion

Authors: Malak Shawky Matter Elyas

Abstract:

Introduction: Early detection of breast cancer is the main tool to decrease morbidity and mortality rates. Many diagnostic tools are used, such as mammograms, ultrasound and magnetic resonance imaging, but none of them is conclusive, especially in very small sizes, less than 1 cm. So, there is a need for more accurate tools. Patients and methods: This study involved 13 patients with different breast lesions. 6 Patients had breast cancer, and one of them had metastatic axillary lymph nodes without clinically nor mammographically detected breast mass proved by biopsy and histopathology. Of the other 7 Patients, 4 of them had benign breast lesions proved by biopsy and histopathology, and 3 Patients showed Equivocal breast lesions on a mammogram. A volume of 370-444Mbq of (99m) Tc/ bombesin was injected. Dynamic 1-min images by Gamma Camera were taken for 20 minutes immediately after injection in the anterior view. Thereafter, two static images in anterior and prone lateral views by Gamma Camera were taken for 5 minutes. Finally, single-photon emission computed tomography images were taken for each patient. The definitive diagnosis was based on biopsy and histopathology. Results: 6 Patients with breast cancer proved by biopsy and histopathology showed Positive findings on Sestamibi (Scintimammography). 1 out of 4 Patients with benign breast lesions proved by biopsy and histopathology showed Positive findings on Sestamibi (Scintimammography) while the other 3 Patients showed Negative findings on Sestamibi. 3 Patients out of 3 Patients with equivocal breast findings on mammogram showed Positive Findings on Sestamibi (Scintimammography) and proved by biopsy and histopathology. Conclusions: While we agree that Scintimammography will not replace mammograms as a mass screening tool, we believe that many patients will benefit from Scintimammography, especially women with dense breast tissues and in the presence of breast implants that are difficult to diagnose by mammogram, wherein its sensitivity is low and in women with metastatic axillary lymph nodes without clinically nor mammographically findings. We can use Scintimammography in sentinel lymph node mapping as a more accurate tool, especially since it is non-invasive.

Keywords: breast., radiodiagnosis, lifestyle, surgery

Procedia PDF Downloads 31
748 Dietary Pattern and Risk of Breast Cancer Among Women:a Case Control Study

Authors: Huma Naqeeb

Abstract:

Epidemiological studies have shown the robust link between breast cancer and dietary pattern. There has been no previous study conducted in Pakistan, which specifically focuses on dietary patterns among breast cancer women. This study aims to examine the association of breast cancer with dietary patterns among Pakistani women. This case-control research was carried in multiple tertiary care facilities. Newly diagnosed primary breast cancer patients were recruited as cases (n = 408); age matched controls (n = 408) were randomly selected from the general population. Data on required parameters were systematically collected using subjective and objective tools. Factor and Principal Component Analysis (PCA) techniques were used to extract women’s dietary patterns. Four dietary patterns were identified based on eigenvalue >1; (i) veg-ovo-fish, (ii) meat-fat-sweet, (iii) mix (milk and its products, and gourds vegetables) and (iv) lentils - spices. Results of the multiple regressions were displayed as adjusted odds ratio (Adj. OR) and their respective confidence intervals (95% CI). After adjusted for potential confounders, veg-ovo-fish dietary pattern was found to be robustly associated with a lower risk of breast cancer among women (Adj. OR: 0.68, 95%CI: (0.46-0.99, p<0.01). The study findings concluded that attachment to the diets majorly composed of fresh vegetables, and high quality protein sources may contribute in lowering the risk of breast cancer among women.

Keywords: breast cancer, dietary pattern, women, principal component analysis

Procedia PDF Downloads 123
747 Assessment of Predictive Confounders for the Prevalence of Breast Cancer among Iraqi Population: A Retrospective Study from Baghdad, Iraq

Authors: Nadia H. Mohammed, Anmar Al-Taie, Fadia H. Al-Sultany

Abstract:

Although breast cancer prevalence continues to increase, mortality has been decreasing as a result of early detection and improvement in adjuvant systemic therapy. Nevertheless, this disease required further efforts to understand and identify the associated potential risk factors that could play a role in the prevalence of this malignancy among Iraqi women. The objective of this study was to assess the perception of certain predictive risk factors on the prevalence of breast cancer types among a sample of Iraqi women diagnosed with breast cancer. This was a retrospective observational study carried out at National Cancer Research Center in College of Medicine, Baghdad University from November 2017 to January 2018. Data of 100 patients with breast cancer whose biopsies examined in the National Cancer Research Center were included in this study. Data were collected to structure a detailed assessment regarding the patients’ demographic, medical and cancer records. The majority of study participants (94%) suffered from ductal breast cancer with mean age 49.57 years. Among those women, 48.9% were obese with body mass index (BMI) 35 kg/m2. 68.1% of them had positive family history of breast cancer and 66% had low parity. 40.4% had stage II ductal breast cancer followed by 25.5% with stage III. It was found that 59.6% and 68.1% had positive oestrogen receptor sensitivity and positive human epidermal growth factor (HER2/neu) receptor sensitivity respectively. In regard to the impact of prediction of certain variables on the incidence of ductal breast cancer, positive family history of breast cancer (P < 0.0001), low parity (P< 0.0001), stage I and II breast cancer (P = 0.02) and positive HER2/neu status (P < 0.0001) were significant predictive factors among the study participants. The results from this study provide relevant evidence for a significant positive and potential association between certain risk factors and the prevalence of breast cancer among Iraqi women.

Keywords: Ductal Breast Cancer, Hormone Sensitivity, Iraq, Risk Factors

Procedia PDF Downloads 128
746 PNIPAAm-MAA Nanoparticles as Delivery Vehicles for Curcumin Against MCF-7 Breast Cancer Cells

Authors: H. Tayefih, F. farajzade ahari, F. Zarghami, V. Zeighamian, N. Zarghami, Y. Pilehvar-soltanahmadi

Abstract:

Breast cancer is the most frequently occurring cancer among women throughout the world. Natural compounds such as curcumin hold promise to treat a variety of cancers including breast cancer. However, curcumin's therapeutic application is limited, due to its rapid degradation and poor aqueous solubility. On the other hand, previous studies have stated that drug delivery using nanoparticles might improve the therapeutic response to anticancer drugs. Poly (N-isopropylacrylamide-co-methacrylic acid) (PNIPAAm–MAA) is one of the hydrogel copolymers utilized in the drug delivery system for cancer therapy. The aim of this study was to examine the cytotoxic potential of curcumin encapsulated within the NIPAAm-MAA nanoparticle, on the MCF-7 breast cancer cell line. In this work, polymeric nanoparticles were synthesized through the free radical mechanism, and curcumin was encapsulated into NIPAAm-MAA nanoparticles. Then, the cytotoxic effect of curcumin-loaded NIPAAm-MAA on the MCF-7 breast cancer cell line was measured by MTT assays. The evaluation of the results showed that curcumin-loaded NIPAAm-MAA has more cytotoxic effect on the MCF-7 cell line and efficiently inhibited the growth of the breast cancer cell population, compared with free curcumin. In conclusion, this study indicates that curcumin-loaded NIPAAm-MAA suppresses the growth of the MCF-7 cell line. Overall, it is concluded that encapsulating curcumin into the NIPAAm-MAA copolymer could open up new avenues for breast cancer treatment.

Keywords: PNIPAAm-MAA, breast cancer, curcumin, drug delivery

Procedia PDF Downloads 373
745 The Predictive Significance of Metastasis Associated in Colon Cancer-1 (MACC1) in Primary Breast Cancer

Authors: Jasminka Mujic, Karin Milde-Langosch, Volkmar Mueller, Mirza Suljagic, Tea Becirevic, Jozo Coric, Daria Ler

Abstract:

MACC1 (metastasis associated in colon cancer-1) is a prognostic biomarker for tumor progression, metastasis, and survival of a variety of solid cancers. MACC1 also causes tumor growth in xenograft models and acts as a master regulator of the HGF/MET signaling pathway. In breast cancer, the expression of MACC1 determined by immunohistochemistry was significantly associated with positive lymph node status and advanced clinical stage. The aim of the present study was to further investigate the prognostic or predictive value of MACC1 expression in breast cancer using western blot analysis and immunohistochemistry. The results of our study have shown that high MACC1 expression in breast cancer is associated with shorter disease-free survival, especially in node-negative tumors. The MACC1 might be a suitable biomarker to select patients with a higher probability of recurrence which might benefit from adjuvant chemotherapy. Our results support a biologic role and potentially open the perspective for the use of MACC1 as predictive biomarker for treatment decision in breast cancer patients.

Keywords: breast cancer, biomarker, HGF/MET, MACC1

Procedia PDF Downloads 233
744 Factors Contributing to Delayed Diagnosis and Treatment of Breast Cancer and Its Outcome in Jamhoriat Hospital Kabul, Afghanistan

Authors: Ahmad Jawad Fardin

Abstract:

Over 60% of patients with breast cancer in Afghanistan present late with advanced stage III and IV, a major cause for the poor survival rate. The objectives of this study were to identify the contributing factors for the diagnosis and treatment delay and its outcome. This cross-sectional study was conducted on 318 patients with histologically confirmed breast cancer in the oncology department of Jamhoriat hospital, which is the first and only national cancer center in Afghanistan; data were collected from medical records and interviews conducted with women diagnosed with breast cancer, linear regression and logistic regression were used for analysis. Patient delay was defined as the time from first recognition of symptoms until first medical consultation and doctor form first consultation with a health care provider until histological confirmation of breast cancer. The mean age of patients was 49.2+_ 11.5years. The average time for the final diagnosis of breast cancer was 8.5 months; most patients had ductal carcinoma 260.7 (82%). Factors associated with delay were low education level 76% poor socioeconomic and cultural conditions 81% lack of cancer center 73% lack of screening 19%. The stage distribution was as follows stage IV 4 22% stage III 44.4% stage II 29.3% stage I 4.3%. Complex associated factors were identified to delayed the diagnosis of breast cancer and increased adverse outcomes consequently. Raising awareness and education in women, the establishment of cancer centers and providing accessible diagnosis service and screening, training of general practitioners; required to promote early detection, diagnosis and treatment.

Keywords: delayed diagnosis and poor outcome, breast cancer in Afghanistan, poor outcome of delayed breast cancer treatment, breast cancer delayed diagnosis and treatment in Afghanistan

Procedia PDF Downloads 182
743 The Role of Molecular Subtypes in Pathological Response to Neoadjuvant Chemotherapy and Clinical Outcomes in Patients with Locally Advanced Breast Cancer

Authors: Aliakbar Hafezi, Jalal Taherian, Mahsa Elahi, Jamshid Abedi

Abstract:

Background: Patients with breast cancer with different molecular subtypes may have different pathological responses to neoadjuvant chemotherapy (NAC). The aim of this study was to evaluate the pathological response to NAC in patients with locally advanced breast cancer based on molecular subtypes. Method: In this retrospective cohort study, 210 female patients with breast cancer candidate for NAC referred to the radiation oncology departments in southern Iran between August 2019 and September 2024 were evaluated in terms of pathologic complete response (pCR) based on immunohistochemical molecular markers (estrogen and progesterone receptors, Her-2/neu and Ki-67), overall survival (OS) and disease-free survival (DFS). Results: The mean age of the patients was 38.22 ± 10.34 years, and 68 patients (32.4%) had a positive family history of breast cancer. The pCR rate was 17.6% (37 patients), which in the subtypes of luminal A, luminal B, Her-2/neu positive and triple negative was 7.7%, 16.9%, 26.5% and 21.05%, respectively. Patients with pCR had significantly better OS (78.4% vs. 49.1%, P = 0.014) and DFS (83.8% vs. 51.4%, P = 0.020) than patients with partial/no pathological response. Conclusion: It seems that the molecular subtype plays a decisive role in the clinical outcome and the pathological response to NAC in patients with locally advanced breast cancer.

Keywords: locally advanced breast cancer, neoadjuvant chemotherapy, pathologic complete response, clinical outcomes

Procedia PDF Downloads 6
742 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming

Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad

Abstract:

Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.

Keywords: breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration

Procedia PDF Downloads 216
741 Computer Aided Analysis of Breast Based Diagnostic Problems from Mammograms Using Image Processing and Deep Learning Methods

Authors: Ali Berkan Ural

Abstract:

This paper presents the analysis, evaluation, and pre-diagnosis of early stage breast based diagnostic problems (breast cancer, nodulesorlumps) by Computer Aided Diagnosing (CAD) system from mammogram radiological images. According to the statistics, the time factor is crucial to discover the disease in the patient (especially in women) as possible as early and fast. In the study, a new algorithm is developed using advanced image processing and deep learning method to detect and classify the problem at earlystagewithmoreaccuracy. This system first works with image processing methods (Image acquisition, Noiseremoval, Region Growing Segmentation, Morphological Operations, Breast BorderExtraction, Advanced Segmentation, ObtainingRegion Of Interests (ROIs), etc.) and segments the area of interest of the breast and then analyzes these partly obtained area for cancer detection/lumps in order to diagnosis the disease. After segmentation, with using the Spectrogramimages, 5 different deep learning based methods (specified Convolutional Neural Network (CNN) basedAlexNet, ResNet50, VGG16, DenseNet, Xception) are applied to classify the breast based problems.

Keywords: computer aided diagnosis, breast cancer, region growing, segmentation, deep learning

Procedia PDF Downloads 95
740 Serological Screening of Cytomegalovirus Infection among Sudanese Patients with Leukemia, Breast and Prostate Cancers at Radiation-Isotope Center in Khartoum

Authors: Abuelquasim. M. Hassan, Namarig .S. Mohammed, Samah F. Mohammed, Wafaa. A. Mohammed, Wafaa M. Edriss, Amel A. Ahmed, Elfadil M. Abass

Abstract:

Introduction: Cytomegalovirus (CMV), a common virus, usually causes asymptomatic infections in immunocompetent hosts; however, it may lead to serious complications especially in cancer patients. Objectives: This study was conducted to determine the seroprevalence of human cytomegalovirus (HCMV) among leukemia, breast and prostate cancer patients attending at Radiation Isotope-Center-Khartoum (RICK) from April to August 2016. Material and Methods: A total of 91 subjects were included: 30 leukemic, 22 breast cancer and 29 prostate cancer patients.10 of them were healthy and used as control group, serum samples were collected and tested for CMV IgG & IgM using enzyme-linked immune sorbent assay (ELISA). Result: Of the control group, 9/10 (9.9%) were seropositive for CMV IgG and 1/10 (1.09%) were sero positive for IgM. Also, all cancer groups demonstrated presence of IgG antibody classes as: The percentage of positive results in prostate, breast cancer and leukemia were 35.8 %, 37.2%, and 35.3% respectively. Conclusion: There was no significant correlation between leukemia, breast, prostate and HCMV.

Keywords: cytomegalovirus, serodiagnostic, breast cancer, leukemia

Procedia PDF Downloads 384
739 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models

Authors: Sam Khozama, Ali M. Mayya

Abstract:

Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.

Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion

Procedia PDF Downloads 163