Search results for: synchronous/asynchronous knowledge transfer
9402 Organizational Learning Strategies for Building Organizational Resilience
Authors: Stephanie K. Douglas, Gordon R. Haley
Abstract:
Organizations face increasing disruptions, changes, and uncertainties through the rapid shifts in the economy and business environment. A capacity for resilience is necessary for organizations to survive and thrive in such adverse conditions. Learning is an essential component of an organization's capability for building resilience. Strategic human resource management is a principal component of learning and organizational resilience. To achieve organizational resilience, human resource management strategies must support individual knowledge, skills, and ability development through organizational learning. This study aimed to contribute to the comprehensive knowledge of the relationship between strategic human resource management and organizational learning to build organizational resilience. The organizational learning dimensions of knowledge acquisition, knowledge distribution, knowledge interpretation, and organizational memory can be fostered through human resource management strategies and then aggregated to the organizational level to build resilience.Keywords: human resource development, human resource management, organizational learning, organizational resilience
Procedia PDF Downloads 1379401 Knowledge Integration from Concept to Practice: An Exploratory Study of Designing a Flood Resilient Urban Park in Viet Nam
Authors: To Quyen Le, Oswald Devisch, Tu Anh Trinh, Els Hannes
Abstract:
Urban centres worldwide are affected differently by flooding. In Vietnam this impact is increasingly negative caused by a process of rapid urbanisation. Traditional spatial planning and flood mitigation planning are not able to deal with this growing threat. This article therefore proposes to focus on increasing the participation of local communities in flood control and management. It explores, on the basis of a design studio exercise, how lay knowledge on flooding can be integrated within planning processes. The article presents a theoretical basis for the structured criterion for site selection for a flood resilient urban park from the perspective of science, then discloses the tacit and explicit knowledge of the flood-prone area and finally integrates this knowledge into the design strategies for flood resilient urban park design.Keywords: analytic hierarchy process, AHP, design resilience, flood resilient urban park, knowledge integration
Procedia PDF Downloads 1799400 A Web-Based Self-Learning Grammar for Spoken Language Understanding
Authors: S. Biondi, V. Catania, R. Di Natale, A. R. Intilisano, D. Panno
Abstract:
One of the major goals of Spoken Dialog Systems (SDS) is to understand what the user utters. In the SDS domain, the Spoken Language Understanding (SLU) Module classifies user utterances by means of a pre-definite conceptual knowledge. The SLU module is able to recognize only the meaning previously included in its knowledge base. Due the vastity of that knowledge, the information storing is a very expensive process. Updating and managing the knowledge base are time-consuming and error-prone processes because of the rapidly growing number of entities like proper nouns and domain-specific nouns. This paper proposes a solution to the problem of Name Entity Recognition (NER) applied to a SDS domain. The proposed solution attempts to automatically recognize the meaning associated with an utterance by using the PANKOW (Pattern based Annotation through Knowledge On the Web) method at runtime. The method being proposed extracts information from the Web to increase the SLU knowledge module and reduces the development effort. In particular, the Google Search Engine is used to extract information from the Facebook social network.Keywords: spoken dialog system, spoken language understanding, web semantic, name entity recognition
Procedia PDF Downloads 3389399 Entropy Generation of Natural Convection Heat Transfer in a Square Cavity Using Al2O3-Water Nanofluid
Authors: M. Alipanah, A. Ranjbar, E. Farnad, F. Alipanah
Abstract:
Entropy generation of an Al2O3-water nanofluid due to heat transfer and fluid friction irreversibility has been investigated in a square cavity subject to different side wall temperatures using a nanofluid for natural convection flow. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number between 104 to 107 and volume fraction between 0 to 0.05. Based on the obtained dimensionless velocity and temperature values, the distributions of local entropy generation, average entropy generation and average Bejan number are determined. The results are compared for a pure fluid and a nanofluid. It is totally found that the heat transfer and entropy generation of the nanofluid is more than the pure fluid and minimum entropy generation and Nusselt number occur in the pure fluid at any Rayleigh number. Results depict that the addition of nanoparticles to the pure fluid has more effect on the entropy generation as the Rayleigh number goes up.Keywords: entropy generation, natural convection, bejan number, nuselt number, nanofluid
Procedia PDF Downloads 4979398 Experimental Study of Nucleate Pool Boiling Heat Transfer Characteristics on Laser-Processed Copper Surfaces of Different Patterns
Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil
Abstract:
With the fast growth of integrated circuits and the trend towards making electronic devices smaller, the heat dissipation load of electronic devices has continued to go over the limit. The high heat flux element would not only harm the operation and lifetime of the equipment but would also impede the performance upgrade brought about by the iteration of technological updates, which would have a direct negative impact on the economic and production cost benefits of rising industries. Hence, in high-tech industries like radar, information and communication, electromagnetic power, and aerospace, the development and implementation of effective heat dissipation technologies were urgently required. Pool boiling is favored over other cooling methods because of its capacity to dissipate a high heat flux at a low wall superheat without the usage of mechanical components. Enhancing the pool boiling performance by increasing the heat transfer coefficient via surface modification techniques has received a lot of attention. There are several surface modification methods feasible today, but the stability and durability of surface modification are the greatest priority. Thus, laser machining is an interesting choice for surface modification due to its low production cost, high scalability, and repeatability. In this study, different patterns of laser-processed copper surfaces are fabricated to investigate the nucleate pool boiling heat transfer performance of distilled water. The investigation showed that there is a significant enhancement in the pool boiling heat transfer performance of the laser-processed surface compared to the reference surface due to the notable increase in nucleation frequency and nucleation site density. It was discovered that the heat transfer coefficients increased when both the surface area ratio and the ratio of peak-to-valley height of the microstructure were raised. It is believed that the development of microstructures on the surface as a result of laser processing is the primary factor in the enhancement of heat transfer performance.Keywords: heat transfer coefficient, laser processing, micro structured surface, pool boiling
Procedia PDF Downloads 879397 Theoretical Analysis of Photoassisted Field Emission near the Metal Surface Using Transfer Hamiltonian Method
Authors: Rosangliana Chawngthu, Ramkumar K. Thapa
Abstract:
A model calculation of photoassisted field emission current (PFEC) by using transfer Hamiltonian method will be present here. When the photon energy is incident on the surface of the metals, such that the energy of a photon is usually less than the work function of the metal under investigation. The incident radiation photo excites the electrons to a final state which lies below the vacuum level; the electrons are confined within the metal surface. A strong static electric field is then applied to the surface of the metal which causes the photoexcited electrons to tunnel through the surface potential barrier into the vacuum region and constitutes the considerable current called photoassisted field emission current. The incident radiation is usually a laser beam, causes the transition of electrons from the initial state to the final state and the matrix element for this transition will be written. For the calculation of PFEC, transfer Hamiltonian method is used. The initial state wavefunction is calculated by using Kronig-Penney potential model. The effect of the matrix element will also be studied. An appropriate dielectric model for the surface region of the metal will be used for the evaluation of vector potential. FORTRAN programme is used for the calculation of PFEC. The results will be checked with experimental data and the theoretical results.Keywords: photoassisted field emission, transfer Hamiltonian, vector potential, wavefunction
Procedia PDF Downloads 2259396 Numerical Study of Developing Laminar Forced Convection Flow of Water/CuO Nanofluid in a Circular Tube with a 180 Degrees Curve
Authors: Hamed K. Arzani, Hamid K. Arzani, S.N. Kazi, A. Badarudin
Abstract:
Numerical investigation into convective heat transfer of CuO-Water based nanofluid in a pipe with return bend under laminar flow conditions has been done. The impacts of Reynolds number and the volume concentration of nanoparticles on the flow and the convective heat transfer behaviour are investigated. The results indicate that the increase in Reynolds number leads to the enhancement of average Nusselt number, and the increase in specific heat in the presence of the nanofluid results in improvement in heat transfer. Also, the presence of the secondary flow in the curve plays a key role in increasing the average Nusselt number and it appears higher than the inlet and outlet tubes. However, the pressure drop curve increases significantly in the tubes with the increase in nanoparticles concentration.Keywords: laminar forced convection, curve pipe, return bend, nanufluid, CFD
Procedia PDF Downloads 2979395 Efficient Monolithic FEM for Compressible Flow and Conjugate Heat Transfer
Authors: Santhosh A. K.
Abstract:
This work presents an efficient monolithic finite element strategy for solving thermo-fluid-structure interaction problems involving compressible fluids and linear-elastic structure. This formulation uses displacement variables for structure and velocity variables for the fluid, with no additional variables required to ensure traction, velocity, temperature, and heat flux continuity at the fluid-structure interface. Rate of convergence in each time step is quadratic, which is achieved in this formulation by deriving an exact tangent stiffness matrix. The robustness and good performance of the method is ascertained by applying the proposed strategy on a wide spectrum of problems taken from the literature pertaining to steady, transient, two dimensional, axisymmetric, and three dimensional fluid flow and conjugate heat transfer. It is shown that the current formulation gives excellent results on all the case studies conducted, which includes problems involving compressibility effects as well as problems where fluid can be treated as incompressible.Keywords: linear thermoelasticity, compressible flow, conjugate heat transfer, monolithic FEM
Procedia PDF Downloads 1999394 Dynamic Analysis of the Heat Transfer in the Magnetically Assisted Reactor
Authors: Tomasz Borowski, Dawid Sołoducha, Rafał Rakoczy, Marian Kordas
Abstract:
The application of magnetic field is essential for a wide range of technologies or processes (i.e., magnetic hyperthermia, bioprocessing). From the practical point of view, bioprocess control is often limited to the regulation of temperature at constant values favourable to microbial growth. The main aim of this study is to determine the effect of various types of electromagnetic fields (i.e., static or alternating) on the heat transfer in a self-designed magnetically assisted reactor. The experimental set-up is equipped with a measuring instrument which controlled the temperature of the liquid inside the container and supervised the real-time acquisition of all the experimental data coming from the sensors. Temperature signals are also sampled from generator of magnetic field. The obtained temperature profiles were mathematically described and analyzed. The parameters characterizing the response to a step input of a first-order dynamic system were obtained and discussed. For example, the higher values of the time constant means slow signal (in this case, temperature) increase. After the period equal to about five-time constants, the sample temperature nearly reached the asymptotic value. This dynamical analysis allowed us to understand the heating effect under the action of various types of electromagnetic fields. Moreover, the proposed mathematical description can be used to compare the influence of different types of magnetic fields on heat transfer operations.Keywords: heat transfer, magnetically assisted reactor, dynamical analysis, transient function
Procedia PDF Downloads 1719393 Nurses' Knowledge and Attitudes toward the Use of Physical Restraints
Authors: Fatema Salman, Ridha Hammam, Fatima Khairallah, Fatima Aradi, Nafeesa Abdulla, Mohammed Alsafar
Abstract:
Purpose: This study aims at measuring the extent of nurses’ knowledge and attitudes toward the use of physical restraints in different hospital wards at Salmaniya Medical Complex (SMC). Background: The habitual use of physical restraint is a widespread practice among nurses working in the clinical settings. Restraints inflict many deleterious consequences on patients physically and psychologically which in turn increases their morbidity and mortality risk and jeopardizes care quality. Nurses’ knowledge and attitudes toward physical restraints are crucial determinants of the persistence of this practice. Literature review: the evidence of lack of knowledge among nurses regarding the use of physical restraints is overwhelming in various clinical settings, especially in two main areas which are the negative consequences and the available alternatives to physical restraints. Studies explored nurses’ attitudes toward physical restraints yielded inconsistent findings. Equally comparable, some studies found that nurses hold positive attitudes toward the use of physical restraints while some others reported just the opposite. Methods: Self-administered knowledge and attitudes scales to 106 nurses working in the SMC. Findings: nurses hold the moderate level of knowledge about restraints (M=58%) with weak negative attitudes (M = -20%) toward using it. Significant moderately-strong negative correlation (r= -0.57, r2= 0.32, p= 0.000) was uncovered between nurses knowledge and their attitudes which provided an empirical explanation of this phenomenon (use of physical restraints). Recommendations: Induction of awareness program that especially focuses on the negative consequences and encourages the use of alternatives is an evident need. This effort necessarily should be adjoined with policy and procedure adjustments.Keywords: attitudes, knowledge, nurses, restraints
Procedia PDF Downloads 3169392 Effect of Cellular Water Transport on Deformation of Food Material during Drying
Authors: M. Imran Hossen Khan, M. Mahiuddin, M. A. Karim
Abstract:
Drying is a food processing technique where simultaneous heat and mass transfer take place from surface to the center of the sample. Deformation of food materials during drying is a common physical phenomenon which affects the textural quality and taste of the dried product. Most of the plant-based food materials are porous and hygroscopic in nature that contains about 80-90% water in different cellular environments: intercellular environment and intracellular environment. Transport of this cellular water has a significant effect on material deformation during drying. However, understanding of the scale of deformation is very complex due to diverse nature and structural heterogeneity of food material. Knowledge about the effect of transport of cellular water on deformation of material during drying is crucial for increasing the energy efficiency and obtaining better quality dried foods. Therefore, the primary aim of this work is to investigate the effect of intracellular water transport on material deformation during drying. In this study, apple tissue was taken for the investigation. The experiment was carried out using 1H-NMR T2 relaxometry with a conventional dryer. The experimental results are consistent with the understanding that transport of intracellular water causes cellular shrinkage associated with the anisotropic deformation of whole apple tissue. Interestingly, it is found that the deformation of apple tissue takes place at different stages of drying rather than deforming at one time. Moreover, it is found that the penetration rate of heat energy together with the pressure gradient between intracellular and intercellular environments is the responsible force to rupture the cell membrane.Keywords: heat and mass transfer, food material, intracellular water, cell rupture, deformation
Procedia PDF Downloads 2219391 Heat Pipe Thermal Performance Improvement in H-VAC Systems Using CFD Modeling
Authors: H. Shokouhmand, A. Ghanami
Abstract:
Heat pipe is a simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of the heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force, the liquid phase flows to evaporator section. In HVAC systems, the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally, heat pipes have three main sections: condenser, adiabatic region, and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of the heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances its heat transfer capacity.Keywords: heat pipe, HVAC system, grooved heat pipe, CFD simulation
Procedia PDF Downloads 4959390 Heat Pipes Thermal Performance Improvement in H-VAC Systems Using CFD Modeling
Authors: M. Heydari, A. Ghanami
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits
Procedia PDF Downloads 4449389 Studying the Effectiveness of Using Narrative Animation on Students’ Understanding of Complex Scientific Concepts
Authors: Atoum Abdullah
Abstract:
The purpose of this research is to determine the extent to which computer animation and narration affect students’ understanding of complex scientific concepts and improve their exam performance, this is compared to traditional lectures that include PowerPoints with texts and static images. A mixed-method design in data collection was used, including quantitative and qualitative data. Quantitative data was collected using a pre and post-test method and a close-ended questionnaire. Qualitative data was collected through an open-ended questionnaire. A pre and posttest strategy was used to measure the level of students’ understanding with and without the use of animation. The test included multiple-choice questions to test factual knowledge, open-ended questions to test conceptual knowledge, and to label the diagram questions to test application knowledge. The results showed that students on average, performed significantly higher on the posttest as compared to the pretest on all areas of acquired knowledge. However, the increase in the posttest score with respect to the acquisition of conceptual and application knowledge was higher compared to the increase in the posttest score with respect to the acquisition of factual knowledge. This result demonstrates that animation is more beneficial when acquiring deeper, conceptual, and cognitive knowledge than when only factual knowledge is acquired.Keywords: animation, narration, science, teaching
Procedia PDF Downloads 1709388 Mechanisms Underlying the Effects of School-Based Internet Intervention for Alcohol Drinking Behaviours among Chinese Adolescent
Authors: Keith T. S. Tung, Frederick K. Ho, Rosa S. Wong, Camilla K. M. Lo, Wilfred H. S. Wong, C. B. Chow, Patrick Ip
Abstract:
Objectives: Underage drinking is an important public health problem both locally and globally. Conventional prevention/intervention relies on unidirectional knowledge transfer such as mail leaflets or health talks which showed mixed results in changing the target behaviour. Previously, we conducted a school internet-based intervention which was found to be effective in reducing alcohol use among adolescents, yet the underlying mechanisms have not been properly investigated. This study, therefore, examined the mechanisms that explain how the intervention produced a change in alcohol drinking behaviours among Chinese adolescent as observed in our previous clustered randomised controlled trial (RCT) study. Methods: This is a cluster randomised controlled trial with parallel group design. Participating schools were randomised to the Internet intervention or the conventional health education group (control) with a 1:1 allocation ratio. Secondary 1–3 students of the participating schools were enrolled in this study. The Internet intervention was a web-based quiz game competition, in which participating students would answer 1,000 alcohol-related multiple-choice quiz questions. Conventional health education group received a promotional package on equivalent alcohol-related knowledge. The participants’ alcohol-related attitude, knowledge, and perceived behavioural control were self-reported before the intervention (baseline) and one month and three months after the intervention. Results: Our RCT results showed that participants in the Internet group were less likely to drink (risk ratio [RR] 0.79, p < 0.01) as well as in lesser amount (β -0.06, p < 0.05) compared to those in the control group at both post-intervention follow-ups. Within the intervention group, regression analyses showed that high quiz scorer had greater improvement in alcohol-related knowledge (β 0.28, p < 0.01) and attitude (β -0.26, p < 0.01) at 1 month after intervention, which in turn increased their perceived behavioural control against alcohol use (β 0.10 and -0.26, both p < 0.01). Attitude, compared to knowledge, was found to be a stronger contributor to the intervention effect on perceived behavioural control. Conclusions: Our internet-based intervention has demonstrated effectiveness in reducing the risk of underage drinking when compared with conventional health education. Our study results further showed an attitude to be a more important factor than knowledge in changing health-related behaviour. This has an important implication for future prevention/intervention on an underage drinking problem.Keywords: adolescents, internet-based intervention, randomized controlled trial, underage drinking
Procedia PDF Downloads 1649387 Reduce of the Consumption of Industrial Kilns a Pottery Kiln as Example, Recovery of Lost Energy Using a System of Heat Exchangers and Modeling of Heat Transfer Through the Walls of the Kiln
Authors: Maha Bakkari, Fatiha Lemmeni, Rachid Tadili
Abstract:
In this work, we present some characteristics of the furnace studied, its operating principle and the experimental measurements of the evolutions of the temperatures inside and outside the walls of the This work deals with the problem of energy consumption of pottery kilns whose energy consumption is relatively too high. In this work, we determined the sources of energy loss by studying the heat transfer of a pottery furnace, we proposed a recovery system to reduce energy consumption, and then we developed a numerical model modeling the transfers through the walls of the furnace and to optimize the insulation (reduce heat losses) by testing multiple insulators. The recovery and reuse of energy recovered by the recovery system will present a significant gain in energy consumption of the oven and cooking time. This research is one of the solutions that helps reduce the greenhouse effect of the planet earth, a problem that worries the world.Keywords: recovery lost energy, energy efficiency, modeling, heat transfer
Procedia PDF Downloads 869386 A Game-Based Product Modelling Environment for Non-Engineer
Authors: Guolong Zhong, Venkatesh Chennam Vijay, Ilias Oraifige
Abstract:
In the last 20 years, Knowledge Based Engineering (KBE) has shown its advantages in product development in different engineering areas such as automation, mechanical, civil and aerospace engineering in terms of digital design automation and cost reduction by automating repetitive design tasks through capturing, integrating, utilising and reusing the existing knowledge required in various aspects of the product design. However, in primary design stages, the descriptive information of a product is discrete and unorganized while knowledge is in various forms instead of pure data. Thus, it is crucial to have an integrated product model which can represent the entire product information and its associated knowledge at the beginning of the product design. One of the shortcomings of the existing product models is a lack of required knowledge representation in various aspects of product design and its mapping to an interoperable schema. To overcome the limitation of the existing product model and methodologies, two key factors are considered. First, the product model must have well-defined classes that can represent the entire product information and its associated knowledge. Second, the product model needs to be represented in an interoperable schema to ensure a steady data exchange between different product modelling platforms and CAD software. This paper introduced a method to provide a general product model as a generative representation of a product, which consists of the geometry information and non-geometry information, through a product modelling framework. The proposed method for capturing the knowledge from the designers through a knowledge file provides a simple and efficient way of collecting and transferring knowledge. Further, the knowledge schema provides a clear view and format on the data that needed to be gathered in order to achieve a unified knowledge exchange between different platforms. This study used a game-based platform to make product modelling environment accessible for non-engineers. Further the paper goes on to test use case based on the proposed game-based product modelling environment to validate the effectiveness among non-engineers.Keywords: game-based learning, knowledge based engineering, product modelling, design automation
Procedia PDF Downloads 1549385 Determining the Target Level of Knowledge of English as a Foreign Language in Higher Education
Authors: Zorana Z. Jurinjak, Nataša B. Lukić, Christos G. Alexopoulos
Abstract:
Although in the last few decades, English as a foreign language has been a compulsory subject in almost all colleges and universities in Serbia, students who enter the first year come with different levels of knowledge, which is immense task and a burden on teachers not only which literature and how to conduct classes in heterogeneous groups but also how to evaluate and assess the progress.This paper aims to discuss the issue of determining the target level of knowledge of English as a foreign language in higher education in Serbia due to the great need for these levels to equalize. The research was conducted at several colleges and universities where first-year students took a placement test, and we also carried out a review and comparison of the literature used in teaching English in those schools. We hope that this research will not only raise the awareness of those in charge when making curriculums, but also that ways will be found to assimilate these differences in knowledge and establish the criteria in assessment.Keywords: higher education, EFL, levels of knowledge, evaluation, assessment
Procedia PDF Downloads 119384 Multi-Stream Graph Attention Network for Recommendation with Knowledge Graph
Abstract:
In recent years, Graph neural network has been widely used in knowledge graph recommendation. The existing recommendation methods based on graph neural network extract information from knowledge graph through entity and relation, which may not be efficient in the way of information extraction. In order to better propose useful entity information for the current recommendation task in the knowledge graph, we propose an end-to-end Neural network Model based on multi-stream graph attentional Mechanism (MSGAT), which can effectively integrate the knowledge graph into the recommendation system by evaluating the importance of entities from both users and items. Specifically, we use the attention mechanism from the user's perspective to distil the domain nodes information of the predicted item in the knowledge graph, to enhance the user's information on items, and generate the feature representation of the predicted item. Due to user history, click items can reflect the user's interest distribution, we propose a multi-stream attention mechanism, based on the user's preference for entities and relationships, and the similarity between items to be predicted and entities, aggregate user history click item's neighborhood entity information in the knowledge graph and generate the user's feature representation. We evaluate our model on three real recommendation datasets: Movielens-1M (ML-1M), LFM-1B 2015 (LFM-1B), and Amazon-Book (AZ-book). Experimental results show that compared with the most advanced models, our proposed model can better capture the entity information in the knowledge graph, which proves the validity and accuracy of the model.Keywords: graph attention network, knowledge graph, recommendation, information propagation
Procedia PDF Downloads 1169383 Improve Heat Pipe Thermal Performance in H-VAC Systems Using CFD Modeling
Authors: H. Shokouhmand, A. Ghanami
Abstract:
A heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At a hot surface of the heat pipe, the liquid phase absorbs heat and changes to the vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to the liquid phase. Due to gravitational force the liquid phase flows to the evaporator section. In HVAC systems, the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses the heater, humidifier, or dryer is a suitable nominate for the utilization of heat pipes. Generally, heat pipes have three main sections: condenser, adiabatic region, and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of the heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian-Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances its heat transfer capacity.Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits
Procedia PDF Downloads 4369382 Heat and Mass Transfer Modelling of Industrial Sludge Drying at Different Pressures and Temperatures
Authors: L. Al Ahmad, C. Latrille, D. Hainos, D. Blanc, M. Clausse
Abstract:
A two-dimensional finite volume axisymmetric model is developed to predict the simultaneous heat and mass transfers during the drying of industrial sludge. The simulations were run using COMSOL-Multiphysics 3.5a. The input parameters of the numerical model were acquired from a preliminary experimental work. Results permit to establish correlations describing the evolution of the various parameters as a function of the drying temperature and the sludge water content. The selection and coupling of the equation are validated based on the drying kinetics acquired experimentally at a temperature range of 45-65 °C and absolute pressure range of 200-1000 mbar. The model, incorporating the heat and mass transfer mechanisms at different operating conditions, shows simulated values of temperature and water content. Simulated results are found concordant with the experimental values, only at the first and last drying stages where sludge shrinkage is insignificant. Simulated and experimental results show that sludge drying is favored at high temperatures and low pressure. As experimentally observed, the drying time is reduced by 68% for drying at 65 °C compared to 45 °C under 1 atm. At 65 °C, a 200-mbar absolute pressure vacuum leads to an additional reduction in drying time estimated by 61%. However, the drying rate is underestimated in the intermediate stage. This rate underestimation could be improved in the model by considering the shrinkage phenomena that occurs during sludge drying.Keywords: industrial sludge drying, heat transfer, mass transfer, mathematical modelling
Procedia PDF Downloads 1339381 Effects of an Online Positive Psychology Program on Stress, Depression, and Anxiety Symptoms of Emerging Adults
Authors: Gabriela R. Silveira, Claudia S. Rocha, Lais S. Vitti, Jeane L. Borges, Helen B. Durgante
Abstract:
Emerging adulthood occurs after adolescence in a period that maybe be marked by experimentation, identity reconfigurations, labor life demands, and insertion in the work environment, which tends to generate stress and emotional instability. Health promotion programs for the development of strengths and virtues, based on Positive Psychology, for emerging adults are sparse in Brazil. The aim of this study was to evaluate the preliminary effects of an online multi-component Positive Psychology program for the health promotion of emerging adults based on Cognitive Behavioural Therapy and Positive Psychology. The program included six online (synchronous) weekly group sessions of approximately two hours each and homework (asynchronous) activities. The themes worked were Values and self-care/Prudence, Optimism, Empathy, Gratitude, Forgiveness, and Meaning of life and work. This study presents data from a longitudinal, pre-experimental design with pre (T1) and post-test (T2) evaluation in the intervention group. 47 individuals aged between 19-30 years old participated, mean age of 24.53 years (SD=3.13), 37 females (78.7%). 42 (89.4%) self-defined as heterosexual, four (8.5%) as homosexual, and one (2.5%) as bisexual. 33 (70.2%) had incomplete higher education, four (8.5%) completed higher education, and seven (14.9%) had a graduate level of education. 27 participants worked (57.4%), out of which 25 were health workers (53.2%). 14 (29.8%) were caregivers, 27 (57.4%) had a spiritual belief, 36 (76.6%) had access to leisure, and 38 (80.9%) had perceived social support. The instruments used were a sociodemographic questionnaire, the 10-item Perceived Stress Scale, and the 12-item General Health Questionnaire. The program was advertised on social networks and interested participants filled out the Consent Form and the evaluation protocol at T1 and T2 via Google Docs form. The main research was approved (CEP n.1,899,368; 4,143,219; CAAE: 61997516.5.0000.5334) and complied with sanitary and Ethics criteria in research with human beings. Wilcoxon statistics revealed significant improvements in indicators of perceived stress between T1 (X=22.21, SD=6.79) and T2 (X=15.10, SD=5.82); (Z=-4.353; p=0.001) as well as depression and anxiety symptoms (T1:X=26.72, SD=8.84; T2: X=19.23, SD=4.68); (Z=-3.945, p=0.001) of the emerging adults after their participation in the programme. The programme has an innovative character not only for presenting an online Positive Psychology approach but also for being based on an intervention developed, evaluated, and manualized in Brazil. By focusing on emerging adults, this study contributes to advancing research on a relatively new field in developmental studies. As a limitation, this is a pre-experimental and pilot study, requiring an increase in sample size for greater statistical robustness, also qualitative data analysis is crucial for methodological complementarity. The importance of investing efforts to accompany this age group and provide advances in longitudinal research in the area of health promotion and disease prevention is highlighted.Keywords: emerging adults, disease prevention, health promotion, online program
Procedia PDF Downloads 1039380 Study of Laminar Convective Heat Transfer, Friction Factor, and Pumping Power Advantage of Aluminum Oxide-Water Nanofluid through a Channel
Authors: M. Insiat Islam Rabby, M. Mahbubur Rahman, Eshanul Islam, A. K. M. Sadrul Islam
Abstract:
The numerical and simulative analysis of laminar heat exchange convection of aluminum oxide (Al₂O₃) - water nanofluid for the developed region through two parallel plates is presented in this present work. The second order single phase energy equation, mass and momentum equation are solved by using finite volume method with the ANSYS FLUENT 16 software. The distance between two parallel plates is 4 mm and length is 600 mm. Aluminum oxide (Al₂O₃) is used as nanoparticle and water is used as the base/working fluid for the investigation. At the time of simulation 1% to 5% volume concentrations of the Al₂O₃ nanoparticles are used for mixing with water to produce nanofluid and a wide range of interval of Reynolds number from 500 to 1100 at constant heat flux 500 W/m² at the channel wall has also been introduced. The result reveals that for increasing the Reynolds number the Nusselt number and heat transfer coefficient are increased linearly and friction factor decreased linearly in the developed region for both water and Al₂O₃-H₂O nanofluid. By increasing the volume fraction of Al₂O₃-H₂O nanofluid from 1% to 5% the value of Nusselt number increased rapidly from 0.7 to 7.32%, heat transfer coefficient increased 7.14% to 31.5% and friction factor increased very little from 0.1% to 4% for constant Reynolds number compared to pure water. At constant heat transfer coefficient 700 W/m2-K the pumping power advantages have been achieved 20% for 1% volume concentration and 62% for 3% volume concentration of nanofluid compared to pure water.Keywords: convective heat transfer, pumping power, constant heat flux, nanofluid, nanoparticles, volume concentration, thermal conductivity
Procedia PDF Downloads 1599379 Knowledge Capital and Manufacturing Firms’ Innovation Management: Exploring the Impact of Transboundary Investment and Assimilative Capacity.
Authors: Suleman Bawa, Ayiku Emmanuel Lartey
Abstract:
Purpose - This paper aims to examine the association between knowledge capital and multinational firms’ innovation management. We again explored the impact of transboundary investment and assimilative capacity between knowledge capital and multinational firms’ innovation management. The vital position of knowledge capital and multinational firms’ innovation management in today’s increasingly volatile environment coupled with fierce competition has been extensively acknowledged by academics and industry investment capitals. Design/methodology/approach - The theoretical association model and an empirical correlation analysis were constructed based on relevant research using data collected from 19 multinational firms in Ghana as the subject, and path analysis was constructed using SPSS 22.0 and AMOS 24.0 to test the formulated hypotheses. Findings - Varied conclusions are drawn consequential from theoretical inferences and empirical tests. For multinational firms, knowledge capital relics positively significant to multinational firms’ innovation management. Multinational firms with advanced knowledge capital likely spawn greater corporations’ innovation management. Second, transboundary investment efficiently intermediates the association between knowledge physical capital, knowledge interactive capital, and corporations’ innovation management. At the same time, this impact is insignificant between knowledge of empirical capital and corporations’ innovation management. Lastly, the impact of transboundary investment and assimilative capacity on the association between knowledge capital and corporations’ innovation management is established. We summarized the implications for managers based on our outcomes. Research limitations/implications - Multinational firms must dynamically build knowledge capital to augment corporations’ innovation management. Conversely, knowledge capital motivates multinational firms to implement transboundary investment and cultivate assimilative capacity. Accordingly, multinational firms can efficiently exploit diverse information to augment their corporate innovation management. Practical implications – This paper presents a comprehensive justification of knowledge capital and manufacturing firms’ innovation management by exploring the impact of transboundary investment and assimilative capacity within the manufacturing industry, its sequential progress, and its associated challenges. Originality/value – This paper is amongst the first to find empirical results to back knowledge capital and manufacturing firms’ innovation management by exploring the impact of transboundary investment and assimilative capacity within the manufacturing industry. Additionally, aligning knowledge as a coordinative instrument is a significant input to our discernment in this area.Keywords: knowledge capital, transboundary investment, innovation management, assimilative capacity
Procedia PDF Downloads 769378 Improvement of Heat Pipe Thermal Performance in H-VAC Systems Using CFD Modeling
Authors: H. Shokouhmand, A. Ghanami
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.Keywords: heat pipe, HVAC system, grooved heat pipe, CFD simulation
Procedia PDF Downloads 4259377 Improvement of Heat Pipes Thermal Performance in H-VAC Systems Using CFD Modeling
Authors: H. Shokouhmand, A. Ghanami
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits
Procedia PDF Downloads 3649376 A Literature Review on the Effect of Financial Knowledge toward Corporate Growth: The Important Role of Financial Risk Attitude
Authors: Risna Wijayanti, Sumiati, Hanif Iswari
Abstract:
This study aims to analyze the role of financial risk attitude as a mediation between financial knowledge and business growth. The ability of human resources in managing capital (financial literacy) can be a major milestone for a company's business to grow and build its competitive advantage. This study analyzed the important role of financial risk attitude in bringing about financial knowledge on corporate growth. There have been many discussions arguing that financial knowledge is one of the main abilities of corporate managers in determining the success of managing a company. However, a contrary argument of other scholars also enlightened that financial knowledge did not have a significant influence on corporate growth. This study used literatures' review to analyze whether there is another variable that can mediate the effect of financial knowledge toward corporate growth. Research mapping was conducted to analyze the concept of risk tolerance. This concept was related to people's risk aversion effects when making a decision under risk and the role of financial knowledge on changes in financial income. Understanding and managing risks and investments are complicated, in particular for corporate managers, who are always demanded to maintain their corporate growth. Substantial financial knowledge is extremely needed to identify and take accurate information for corporate financial decision-making. By reviewing several literature, this study hypothesized that financial knowledge of corporate managers would be meaningless without manager's courage to bear risks for taking favorable business opportunities. Therefore, the level of risk aversion from corporate managers will determine corporate action, which is a reflection of corporate-level investment behavior leading to attain corporate success or failure for achieving the company's expected growth rate.Keywords: financial knowledge, financial risk attitude, corporate growth, risk tolerance
Procedia PDF Downloads 1299375 A Model of Critical Consideration of Environmental Education: Concepts, Contexts, and Competencies
Authors: Mohammad Anwar, Hamid Ullah Khan, Shah Waliullah
Abstract:
Recently, environmental education is an essential element in avoiding environmental degradation around the globe that needs new articles and policymakers’ emphasis. Hence, the present article examines the impact of environmental education on environmental knowledge, environmental behavior, and environmental attitudes in Indonesia. The present research also investigated the moderating role of government support in environmental education, environmental knowledge, environmental behavior, and environmental attitude in Indonesia. A questionnaire was used as the primary data collection method. The smart PLS was utilized to test the association among variables and the hypotheses of the study. The results revealed that environmental education had a significant and positive linkage with environmental knowledge, environmental behavior, and environmental attitude in Indonesia. The findings also exposed that government support significantly moderated environmental education, environmental knowledge, and environmental behavior in Indonesia. The findings of this research would provide help to the policymakers in establishing the policies related to environmental education and reducing environmental degradation.Keywords: environmental education, environmental knowledge, environmental behavior, environmental attitude, government support
Procedia PDF Downloads 969374 The Relation of Water Intake with Level of Knowledge Related to Water Intake in Workers of Food Production Unit, Nutrition Installation at Puspa Hospital, Jakarta
Authors: Siti Rahmah Fitrianti, Mela Milani
Abstract:
Inadequate of water intake has negative effects on the health of the body, which can cause kidney failure and death. One of the factors that can affect someone intake of water is level of knowledge about the importance of water intake itself. A good knowledge of the daily water intake can increase the awareness of daily needed of water intake. Therefore, researchers initiated a study on the relationship of water intake to the level of knowledge related with water intake in food workers, at “Puspa” Hospital. Type of this research is quantitative research with cross-sectional approach. The research data was collected by measuring the independent and dependent variable at a time. This study took place in the food production unit of Nutrition Installation in "Puspa" Hospital, Jakarta in October 2016. The population target in this study were workers in food production unit aged 30-64 years. The instrument was a questionnaire question regarding water intake and 24 hours food recall. The result is 78.6% of respondents have less knowledge about the importance of water intake. Meanwhile, as many as 85.7% of respondents have adequate water intake. Tested by Chi-Square test, showed that no significant relationship between water intake with the level of knowledge related to water intake in workers of food production unit. Adequate intake of water in food workers commonly may be not caused by the level of knowledge related to water intake, but it may be cause of work environment factor which has a high temperature.Keywords: food production unit, food workers, level of knowledge, water intake
Procedia PDF Downloads 3479373 Co-Precipitation Method for the Fabrication of Charge-Transfer Molecular Crystal Nanocapsules
Authors: Rabih Al-Kaysi
Abstract:
When quasi-stable solutions of 9-methylanthracene (pi-electron donor, 0.0005 M) and 1,2,4,5-Tetracyanobenzene (pi-electron acceptor, 0.0005 M) in aqueous sodium dodecyl sulfate (SDS, 0.025 M) were gently mixed, uniform-shaped rectangular charge-transfer nanocrystals precipitated out. These red colored charge-transfer (CT) crystals were composed of a 1:1-mole ratio of acceptor/ donor and are highly insoluble in water/SDS solution. The rectangular crystals morphology is semi hollow with symmetrical twin pockets reminiscent of nanocapsules. For a typical crop of nanocapsules, the dimensions are 21 x 6 x 0.5 microns with an approximate hollow volume of 1.5 x 105 nm3. By varying the concentration of aqueous SDS, mixing duration and incubation temperature, we can control the size and volume of the nanocapsules. The initial number of CT seed nanoparticles, formed by mixing the D and A solutions, determined the number and dimensions of the obtained nanocapsules formed after several hours of incubation under still conditions. Prolonged mixing of the donor and acceptor solutions resulted in plenty of initial seeds hence smaller nanocapsules. Short mixing times yields less seed formation and larger micron-sized capsules. The addition of Doxorubicin in situ with the quasi-stable solutions while mixing leads to the formation of CT nanocapsules with Doxorubicin sealed inside. The Doxorubicin can be liberated from the nanocapsules by cracking them using ultrasonication. This method can be extended to other binary CT complex crystals as well.Keywords: charge-transfer, nanocapsules, nanocrystals, doxorubicin
Procedia PDF Downloads 213