Search results for: sustainable production
2307 3D Printing of Dual Tablets: Modified Multiple Release Profiles for Personalized Medicine
Authors: Veronika Lesáková, Silvia Slezáková, František Štěpánek
Abstract:
Additive manufacturing technologies producing drug dosage forms aimed at personalized medicine applications are promising strategies with several advantages over the conventional production methods. One of the emerging technologies is 3D printing which reduces manufacturing steps and thus allows a significant drop in expenses. A decrease in material consumption is also a highly impactful benefit as the tested drugs are frequently expensive substances. In addition, 3D printed dosage forms enable increased patient compliance and prevent misdosing as the dosage forms are carefully designed according to the patient’s needs. The incorporation of multiple drugs into a single dosage form further increases the degree of personalization. Our research focuses on the development of 3D printed tablets incorporating multiple drugs (candesartan, losartan) and thermoplastic polymers (e.g., KlucelTM HPC EF). The filaments, an essential feed material for 3D printing,wereproduced via hot-melt extrusion. Subsequently, the extruded filaments of various formulations were 3D printed into tablets using an FDM 3D printer. Then, we have assessed the influence of the internal structure of 3D printed tablets and formulation on dissolution behaviour by obtaining the dissolution profiles of drugs present in the 3D printed tablets. In conclusion, we have developed tablets containing multiple drugs providing modified release profiles. The 3D printing experiments demonstrate the high tunability of 3D printing as each tablet compartment is constructed with a different formulation. Overall, the results suggest that the 3D printing technology is a promising manufacturing approach to dual tablet preparation for personalized medicine.Keywords: 3D printing, drug delivery, hot-melt extrusion, dissolution kinetics
Procedia PDF Downloads 1682306 Investigating the Characteristics of Multi-Plastic Composites Prepared from a Mixture of Silk Fibers and Recycled Polycarbonate
Authors: Razieh Shamsi, Mehdi Faezipour, Ali Abdolkhani
Abstract:
In this research, the characteristics of composites prepared from waste silk fibers and recycled polycarbonate polymer (used compacted boards) at four levels of 0, 10, 20, and 30% (silk fibers) and using 2% N- 2-Aminoethyl-3-Aminopropyltrimethoxysilane was investigated as a coupling agent and melt process method. Silk fibers (carpet weaving waste) with dimensions of 8-18 mm were prepared, and recycled polymer with 9 mesh grading was ground. Production boards in 3 thicknesses, 3 mm (tensile test samples), 5 mm (bending test samples, water absorption, and thickness shrinkage), 7 mm (impact resistance test samples) ) with a specific weight of 1 gram per cubic centimeter, hot pressing time and temperature of 12 minutes and 190 degrees Celsius with a pressure of 130 bar, cold pressing time of 6 minutes with a pressure of 50 bar and using the coupling agent N- (2- Aminoethyl)-3-aminopropyltrimethoxysilane was prepared in a constant amount of 2% of the dry weight of the filler. The results showed that, in general, by adding silk fibers to the base polymer, compared to the control samples (pure recycled polycarbonate polymer) and also by increasing the amount of silk fibers, almost all the resistances increased. The amount of water absorption of the constructed composite increased with the increase in the amount of silk fibers, and the thickness absorption was equal to 0% even after 72 hours of immersion in water. The thermal resistance of the pure recycled polymer was higher than the prepared composites, and by adding silk fibers to the base polymer and also by increasing the amount of silk fibers from 10 to 30%, the thermal resistance of the composites decreased.Keywords: wood composite, recycled polycarbonate, silk fibers, polymer
Procedia PDF Downloads 932305 Organic Matter Removal in Urban and Agroindustry Wastewater by Chemical Precipitation Process
Authors: Karina Santos Silvério, Fátima Carvalho, Maria Adelaide Almeida
Abstract:
The impacts caused by anthropogenic actions on the water environment have been one of the main challenges of modern society. Population growth, added to water scarcity and climate change, points to a need to increase the resilience of production systems to increase efficiency regarding the management of wastewater generated in the different processes. Based on this context, the study developed under the NETA project (New Strategies in Wastewater Treatment) aimed to evaluate the efficiency of the Chemical Precipitation Process (CPP), using the hydrated lime (Ca(OH )₂) as a reagent in wastewater from the agroindustry sector, namely swine wastewater, slaughterhouse and urban wastewater, in order to make the productive means 100% circular, causing a direct positive impact on the environment. The purpose of CPP is to innovate in the field of effluent treatment technologies, as it allows rapid application and is economically profitable. In summary, the study was divided into four main stages: 1) Application of the reagent in a single step, raising the pH to 12.5 2) Obtaining sludge and treated effluent. 3) Natural neutralization of the effluent through Carbonation using atmospheric CO₂. 4) Characterization and evaluation of the feasibility of the chemical precipitation technique in the treatment of different wastewaters through the technique of determining the chemical oxygen demand (COD) and other supporting physical-chemical parameters. The results showed an approximate average removal efficiency above 80% for all effluents, highlighting the swine effluent with 90% removal, followed by urban effluent with 88% and slaughterhouse with 81% on average. Significant improvement was also obtained with regard to color and odor removal after Carbonation to pH 8.00.Keywords: agroindustry wastewater, urban wastewater, natural carbonatation, chemical precipitation technique
Procedia PDF Downloads 822304 A Facile Nanocomposite of Graphene Oxide Reinforced Chitosan/Poly-Nitroaniline Polymer as a Highly Efficient Adsorbent for Extracting Polycyclic Aromatic Hydrocarbons from Tea Samples
Authors: Adel M. Al-Shutairi, Ahmed H. Al-Zahrani
Abstract:
Tea is a popular beverage drunk by millions of people throughout the globe. Tea has considerable health advantages, in-cluding antioxidant, antibacterial, antiviral, chemopreventive, and anticarcinogenic properties. As a result of environmental pollution (atmospheric deposition) and the production process, tealeaves may also include a variety of dangerous substances, such as polycyclic aromatic hydrocarbons (PAHs). In this study, graphene oxide reinforced chitosan/poly-nitroaniline polymer was prepared to develop a sensitive and reliable solid phase extraction method (SPE) for extraction of PAH7 in tea samples, followed by high-performance liquid chromatography- fluorescence detection. The prepared adsorbent was validated in terms of linearity, the limit of detection, the limit of quantification, recovery (%), accuracy (%), and precision (%) for the determination of the PAH7 (benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene, chrysene, benzo[b]fluoranthene, Dibenzo[a,h]anthracene and Benzo[g,h,i]perylene) in tea samples. The concentration was determined in two types of tea commercially available in Saudi Arabia, including black tea and green tea. The maximum mean of Σ7PAHs in black tea samples was 68.23 ± 0.02 ug kg-1 and 26.68 ± 0.01 ug kg-1 in green tea samples. The minimum mean of Σ7PAHs in black tea samples was 37.93 ± 0.01 ug kg-1 and 15.26 ± 0.01 ug kg-1 in green tea samples. The mean value of benzo[a]pyrene in black tea samples ranged from 6.85 to 12.17 ug kg-1, where two samples exceeded the standard level (10 ug kg-1) established by the European Union (UE), while in green tea ranged from 1.78 to 2.81 ug kg-1. Low levels of Σ7PAHs in green tea samples were detected in comparison with black tea samples.Keywords: polycyclic aromatic hydrocarbons, CS, PNA and GO, black/green tea, solid phase extraction, Saudi Arabia
Procedia PDF Downloads 962303 Implementation of Distributor Management Solution and Its Effects on Supply Chain Performance
Authors: Charles Amoatey, Ebenezer Kumah
Abstract:
Purpose: The purpose of this paper is to assess the effects of implementation of Distributor Management Solution (DMS) on supply chain performance in the Fast Moving Consumer Goods (FMCG) industry in Ghana. Methodology: A purposive sampling approach was used in selecting the respondents for the study. Data was collected from senior management and field supervisors from sales, distribution and customer service units of the case study firm and its channel members. This study made use of systematic literature review and results of survey data analysis to assess how information system has been used to improve supply chain performance. Findings: Results from the study showed that the critical effect factors from implementation of a DMS include (1) Obtain prompt and reliable feedback from the market; (2) Building the capacity and skills levels of employees as well as 3rd Party Agents; (3) Motivated top management to invest in MIS; and (4) Performance improvement in sales route management. The most critical challenges to an effective and sustainable MIS implementation are lack of enough trained IT employees and high barriers to cultural change especially with distributors. The paper recommends consistent investment in IS infrastructure and development of IT skills. Research limitations/implications: This study contributes to the literature by exploring the effects of distribution management solution implementation and supply chain performance in a developing country context. Considering the fact that this study is based on data from only one case study firm and its channel members, generalization of the results should be treated with caution. Practical implications: The findings have confirmed the benefits of implementing a Management Information System. The result should encourage channel members to allocate adequate resources for building MIS capacity to enhance their supply chain performance. Originality/Value: In this paper, the relationship between DMS/MIS implementation and improvement in supply chain performance, in the Ghanaian context, has been established.Keywords: distributor management solution, fast-moving consumer goods, supply chain management, information systems, Ghana
Procedia PDF Downloads 5622302 Application of Electro-Optical Hybrid Cables in Horizontal Well Production Logging
Authors: Daofan Guo, Dong Yang
Abstract:
For decades, well logging with coiled tubing has relied solely on surface data such as pump pressure, wellhead pressure, depth counter, and weight indicator readings. While this data serves the oil industry well, modern smart logging utilizes real-time downhole information, which automatically increases operational efficiency and optimizes intervention qualities. For example, downhole pressure, temperature, and depth measurement data can be transmitted through the electro-optical hybrid cable in the coiled tubing to surface operators on a real-time base. This paper mainly introduces the unique structural features and various applications of the electro-optical hybrid cables which were deployed into downhole with the help of coiled tubing technology. Fiber optic elements in the cable enable optical communications and distributed measurements, such as distributed temperature and acoustic sensing. The electrical elements provide continuous surface power for downhole tools, eliminating the limitations of traditional batteries, such as temperature, operating time, and safety concerns. The electrical elements also enable cable telemetry operation of cable tools. Both power supply and signal transmission were integrated into an electro-optical hybrid cable, and the downhole information can be captured by downhole electrical sensors and distributed optical sensing technologies, then travels up through an optical fiber to the surface, which greatly improves the accuracy of measurement data transmission.Keywords: electro-optical hybrid cable, underground photoelectric composite cable, seismic cable, coiled tubing, real-time monitoring
Procedia PDF Downloads 1422301 Optimization of Process Parameters and Modeling of Mass Transport during Hybrid Solar Drying of Paddy
Authors: Aprajeeta Jha, Punyadarshini P. Tripathy
Abstract:
Drying is one of the most critical unit operations for prolonging the shelf-life of food grains in order to ensure global food security. Photovoltaic integrated solar dryers can be a sustainable solution for replacing energy intensive thermal dryers as it is capable of drying in off-sunshine hours and provide better control over drying conditions. But, performance and reliability of PV based solar dryers depend hugely on climatic conditions thereby, drastically affecting process parameters. Therefore, to ensure quality and prolonged shelf-life of paddy, optimization of process parameters for solar dryers is critical. Proper moisture distribution within the grains is most detrimental factor to enhance the shelf-life of paddy therefore; modeling of mass transport can help in providing a better insight of moisture migration. Hence, present work aims at optimizing the process parameters and to develop a 3D finite element model (FEM) for predicting moisture profile in paddy during solar drying. Optimization of process parameters (power level, air velocity and moisture content) was done using box Behnken model in Design expert software. Furthermore, COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Optimized model for drying paddy was found to be 700W, 2.75 m/s and 13% wb with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Furthermore, 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product to achieve global food and energy securityKeywords: finite element modeling, hybrid solar drying, mass transport, paddy, process optimization
Procedia PDF Downloads 1392300 A Furniture Industry Concept for a Sustainable Generative Design Platform Employing Robot Based Additive Manufacturing
Authors: Andrew Fox, Tao Zhang, Yuanhong Zhao, Qingping Yang
Abstract:
The furniture manufacturing industry has been slow in general to adopt the latest manufacturing technologies, historically relying heavily upon specialised conventional machinery. This approach not only requires high levels of specialist process knowledge, training, and capital investment but also suffers from significant subtractive manufacturing waste and high logistics costs due to the requirement for centralised manufacturing, with high levels of furniture product not re-cycled or re-used. This paper aims to address the problems by introducing suitable digital manufacturing technologies to create step changes in furniture manufacturing design, as the traditional design practices have been reported as building in 80% of environmental impact. In this paper, a 3D printing robot for furniture manufacturing is reported. The 3D printing robot mainly comprises a KUKA industrial robot, an Arduino microprocessor, and a self-assembled screw fed extruder. Compared to traditional 3D printer, the 3D printing robot has larger motion range and can be easily upgraded to enlarge the maximum size of the printed object. Generative design is also investigated in this paper, aiming to establish a combined design methodology that allows assessment of goals, constraints, materials, and manufacturing processes simultaneously. ‘Matrixing’ for part amalgamation and product performance optimisation is enabled. The generative design goals of integrated waste reduction increased manufacturing efficiency, optimised product performance, and reduced environmental impact institute a truly lean and innovative future design methodology. In addition, there is massive future potential to leverage Single Minute Exchange of Die (SMED) theory through generative design post-processing of geometry for robot manufacture, resulting in ‘mass customised’ furniture with virtually no setup requirements. These generatively designed products can be manufactured using the robot based additive manufacturing. Essentially, the 3D printing robot is already functional; some initial goals have been achieved and are also presented in this paper.Keywords: additive manufacturing, generative design, robot, sustainability
Procedia PDF Downloads 1322299 Sulfamethoxazole Removal and Ammonium Nitrogen Conversion by Microalgae-Bacteria Consortium in Ammonium-Rich Wastewater: Responses Analysis
Authors: Eheneden Iyobosa, Rongchang Wang, Adesina Odunayo Blessing, Gaoxiang Chen, Haijing Ren, Jianfu Zhao
Abstract:
In the treatment of ammonium-rich wastewater with 500 μg/L sulfamethoxazole (SMX) antibiotic by a Microalgae-Bacteria Consortium, diverse parameters were monitored to assess treatment efficacy. Over 14 days, residual SMX concentrations decreased markedly from 500 μg/L to 45.6 μg/L, and removal rates declined from 102.4 to 9.9 μg/L/day. Biomass exhibited consistent growth, reaching a peak of 542.6 mg/L on day 10. Chlorophyll-a, chlorophyll-b, and carotenoid levels varied over time, reflecting fluctuations in microalgal activity. Extracellular polymeric substances (EPS) production showed temporal variations, with protein content ranging from 69.4 to 162.3 mg/g Dry cell weight (DCW) and polysaccharides content from 50.6 to 82.8 mg/g DCW. Ammonium nitrogen concentration decreased steadily from 300 mg/L to 5 mg/L throughout the treatment period. The bacterial community composition was significantly altered in the presence of antibiotics, with notable increases in Bacteroidota and Proteobacteria. Community richness and diversity indices were higher in the antibiotics-treated group than in the control group, as evidenced by the Chao index (258 compared to 181), Shannon index (1.8085 compared to 1.1545), and Simpson index (0.5032 compared to 0.6478), indicating notable shifts in microbial community structure. These findings demonstrate the efficacy of the Microalgae-Bacteria Consortium in removing SMX from wastewater and suggest its potential to mitigate antibiotic pollution while maintaining microbial diversity.Keywords: ammonium-rich wastewater, microalgae-bacteria consortium, sulfamethoxazole removal, microbial community diversity, biomass growth
Procedia PDF Downloads 242298 Infrastructure Sharing Synergies: Optimal Capacity Oversizing and Pricing
Authors: Robin Molinier
Abstract:
Industrial symbiosis (I.S) deals with both substitution synergies (exchange of waste materials, fatal energy and utilities as resources for production) and infrastructure/service sharing synergies. The latter is based on the intensification of use of an asset and thus requires to balance capital costs increments with snowball effects (network externalities) for its implementation. Initial investors must specify ex-ante arrangements (cost sharing and pricing schedule) to commit toward investments in capacities and transactions. Our model investigate the decision of 2 actors trying to choose cooperatively a level of infrastructure capacity oversizing to set a plug-and-play offer to a potential entrant whose capacity requirement is randomly distributed while satisficing their own requirements. Capacity cost exhibits sub-additive property so that there is room for profitable overcapacity setting in the first period. The entrant’s willingness-to-pay for the access to the infrastructure is dependent upon its standalone cost and the capacity gap that it must complete in case the available capacity is insufficient ex-post (the complement cost). Since initial capacity choices are driven by ex-ante (expected) yield extractible from the entrant we derive the expected complement cost function which helps us defining the investors’ objective function. We first show that this curve is decreasing and convex in the capacity increments and that it is shaped by the distribution function of the potential entrant’s requirements. We then derive the general form of solutions and solve the model for uniform and triangular distributions. Depending on requirements volumes and cost assumptions different equilibria occurs. We finally analyze the effect of a per-unit subsidy a public actor would apply to foster such sharing synergies.Keywords: capacity, cooperation, industrial symbiosis, pricing
Procedia PDF Downloads 2122297 Findings on Modelling Carbon Dioxide Concentration Scenarios in the Nairobi Metropolitan Region before and during COVID-19
Authors: John Okanda Okwaro
Abstract:
Carbon (IV) oxide (CO₂) is emitted majorly from fossil fuel combustion and industrial production. The sources of interest of carbon (IV) oxide in the study area are mining activities, transport systems, and industrial processes. This study is aimed at building models that will help in monitoring the emissions within the study area. Three scenarios were discussed, namely: pessimistic scenario, business-as-usual scenario, and optimistic scenario. The result showed that there was a reduction in carbon dioxide concentration by approximately 50.5 ppm between March 2020 and January 2021 inclusive. This is majorly due to reduced human activities that led to decreased consumption of energy. Also, the CO₂ concentration trend follows the business-as-usual scenario (BAU) path. From the models, the pessimistic, business-as-usual, and optimistic scenarios give CO₂ concentration of about 545.9 ppm, 408.1 ppm, and 360.1 ppm, respectively, on December 31st, 2021. This research helps paint the picture to the policymakers of the relationship between energy sources and CO₂ emissions. Since the reduction in CO₂ emission was due to decreased use of fossil fuel as there was a decrease in economic activities, then if Kenya relies more on green energy than fossil fuel in the post-COVID-19 period, there will be more CO₂ emission reduction. That is, the CO₂ concentration trend is likely to follow the optimistic scenario path, hence a reduction in CO₂ concentration of about 48 ppm by the end of the year 2021. This research recommends investment in solar energy by energy-intensive companies, mine machinery and equipment maintenance, investment in electric vehicles, and doubling tree planting efforts to achieve the 10% cover.Keywords: forecasting, greenhouse gas, green energy, hierarchical data format
Procedia PDF Downloads 1682296 Self-Disclosure and Privacy Management Behavior in Social Media: Privacy Calculus Perspective
Authors: Chien-Wen Chen, Nguyen Duong Thuy Trang, Yu-Hsuan Chang
Abstract:
With the development of information technology, social networking sites are inseparable from life and have become an important way for people to communicate. Nonetheless, privacy issues are raised by the presence of personal information on social networking sites. However, users can benefit from using the functions of social networking sites, which also leads to users worrying about the leakage of personal information without corresponding privacy protection behaviors, which is called the privacy paradox. However, previous studies have questioned the viewpoint of the privacy paradox, believing that users are not so naive and that people with privacy concerns will conduct privacy management. Consequently, this study is based on the view of privacy calculation perspective to investigate the privacy behavior of users on social networking sites. Among them, social benefits and privacy concerns are taken as the expected benefits and costs in the viewpoint of privacy calculation. At the same time, this study also explores the antecedents, including positive feedback, self-presentation, privacy policy, and information sensitivity, and the consequence of privacy behavior of weighing benefits and costs, including self-disclosure and three privacy management strategies by interpersonal boundaries (Preventive, Censorship, and Corrective). The survey respondents' characteristics and prior use experience of social networking sites were analyzed. As a consequence, a survey of 596 social network users was conducted online to validate the research framework. The results show that social benefit has the greatest influence on privacy behavior. The most important external factors affecting privacy behavior are positive feedback, followed by the privacy policy and information sensitivity. In addition, the important findings of this study are that social benefits will positively affect privacy management. It shows that users can get satisfaction from interacting with others through social networking sites. They will not only disclose themselves but also manage their privacy on social networking sites after considering social benefits and privacy management on social networking sites, and it expands the adoption of the Privacy Calculus Perspective framework from prior research. Therefore, it is suggested that as the functions of social networking sites increase and the development of social networking sites, users' needs should be understood and updated in order to ensure the sustainable operation of social networking.Keywords: privacy calculus perspective, self-disclosure, privacy management, social benefit, privacy concern
Procedia PDF Downloads 892295 Development and Characterization of Cathode Materials for Sodium-Metal Chloride Batteries
Authors: C. D’Urso, L. Frusteri, M. Samperi, G. Leonardi
Abstract:
Solid metal halides are used as active cathode ingredients in the case of Na-NiCl2 batteries that require a fused secondary electrolyte, sodium tetrachloraluminate (NaAlCl4), to facilitate the movement of the Na+ ion into the cathode. The sodium-nickel chloride (Na - NiCl2) battery has been extensively investigated as a promising system for large-scale energy storage applications. The growth of Ni and NaCl particles in the cathodes is one of the most important factors that degrade the performance of the Na-NiCl2 battery. The larger the particles of active ingredients contained in the cathode, the smaller the active surface available for the electrochemical reaction. Therefore, the growth of Ni and NaCl particles can lead to an increase in cell polarization resulting from the reduced active area. A higher current density, a higher state of charge (SOC) at the end of the charge (EOC) and a lower Ni / NaCl ratio are the main parameters that result in the rapid growth of Ni particles. In light of these problems, cathode and chemistry Nano-materials with recognized and well-documented electrochemical functions have been studied and manufactured to simultaneously improve battery performance and develop less expensive and more performing, sustainable and environmentally friendly materials. Starting from the well-known cathodic material (Na-NiCl2), the new electrolytic materials have been prepared on the replacement of nickel with iron (10-90%substitution of Nichel with Iron), to obtain a new material with potential advantages compared to current battery technologies; for example,, (1) lower cost of cathode material compared to state of the art as well as (2) choices of cheaper materials (stainless steels could be used for cell components, including cathode current collectors and cell housings). The study on the particle size of the cathode and the physicochemical characterization of the cathode was carried out in the test cell using, where possible, the GITT method (galvanostatic technique of intermittent titration). Furthermore, the impact of temperature on the different cathode compositions of the positive electrode was studied. Especially the optimum operating temperature is an important parameter of the active material.Keywords: critical raw materials, energy storage, sodium metal halide, battery
Procedia PDF Downloads 1102294 Growth and Nutrient Utilization of Some Citrus Peels and Vitamin Premix as Additives in Clarias Gariepinus Diets
Authors: Eunice Oluwayemisi Adeparusi, Mary Adedolapo Ijadeyila
Abstract:
The study was carried out at the Federal University of Technology, Akure, Nigeria, West Africa. Seven set of diets were prepared comprising of two sets. The first set consisted of a combination of three diets from a combination of two different citrus peels from Orange (Citrus sinesis), Tangerine (Citrus tangerina / Citrus reticulata) and Tangelo (Citrus tangelo a hybrid of Citrus reticulata and Citrus maxima) at 50:50 while the other three consisted f50:50. Diet with 100% vitamin premix served as the control. Air-dried citrus peels were added in a 40% crude protein diet for the juveniles (4.49±0.05g) Clarias gariepinus. The experiment was carried out for a period of 56 days in triplicate trials. Fish were randomly distributed into twenty-one tanks at ten fish per tanks. The feed was extruded and fed to satiation twice daily. The result shows that fish fed Tangelo and Tangerine (TGL-TGR) had the best growth response in terms of final weight, specific growth rate, feed conversion ratio and feed utilization efficiency when compared with other diets. The FCR of fish in the diet ranges from 0.93-1.62. Fish fed the mixture of Orange peel and Vitamin-mineral premix (ORG-VIT) and those on Tangelo and Vitamin-mineral premix (TGL-VIT) had higher survival rate. There were significant differences (P<0.05) in the mean final weight, weight gain and specific growth rate. The result shows that citrus peels enhance the growth performance and feed utilization of the juvenile of African mud catfish, thereby reducing the cost of fish production.Keywords: African mud catfish, growth, citrus peels, vitamin-mineral premix, nutrient utilization, additives
Procedia PDF Downloads 822293 Drilling Quantification and Bioactivity of Machinable Hydroxyapatite : Yttrium phosphate Bioceramic Composite
Authors: Rupita Ghosh, Ritwik Sarkar, Sumit K. Pal, Soumitra Paul
Abstract:
The use of Hydroxyapatite bioceramics as restorative implants is widely known. These materials can be manufactured by pressing and sintering route to a particular shape. However machining processes are still a basic requirement to give a near net shape to those implants for ensuring dimensional and geometrical accuracy. In this context, optimising the machining parameters is an important factor to understand the machinability of the materials and to reduce the production cost. In the present study a method has been optimized to produce true particulate drilled composite of Hydroxyapatite Yttrium Phosphate. The phosphates are used in varying ratio for a comparative study on the effect of flexural strength, hardness, machining (drilling) parameters and bioactivity.. The maximum flexural strength and hardness of the composite that could be attained are 46.07 MPa and 1.02 GPa respectively. Drilling is done with a conventional radial drilling machine aided with dynamometer with high speed steel (HSS) and solid carbide (SC) drills. The effect of variation in drilling parameters (cutting speed and feed), cutting tool, batch composition on torque, thrust force and tool wear are studied. It is observed that the thrust force and torque varies greatly with the increase in the speed, feed and yttrium phosphate content in the composite. Significant differences in the thrust and torque are noticed due to the change of the drills as well. Bioactivity study is done in simulated body fluid (SBF) upto 28 days. The growth of the bone like apatite has become denser with the increase in the number of days for all the composition of the composites and it is comparable to that of the pure hydroxyapatite.Keywords: Bioactivity, Drilling, Hydroxyapatite, Yttrium Phosphate
Procedia PDF Downloads 3002292 Design and Integration of a Renewable Energy Based Polygeneration System with Desalination for an Industrial Plant
Authors: Lucero Luciano, Cesar Celis, Jose Ramos
Abstract:
Polygeneration improves energy efficiency and reduce both energy consumption and pollutant emissions compared to conventional generation technologies. A polygeneration system is a variation of a cogeneration one, in which more than two outputs, i.e., heat, power, cooling, water, energy or fuels, are accounted for. In particular, polygeneration systems integrating solar energy and water desalination represent promising technologies for energy production and water supply. They are therefore interesting options for coastal regions with a high solar potential, such as those located in southern Peru and northern Chile. Notice that most of the Peruvian and Chilean mining industry operations intensive in electricity and water consumption are located in these particular regions. Accordingly, this work focus on the design and integration of a polygeneration system producing industrial heating, cooling, electrical power and water for an industrial plant. The design procedure followed in this work involves integer linear programming modeling (MILP), operational planning and dynamic operating conditions. The technical and economic feasibility of integrating renewable energy technologies (photovoltaic and solar thermal, PV+CPS), thermal energy store, power and thermal exchange, absorption chillers, cogeneration heat engines and desalination technologies is particularly assessed. The polygeneration system integration carried out seek to minimize the system total annual cost subject to CO2 emissions restrictions. Particular economic aspects accounted for include investment, maintenance and operating costs.Keywords: desalination, design and integration, polygeneration systems, renewable energy
Procedia PDF Downloads 1252291 Fabrication of Uniform Nanofibers Using Gas Dynamic Virtual Nozzle Based Microfluidic Liquid Jet System
Authors: R. Vasireddi, J. Kruse, M. Vakili, M. Trebbin
Abstract:
Here we present a gas dynamic virtual nozzle (GDVN) based microfluidic jetting devices for spinning of nano/microfibers. The device is fabricated by soft lithography techniques and is based on the principle of a GDVN for precise three-dimensional gas focusing of the spinning solution. The nozzle device is used to produce micro/nanofibers of a perfluorinated terpolymer (THV), which were collected on an aluminum substrate for scanning electron microscopy (SEM) analysis. The influences of air pressure, polymer concentration, flow rate and nozzle geometry on the fiber properties were investigated. It was revealed that surface properties are controlled by air pressure and polymer concentration while the diameter and shape of the fibers are influenced mostly by the concentration of the polymer solution and pressure. Alterations of the nozzle geometry had a negligible effect on the fiber properties, however, the jetting stability was affected. Round and flat fibers with differing surface properties from craters, grooves to smooth surfaces could be fabricated by controlling the above-mentioned parameters. Furthermore, the formation of surface roughness was attributed to the fast evaporation rate and velocity (mis)match between the polymer solution jet and the surrounding air stream. The diameter of the fibers could be tuned from ~250 nm to ~15 µm. Because of the simplicity of the setup, the precise control of the fiber properties, access to biocompatible nanofiber fabrication and the easy scale-up of parallel channels for high throughput, this method offers significant benefits compared to existing solution-based fiber production methods.Keywords: gas dynamic virtual nozzle (GDVN) principle, microfluidic device, spinning, uniform nanofibers
Procedia PDF Downloads 1502290 Expectation for Professionalism Effects Reality Shock: A Qualitative And Quantitative Study of Reality Shock among New Human Service Professionals
Authors: Hiromi Takafuji
Abstract:
It is a well-known fact that health care and welfare are the foundation of human activities, and human service professionals such as nurses and child care workers support these activities. COVID-19 pandemic has made the severity of the working environment in these fields even more known. It is high time to discuss the work of human service workers for the sustainable development of the human environment. Early turnover has been recognized as a long-standing issue in these fields. In Japan, the attrition rate within three years of graduation for these occupations has remained high at about 40% for more than 20 years. One of the reasons for this is Reality Shock: RS, which refers to the stress caused by the gap between pre-employment expectations and the post-employment reality experienced by new workers. The purpose of this study was to academically elucidate the mechanism of RS among human service professionals and to contribute to countermeasures against it. Firstly, to explore the structure of the relationship between professionalism and workers' RS, an exploratory interview survey was conducted and analyzed by text mining and content analysis. The results showed that the expectation of professionalism influences RS as a pre-employment job expectation. Next, the expectations of professionalism were quantified and categorized, and the responses of a total of 282 human service work professionals, nurses, child care workers, and caregivers; were finalized for data analysis. The data were analyzed using exploratory factor analysis, confirmatory factor analysis, multiple regression analysis, and structural equation modeling techniques. The results revealed that self-control orientation and authority orientation by qualification had a direct positive significant impact on RS. On the other hand, interpersonal helping orientation and altruistic orientation were found to have a direct negative significant impact and an indirect positive significant impact on RS.; we were able to clarify the structure of work expectations that affect the RS of welfare professionals, which had not been clarified in previous studies. We also explained the limitations, practical implications, and directions for future research.Keywords: human service professional, new hire turnover, SEM, reality shock
Procedia PDF Downloads 992289 Innovative Waste Management Practices in Remote Areas
Authors: Dolores Hidalgo, Jesús M. Martín-Marroquín, Francisco Corona
Abstract:
Municipal waste consist of a variety of items that are everyday discarded by the population. They are usually collected by municipalities and include waste generated by households, commercial activities (local shops) and public buildings. The composition of municipal waste varies greatly from place to place, being mostly related to levels and patterns of consumption, rates of urbanization, lifestyles, and local or national waste management practices. Each year, a huge amount of resources is consumed in the EU, and according to that, also a huge amount of waste is produced. The environmental problems derived from the management and processing of these waste streams are well known, and include impacts on land, water and air. The situation in remote areas is even worst. Difficult access when climatic conditions are adverse, remoteness of centralized municipal treatment systems or dispersion of the population, are all factors that make remote areas a real municipal waste treatment challenge. Furthermore, the scope of the problem increases significantly because the total lack of awareness of the existing risks in this area together with the poor implementation of advanced culture on waste minimization and recycling responsibly. The aim of this work is to analyze the existing situation in remote areas in reference to the production of municipal waste and evaluate the efficiency of different management alternatives. Ideas for improving waste management in remote areas include, for example: the implementation of self-management systems for the organic fraction; establish door-to-door collection models; promote small-scale treatment facilities or adjust the rates of waste generation thereof.Keywords: door to door collection, islands, isolated areas, municipal waste, remote areas, rural communities
Procedia PDF Downloads 2602288 Sulfur-Containing Diet Shift Hydrogen Metabolism and Reduce Methane Emission and Modulated Gut Microbiome in Goats
Authors: Tsegay Teklebrhan Gebremariam, Zhiliang, Arjan Jonker
Abstract:
The study investigated that using corn gluten (CG) instead of cornmeal (CM) increased dietary sulfur shifted H₂ metabolism from methanogenesis to alternative sink and modulated microbiome in the rumen as well as hindgut segments of goats. Ruminal fermentation, CH₄ emissions and microbial abundance in goats (n = 24). The experiment was performed using a randomized block design with two dietary treatments (CM and CG with 400 g/kg DM each). Goats in CG increased sulfur, NDF and CP intake and decreased starch intake as compared with those in CM. Goats that received CG diet had decreased dissolved hydrogen (dH₂) (P = 0.01) and dissolved methane yield and emission (dCH₄) (P = 0.001), while increased dH₂S both in the rumen and hindgut segments than those fed CM. Goats fed CG had higher (p < 0.01) gene copies of microbiota and cellulolytic bacteria, whereas starch utilizing bacterial species were less in the rumen and hindgut than those fed CM. Higher (P < 0.05) methanogenic diversity and abundances of Methanimicrococcus and Methanomicrobium were observed in goats that consumed CG, whilst containing lower Methanobrevibacter populations than those receiving CM. The study suggested that goats fed corn gluten improved the gene copies of microbiota and fibrolytic bacterial species while reducing starch utilizing species in the rumen and hindgut segments as compared with that fed cornmeal. Goats consuming corn gluten had a more enriched methanogenic diversity and reduced Methanobrevibacter, a contributor to CH₄ emissions, as compared with goats fed CM. Corn gluten could be used as an alternative feed to decrease the enteric CH₄ emission in ruminant production.Keywords: dissolved gasses, methanogenesis, microbial community, metagenomics
Procedia PDF Downloads 1582287 Effects of Adding Sodium Nitroprusside in Semen Diluents on Motility, Viability and Lipid Peroxidation of Sperm of Holstein Bulls
Authors: Leila Karshenas, Hamid Reza Khodaei, Behnaz Mahdavi
Abstract:
We know that nitric oxide (NO) plays an important role in all sexual activities of animals. It is made in body from NO synthase enzyme and L-arginin molecule. NO can bound with sulfur-iron complexes and because production of steroid sexual hormones is related to enzymes which have this complex, NO can change the activity of these enzymes. NO affects many cells including endothelial cells of veins, macrophages and mast cells. These cells are found in testis leydig cells and therefore are important source of NO in testis tissue. Minimizing damages to sperm at the time of sperm freezing and thawing is really important. The goal of this study was to determine the function of NO before freezing and its effects on quality and viability of sperms after thawing and incubation. 4 Holstein bulls were selected from the age of 4, and artificial insemination was done for 3 weeks (2 times a week). Treatments were 0, 10, 50 and 100 nm of sodium nitroprusside (SNP). Data analysis was performed by SAS98 program. Also, mean comparison was done using Duncan's multiple ranges test (P<0.05). Concentrations used was found to increase motility and viability of spermatozoa at 1, 2 and 3 hours after thawing significantly (P<0.05), but there was no significant difference at zero time. SNP levels reduced the amount of lipid peroxidation in sperm membrane, increased acrosome health and improved sample membranes especially in 50 and 100 nm treatments. According to results, adding SNP to semen diluents increases motility and viability of spermatozoa. Also, it reduces lipid peroxidation in sperm membrane and improves sperm function.Keywords: sperm motility, nitric oxide, lipid peroxidation, spermatozoa
Procedia PDF Downloads 3612286 Photo-Degradation Black 19 Dye with Synthesized Nano-Sized ZnS
Authors: M. Tabatabaee, R. Mohebat, M. Baranian
Abstract:
Textile industries produce large volumes of colored dye effluents which are toxic and non-biodegradable. Earlier studies have shown that a wide range of organic substrates can be completely photo mineralized in the presence of photocatalysts and oxidant agents. ZnO and TiO2 are important photocatalysts with high catalytic activity that have attracted much research attention. Zinc sulfide is one of the semiconductor nanomaterials that can be used for the production of optical sensitizers, photocatalysts, electroluminescent materials, optical sensors and for solar energy conversion. The synthesis of ZnS nanoparticles has been tried by various methods and sulfide sources. Elementary sulfur powder, H2S or Na2S are used as sulfide sources for synthesis of ZnS nano particles. Recently, solar energy is has been successfully used for photocatalytic degradation of dye pollutant. Studies have shown that the use of metal oxides or sulfides with ZnO or TiO2 can significantly enhance the photocatalytic activity of them. In this research, Nano-sized zinc sulfide was synthesized successfully by a simple method using thioasetamide as sulfide source in the presence of polyethylene glycol (PEG 2000). X-ray diffraction (XRD) spectroscopy scanning electron microscope (SEM) was used to characterize the structure and morphology synthesized powder. The effect of photocatalytic activity of prepared ZnS and ZnS/ZnO, on degradation of direct Black19 under UV and sunlight irradiation was investigated. The effects of various parameters such as amount of photocatalyst, pH, initial dye concentration and irradiation time on decolorization rate were systematically investigated. Results show that more than 80% of 500 mgL-1 of dye decolorized in 60-min reaction time under UV and solar irradiation in the presence of ZnS nanoparticles. Whereas, mixed ZnS/ZnO (50%) can decolorize more than 80% of dye in the same conditions.Keywords: zinc sulfide, nano articles, photodegradation, solar light
Procedia PDF Downloads 4042285 Effect of Ethanol and Betadine on the Preformed Biofilm of Staphylococcus Aureus Isolated from Urinary Catheter
Authors: Kara Terki Ibtissem, Hassaine Hafida, Bellifa Samia
Abstract:
Introduction: Staphylococcus aureus is one of the species that are most frequently isolated from urinary catheters. The ability to produce a biofilm is an important step in the pathogenesis of these staphylococci; biofilm formation is strongly dependent on the environmental conditions it also depends on the different parameters these biofilms are subjected to. Antiseptics, including ethanol and betadine, are used in clinical practice for disinfection and infection prevention. Recent studies, however, demonstrate that disinfectants may enhance biofilm production in Staphylococci. Methods: In this study, 48 staphylococcus aureus isolated from urinary catheters at the University Hospital Center of Sidi Bel Abbes (in Northwestern Algeria) were analyzed to detect the formation of biofilm by culture on Red Congo Agar (RCA), the Tube Method (TM) and tissue Culture Plate (TCP) techniques, this last was also used to investigate the effect of ethanol and Betadine on the preformed biofilm In a second time to know which environment is most favorable to the formation of the biofilm we perform a statistical test based on the student test by the software R. Results: It has been found that 23 strains produced a bacterial slime on the Congo red medium, 5 strains produced a biofilm by the tube method, 2 of which are highly productive. In addition, 7 strains produced a biofilm on polystyrene micro-plates; this number was higher in the presence of ethanol 70% and ethanol 90% with 19 and 11 biofilm-producing strains, respectively. On the other hand, no biofilm was formed in the presence of Betadine. Conclusion: It is important to examine the response of biofilms following an imposed external constraint, such as disinfectants, in order to develop new strategies to combat bacterial biofilms but also to better control their formation.Keywords: staphylococcus aureus, biofilm, urinary catheter, ethanol
Procedia PDF Downloads 642284 Quantification and Identification of the Main Components of the Biomass of the Microalgae Scenedesmus SP. – Prospection of Molecules of Commercial Interest
Authors: Carolina V. Viegas, Monique Gonçalves, Gisel Chenard Diaz, Yordanka Reyes Cruz, Donato Alexandre Gomes Aranda
Abstract:
To develop the massive cultivation of microalgae, it is necessary to isolate and characterize the species, improving genetic tools in search of specific characteristics. Therefore, the detection, identification and quantification of the compounds that compose the Scenedesmus sp. were prerequisites to verify the potential of these microalgae. The main objective of this work was to carry out the characterization of Scenedesmus sp. as to the content of ash, carbohydrates, proteins and lipids as well as the determination of the composition of their lipid classes and main fatty acids. The biomass of Scenedesmus sp, showed 15,29 ± 0,23 % of ash and CaO (36,17 %) was the main component of this fraction, The total protein and carbohydrate content of the biomass was 40,74 ± 1,01 % and 23,37 ± 0,95 %, respectively, proving to be a potential source of proteins as well as carbohydrates for the production of ethanol via fermentation, The lipid contents extracted via Bligh & Dyer and in situ saponification were 8,18 ± 0,13 % and 4,11 ± 0,11 %, respectively. In the lipid extracts obtained via Bligh & Dyer, approximately 50 % of the composition of this fraction consists of fatty compounds, while the other half is composed of an unsaponifiable fraction composed mainly of chlorophylls, phytosterols and carotenes. From the lowest yield, it was possible to obtain a selectivity of 92,14 % for fatty components (fatty acids and fatty esters) confirmed through the infrared spectroscopy technique. The presence of polyunsaturated acids (~45 %) in the lipid extracts indicated the potential of this fraction as a source of nutraceuticals. The results indicate that the biomass of Scenedesmus sp, can become a promising potential source for obtaining polyunsaturated fatty acids, carotenoids and proteins as well as the simultaneous obtainment of different compounds of high commercial value.Keywords: microalgae, Desmodesmus, lipid classes, fatty acid profile, proteins, carbohydrates
Procedia PDF Downloads 972283 Sustainable Hydrogel Nanocomposites Based on Grafted Chitosan and Clay for Effective Adsorption of Cationic Dye
Authors: H. Ferfera-Harrar, T. Benhalima, D. Lerari
Abstract:
Contamination of water, due to the discharge of untreated industrial wastewaters into the ecosystem, has become a serious problem for many countries. In this study, bioadsorbents based on chitosan-g-poly(acrylamide) and montmorillonite (MMt) clay (CTS-g-PAAm/MMt) hydrogel nanocomposites were prepared via free‐radical grafting copolymerization and crosslinking of acrylamide monomer (AAm) onto natural polysaccharide chitosan (CTS) as backbone, in presence of various contents of MMt clay as nanofiller. Then, they were hydrolyzed to obtain highly functionalized pH‐sensitive nanomaterials with uppermost swelling properties. Their structure characterization was conducted by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses. The adsorption performances of the developed nanohybrids were examined for removal of methylene blue (MB) cationic dye from aqueous solutions. The factors affecting the removal of MB, such as clay content, pH medium, adsorbent dose, initial dye concentration and temperature were explored. The adsorption process was found to be highly pH dependent. From adsorption kinetic results, the prepared adsorbents showed remarkable adsorption capacity and fast adsorption rate, mainly more than 88% of MB removal efficiency was reached after 50 min in 200 mg L-1 of dye solution. In addition, the incorporating of various content of clay has enhanced adsorption capacity of CTS-g-PAAm matrix from 1685 to a highest value of 1749 mg g-1 for the optimized nanocomposite containing 2 wt.% of MMt. The experimental kinetic data were well described by the pseudo-second-order model, while the equilibrium data were represented perfectly by Langmuir isotherm model. The maximum Langmuir equilibrium adsorption capacity (qm) was found to increase from 2173 mg g−1 until 2221 mg g−1 by adding 2 wt.% of clay nanofiller. Thermodynamic parameters revealed the spontaneous and endothermic nature of the process. In addition, the reusability study revealed that these bioadsorbents could be well regenerated with desorption efficiency overhead 87% and without any obvious decrease of removal efficiency as compared to starting ones even after four consecutive adsorption/desorption cycles, which exceeded 64%. These results suggest that the optimized nanocomposites are promising as low cost bioadsorbents.Keywords: chitosan, clay, dye adsorption, hydrogels nanocomposites
Procedia PDF Downloads 1222282 Utilization of Torula Yeast (Zymomonas mobilis) as Main/Reciprocal for Degradation of Municipal Organic Waste as Feed for Goats
Authors: Nkutere Chikezie Kanu, Nnamdi M. Anigbogu, Johnson C. Ezike
Abstract:
The study was carried out to investigate the performance of Red Sokoto goats fed Municipal Oranic Wastes (MOW) subjected to two methods of in vivo degradation by Torula Yeast and Zymomonas mobilis. Two combination, Torula Yeast + Zymomonas mobilis (main degradation), and Zymomonas mobilis + Torula Yeast (Reciprocal degradation) were used to degrade MOW. Eighteen Red Sokoto goats of both sexes (9 males and 9 females) of ages between 6-8 were used for the study. The goats were randomly assigned into 3 treatments groups A, B and C respectively with 6 goats per treatment. The experiment was laid in a Completely Randomized Design and replicated 3 times. Treatment A groups were fed 30% Undegraded MOW base diet +concentrate mixture, Treatment B groups were fed 30% Main degraded MOW base diet +concentrate mixture, Treatment C groups were fed 30% Reciprocal degraded MOW base diet +concentrate mixture. The result of the daily weight gain was significantly (P<0.05) better than on the other Treatments. There was significant improvement (P<0.05) on the daily feed consumption in Treatment B than on the Treatments A and C. The feed conversion ratio revealed no significant (P>0.05) differences among the treatment groups but much better in the treatment B and C, the cost of feed consumed was much higher (P>0.05) in Treatment B followed by Treatment C, while Treatment A had the lowest. The cost/ kg weight gain that was recorded in Treatment A was better (P<0.05) than the Treatment B, followed by Treatment C, while the cost of production was high (P<0.05) in Treatment B than in other treatments. The gross profit was observed best (P<0.05) on the Treatment B, followed by Treatment C while Treatment A had the lowest. The net profit as noted in this study was much better (P<0.05) in Treatment B, and Treatment C, while the least was observed in Treatment A, where the return on investment was high in Treatments B and C, while Treatment A had the lowest.Keywords: reciprocal, torula yeast, Zymomonas mobilis, organic waste
Procedia PDF Downloads 2962281 Corrosion Analysis and Interfacial Characterization of Al – Steel Metal Inert Gas Weld - Braze Dissimilar Joints by Micro Area X-Ray Diffraction Technique
Authors: S. S. Sravanthi, Swati Ghosh Acharyya
Abstract:
Automotive light weighting is of major prominence in the current times due to its contribution in improved fuel economy and reduced environmental pollution. Various arc welding technologies are being employed in the production of automobile components with reduced weight. The present study is of practical importance since it involves preferential substitution of Zinc coated mild steel with a light weight alloy such as 6061 Aluminium by means of Gas Metal Arc Welding (GMAW) – Brazing technique at different processing parameters. However, the fabricated joints have shown the generation of Al – Fe layer at the interfacial regions which was confirmed by the Scanning Electron Microscope and Energy Dispersion Spectroscopy. These Al-Fe compounds not only affect the mechanical strength, but also predominantly deteriorate the corrosion resistance of the joints. Hence, it is essential to understand the phases formed in this layer and their crystal structure. Micro area X - ray diffraction technique has been exclusively used for this study. Moreover, the crevice corrosion analysis at the joint interfaces was done by exposing the joints to 5 wt.% FeCl3 solution at regular time intervals as per ASTM G 48-03. The joints have shown a decreased crevice corrosion resistance with increased heat intensity. Inner surfaces of welds have shown severe oxide cracking and a remarkable weight loss when exposed to concentrated FeCl3. The weight loss was enhanced with decreased filler wire feed rate and increased heat intensity.Keywords: automobiles, welding, corrosion, lap joints, Micro XRD
Procedia PDF Downloads 1232280 Metagenomic Analysis and Pharmacokinetics of Phage Therapy in the Treatment of Bovine Subclinical Mastitis
Authors: Vaibhav D. Bhatt, Anju P. Kunjadia, D. S. Nauriyal, Bhumika J. Joshi, Chaitanya G. Joshi
Abstract:
Metagenomic analysis of milk samples collected from local cattle breed, kankrej (Bos indicus), Gir (Bos indicus) and Crossbred (Bos indicus X Bos taurus) cattle harbouring subclinical mastitis was carried out by next-generation sequencing (NGS) 454 GS-FLX technology. Around 56 different species including members of Enterobacteriales, Pseudomonadales, Bacillales and Lactobacillales with varying abundance were detected in infected milk. The interesting presence of bacteriophages against Staphylococcus aureus, Escherichia coli, Enterobacter and Yersinia species were observed, especially Enterobacteria and E. coli phages (0∙32%) in Kankrej, Enterobacteria and Staphylococcus phages (1∙05%) in Gir and Staphylococcus phages (2∙32%) in crossbred cattle. NGS findings suggest that phages may be involved in imparting natural resistance of the cattle against pathogens. Further infected milk samples were subjected for bacterial isolation. Fourteen different isolates were identified, and DNA was extracted. Genes (Tet-K, Msr-A, and Mec-A) providing antibiotic resistance to the bacteria were screened by Polymerase Chain Reaction and results were validated with traditional antibiotic assay. Total 3 bacteriophages were isolated from nearby environment of the cattle farm. The efficacy of phages was checked against multi-drug resistant bacteria, identified by PCR. In-vivo study was carried out for phage therapy in mammary glands of female rats “Wister albino”. Mammary glands were infused with MDR isolates for 3 consecutive days. Recovery was observed in infected rats after intramammary infusion of sterile phage suspension. From day 4th onwards, level of C-reactive protein was significant increases up to day 12th . However, significant reduction was observed between days 12th to 18th post treatment. Bacteriophages have significant potential as antibacterial agents and their ability to replicate exponentially within their hosts and their specificity, make them ideal candidates for more sustainable mastitis control.Keywords: bacteriophages, c-reactive protein, mastitis, metagenomic analysis
Procedia PDF Downloads 3152279 Performance Assessment of Horizontal Axis Tidal Turbine with Variable Length Blades
Authors: Farhana Arzu, Roslan Hashim
Abstract:
Renewable energy is the only alternative sources of energy to meet the current energy demand, healthy environment and future growth which is considered essential for essential sustainable development. Marine renewable energy is one of the major means to meet this demand. Turbines (both horizontal and vertical) play a vital role for extraction of tidal energy. The influence of swept area on the performance improvement of tidal turbine is a vital factor to study for the reduction of relatively high power generation cost in marine industry. This study concentrates on performance investigation of variable length blade tidal turbine concept that has already been proved as an efficient way to improve energy extraction in the wind industry. The concept of variable blade length utilizes the idea of increasing swept area through the turbine blade extension when the tidal stream velocity falls below the rated condition to maximize energy capture while blade retracts above rated condition. A three bladed horizontal axis variable length blade horizontal axis tidal turbine was modelled by modifying a standard fixed length blade turbine. Classical blade element momentum theory based numerical investigation has been carried out using QBlade software to predict performance. The results obtained from QBlade were compared with the available published results and found very good agreement. Three major performance parameters (i.e., thrust, moment, and power coefficients) and power output for different blade extensions were studied and compared with a standard fixed bladed baseline turbine at certain operational conditions. Substantial improvement in performance coefficient is observed with the increase in swept area of the turbine rotor. Power generation is found to increase in great extent when operating at below rated tidal stream velocity reducing the associated cost per unit electric power generation.Keywords: variable length blade, performance, tidal turbine, power generation
Procedia PDF Downloads 2762278 Impact of Fischer-Tropsch Wax on Ethylene Vinyl Acetate/Waste Crumb Rubber Modified Bitumen: An Energy-Sustainability Nexus
Authors: Keith D. Nare, Mohau J. Phiri, James Carson, Chris D. Woolard, Shanganyane P. Hlangothi
Abstract:
In an energy-intensive world, minimizing energy consumption is paramount to cost saving and reducing the carbon footprint. Improving mixture procedures utilizing warm mix additive Fischer-Tropsch (FT) wax in ethylene vinyl acetate (EVA) and modified bitumen highlights a greener and sustainable approach to modified bitumen. In this study, the impact of FT wax on optimized EVA/waste crumb rubber modified bitumen is assayed with a maximum loading of 2.5%. The rationale of the FT wax loading is to maintain the original maximum loading of EVA in the optimized mixture. The phase change abilities of FT wax enable EVA co-crystallization with the support of the elastomeric backbone of crumb rubber. Less than 1% loading of FT wax worked in the EVA/crumb rubber modified bitumen energy-sustainability nexus. Response surface methodology approach to the mixture design is implemented amongst the different loadings of FT wax, EVA for a consistent amount of crumb rubber and bitumen. Rheological parameters (complex shear modulus, phase angle and rutting parameter) were the factors used as performance indicators of the different optimized mixtures. The low temperature chemistry of the optimized mixtures is analyzed using elementary beam theory and the elastic-viscoelastic correspondence principle. Master curves and black space diagrams are developed and used to predict age-induced cracking of the different long term aged mixtures. Modified binder rheology reveals that the strain response is not linear and that there is substantial re-arrangement of polymer chains as stress is increased, this is based on the age state of the mixture and the FT wax and EVA loadings. Dominance of individual effects is evident over effects of synergy in co-interaction of EVA and FT wax. All-inclusive FT wax and EVA formulations were best optimized in mixture 4 with mixture 7 reflecting increase in ease of workability. Findings show that interaction chemistry of bitumen, crumb rubber EVA, and FT wax is first and second order in all cases involving individual contributions and co-interaction amongst the components of the mixture.Keywords: bitumen, crumb rubber, ethylene vinyl acetate, FT wax
Procedia PDF Downloads 173