Search results for: plant classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5609

Search results for: plant classification

4769 Determining Optimal Number of Trees in Random Forests

Authors: Songul Cinaroglu

Abstract:

Background: Random Forest is an efficient, multi-class machine learning method using for classification, regression and other tasks. This method is operating by constructing each tree using different bootstrap sample of the data. Determining the number of trees in random forests is an open question in the literature for studies about improving classification performance of random forests. Aim: The aim of this study is to analyze whether there is an optimal number of trees in Random Forests and how performance of Random Forests differ according to increase in number of trees using sample health data sets in R programme. Method: In this study we analyzed the performance of Random Forests as the number of trees grows and doubling the number of trees at every iteration using “random forest” package in R programme. For determining minimum and optimal number of trees we performed Mc Nemar test and Area Under ROC Curve respectively. Results: At the end of the analysis it was found that as the number of trees grows, it does not always means that the performance of the forest is better than forests which have fever trees. In other words larger number of trees only increases computational costs but not increases performance results. Conclusion: Despite general practice in using random forests is to generate large number of trees for having high performance results, this study shows that increasing number of trees doesn’t always improves performance. Future studies can compare different kinds of data sets and different performance measures to test whether Random Forest performance results change as number of trees increase or not.

Keywords: classification methods, decision trees, number of trees, random forest

Procedia PDF Downloads 395
4768 Spectral Mixture Model Applied to Cannabis Parcel Determination

Authors: Levent Basayigit, Sinan Demir, Yusuf Ucar, Burhan Kara

Abstract:

Many research projects require accurate delineation of the different land cover type of the agricultural area. Especially it is critically important for the definition of specific plants like cannabis. However, the complexity of vegetation stands structure, abundant vegetation species, and the smooth transition between different seconder section stages make vegetation classification difficult when using traditional approaches such as the maximum likelihood classifier. Most of the time, classification distinguishes only between trees/annual or grain. It has been difficult to accurately determine the cannabis mixed with other plants. In this paper, a mixed distribution models approach is applied to classify pure and mix cannabis parcels using Worldview-2 imagery in the Lakes region of Turkey. Five different land use types (i.e. sunflower, maize, bare soil, and cannabis) were identified in the image. A constrained Gaussian mixture discriminant analysis (GMDA) was used to unmix the image. In the study, 255 reflectance ratios derived from spectral signatures of seven bands (Blue-Green-Yellow-Red-Rededge-NIR1-NIR2) were randomly arranged as 80% for training and 20% for test data. Gaussian mixed distribution model approach is proved to be an effective and convenient way to combine very high spatial resolution imagery for distinguishing cannabis vegetation. Based on the overall accuracies of the classification, the Gaussian mixed distribution model was found to be very successful to achieve image classification tasks. This approach is sensitive to capture the illegal cannabis planting areas in the large plain. This approach can also be used for monitoring and determination with spectral reflections in illegal cannabis planting areas.

Keywords: Gaussian mixture discriminant analysis, spectral mixture model, Worldview-2, land parcels

Procedia PDF Downloads 197
4767 Antimicrobial Activity, Phytochemistry and Toxicity Of Extracts Of Naturally Growing and Cultivated Aloe Turkanensis

Authors: Zachary Muthii Rukenya, James Mbaria, Peter Mbaabu, Kiama Stephen Gitahi, Ronald Onzago

Abstract:

Aloe turkanensis is one of the widely used medicinal shrub and in Kenya the plant is mainly found in Baringo, Isiolo, Laikipia, Turkana and West Pokot Counties where it is used in ethno-medicine and ethno-veterinary medicine. The Turkana community uses the plant products to manage malaria, wounds, stomach ache, constipation, pain, skin infection, poultry diseases and retained afterbirth in cows. This evaluated the efficacy and safety of the plant obtained from Turkana County, Kenya. Preliminary data on the use of the plant in the county was collected through observation, photographing and interviews. A sample of the whole plant was harvested in Natira sublocation, in ex-Turkana west district in February 2012 after identification by Aloe-working group herbalists who voluntarily provided information on its medicinal uses. Botanical identification was done at Kenya Forest Research Centre in Karura where voucher specimen was deposited. Cold maceration using 70% methanol and distilled water was used for extraction. Bioassays were to determine the effects of the plant extracts on brine shrimp and selected bacterial and fungal cultures. The extracts were tested in-vitro activity against standard cultures of B. cereus (ATCC 11778), S. aureus (ATCC25923), P. aeroginosa (ATCC 27853), E. coli (ATCC 25922) and a human infections clinical isolate of C. albicans. The extracts of Aloe turkanensis inhibited the growth B. cereus (100-200 mg/ml), S. aureus (50-100 mg/ml), P. aeroginosa (200mg/ml), E. coli (400mg/ml) while C. albicans was not affected. The extracts also inhibited the growth of S. aureus and B. cereus with mean diameters of inhibition zones being 19.75±1 mm and 18.5±05 mm reapectively. Phytochemical screening showed the presence of alkaloids, tarpenoids, steroids, quinones, saponins and tannins in the plant extracts. The extract was found to be non-toxic at a concentration of 1000µg/ml with a 100% survival of Brine Shrimp larva. It was concluded that Aloe turkanensis growing the study area has metabolites that inhibit the growth of microorganisms and is however, there is need for further studies to validate the in-vivo bioactivity of the plant and more generate adequate toxicological data.to support conservation, value chain addition of its products and widespread use as a herbal remedy.

Keywords: Aloe turkanensis, bioactivity, cultivated, human infections

Procedia PDF Downloads 321
4766 Hydrogels Beads of Alginate/Seaweed Powder for Plants Nutrition

Authors: Brenda O. Mazzola, Adriel Larsen, Romina P. Ollier, Leandro N. Ludueña, Vera A. Alvarez, Jimena S. Gonzalez

Abstract:

Seaweed is a natural renewable resource with great potential that is not being used by the domestic industry. Here, it was used a kind of invasive algae U. Pinnatifida that causes serious ecological damage on the Argentinian coasts. Alginate is one of the most widely used materials for encapsulation, and has the advantage that is a natural polysaccharide derived from a marine plant. It can form thermally stable hydrogel in the presence of calcium cation. In addition, the hydrogel can be easily produced into particulate form by using simple and gentle method. The aim of this work was to obtain and to characterize novel compounds (alginate/seaweed powder) for the soil nutrition. Alginate water solutions were prepared by concentrations of 20, 30, 40 and 50 g/L, in those solutions 10g/L of seaweed powder was added. Then the dispersions were transferred from a beaker to the atomizer by a peristaltic pump (with 0.05 to 0.1 L/h flow). A tank was filled with 1 L of calcium chloride solution (4 g/L), and the solution was agitated with a magnetic stirrer. The beads were analyzed by means TGA, FTIR and swelling determinations. In addition, the improvements in the soil were qualitative measured. It was obtained beads with different diameters depend on the initial concentration and the flow used. A better dispersions of seaweed and optimal diameter for the plant nutrition applications were obtained for 40g/L concentration and 0.1 L/h flow. The beads show thermal stability and high swelling degree. It can be successfully obtained alginate beads with seaweed powder with a novelty application as plant nutrient.

Keywords: biodegradable, characterization, hydrogel, plant nutrition, seaweed

Procedia PDF Downloads 280
4765 Establishing Combustion Behaviour for Refuse Derived Fuel Firing at Kiln Inlet through Computational Fluid Dynamics at a Cement Plant in India

Authors: Prateek Sharma, Venkata Ramachandrarao Maddali, Kapil Kukreja, B. N. Mohapatra

Abstract:

Waste management is one of the pressing issues of India. Several initiatives by the Indian Government, including the recent one “Swachhata hi Seva” campaign launched by Prime Minister on 15th August 2018, can be one of the game changers to waste disposal. Under this initiative, the government, cement industry and other stakeholders are working hand in hand to dispose of single-use plastics in cement plants in rotary kilns. This is an exemplary effort and a move that establishes the Indian Cement industry as one of the key players in a circular economy. One of the cement plants in Southern India has been mandated by the state government to co-process shredded plastic and refuse-derived fuel (RDF) available in nearby regions as an alternative fuel in their cement plant. The plant has set a target of 25 % thermal substitution rate (TSR) by RDF in the next five years. Most of the cement plants in India and abroad have achieved high TSR through pre calciner firing. But the cement plant doesn’t have the precalciner and has to achieve this daunting task of 25 % TSR by firing through the main kiln burner. Since RDF is a heterogeneous waste with the change in fuel quality, it is difficult to achieve this task; hence plant has to resort to firing some portion of RDF/plastics at kiln inlet. But kiln inlet has reducing conditions as observed during measurements) under baseline condition. The combustion behavior of RDF of different sizes at different firing locations in riser was studied with the help of a computational fluid dynamics tool. It has been concluded that RDF above 50 mm size results in incomplete combustion leading to CO formation. Moreover, best firing location appears to be in the bottom portion of the kiln riser.

Keywords: kiln inlet, plastics, refuse derived fuel, thermal substitution rate

Procedia PDF Downloads 127
4764 Synthesis of Plant-Mediated Silver Nanoparticles Using Erythrina indica Extract and Evaluation of Their Anti-Microbial Activities

Authors: Chandra Sekhar Singh, P. Chakrapani, B. Arun Jyothi, A. Roja Rani

Abstract:

The green synthesis of metallic nanoparticles (NPs) involves biocompatible ingredients under physiological conditions of temperature and pressure. Moreover, the biologically active molecules involved in the green synthesis of NPs act as functionalizing ligands, making these NPs more suitable for biomedical applications. Among the most important bioreductants are plant extracts, which are relatively easy to handle, readily available, low cost, and have been well explored for the green synthesis of other nanomaterials. Various types of metallic NPs have already been synthesized using plant extracts. They have wide applicability in various areas such as electronics, catalysis, chemistry, energy, and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In our study, we were described a cost effective and environment friendly technique for green synthesis of silver nanoparticles from 1mM AgNO3 solution through the aqueous extract of Erythrina indica as reducing as well as capping agent. Nanoparticles were characterized using UV–Vis absorption spectroscopy, FTIR, XRD, X-ray diffraction, SEM and TEM analysis showed the average particle size of 30 nm as well as revealed their spherical structure. Further these biologically synthesized nanoparticles were found to be highly toxic against different human pathogens viz. two Gram positive namely Klebsiella pneumonia and Bacillus subtilis bacteria and two were Gram negative bacteria namely Staphylococcus aureus and Escherichia coli (E. coli). This is for the first time reporting that Erythrina indica plant extract was used for the synthesis of nanoparticles.

Keywords: silver nanoparticles, green synthesis, antibacterial activity, FTIR, TEM, SEM

Procedia PDF Downloads 504
4763 Defects Classification of Stator Coil Generators by Phase Resolve Partial Discharge

Authors: Chun-Yao Lee, Nando Purba, Benny Iskandar

Abstract:

This paper proposed a phase resolve partial discharge (PRPD) shape method to classify types of defect stator coil generator by using off-line PD measurement instrument. The recorded PRPD, by using the instruments MPD600, can illustrate the PRPD patterns of partial discharge of unit’s defects. In the paper, two of large units, No.2 and No.3, in Inalum hydropower plant, North Sumatera, Indonesia is adopted in the experimental measurement. The proposed PRPD shape method is to mark auxiliary lines on the PRPD patterns. The shapes of PRPD from two units are marked with the proposed method. Then, four types of defects in IEC 60034-27 standard is adopted to classify the defect types of the two units, which types are microvoids (S1), delamination tape layer (S2), slot defect (S3) and internal delamination (S4). Finally, the two units are actually inspected to validate the availability of the proposed PRPD shape method.

Keywords: partial discharge (PD), stator coil, defect, phase resolve pd (PRPD)

Procedia PDF Downloads 256
4762 The Spatial Classification of China near Sea for Marine Biodiversity Conservation Based on Bio-Geographical Factors

Authors: Huang Hao, Li Weiwen

Abstract:

Global biodiversity continues to decline as a result of global climate change and various human activities, such as habitat destruction, pollution, introduction of alien species and overfishing. Although there are connections between global marine organisms more or less, it is better to have clear geographical boundaries in order to facilitate the assessment and management of different biogeographical zones. And so area based management tools (ABMT) are considered as the most effective means for the conservation and sustainable use of marine biodiversity. On a large scale, the geographical gap (or barrier) is the main factor to influence the connectivity, diffusion, ecological and evolutionary process of marine organisms, which results in different distribution patterns. On a small scale, these factors include geographical location, geology, and geomorphology, water depth, current, temperature, salinity, etc. Therefore, the analysis on geographic and environmental factors is of great significance in the study of biodiversity characteristics. This paper summarizes the marine spatial classification and ABMTs used in coastal area, open oceans and deep sea. And analysis principles and methods of marine spatial classification based on biogeographic related factors, and take China Near Sea (CNS) area as case study, and select key biogeographic related factors, carry out marine spatial classification at biological region scale, ecological regionals scale and biogeographical scale. The research shows that CNS is divided into 5 biological regions by climate and geographical differences, the Yellow Sea, the Bohai Sea, the East China Sea, the Taiwan Straits, and the South China Sea. And the bioregions are then divided into 12 ecological regions according to the typical ecological and administrative factors, and finally the eco-regions are divided into 98 biogeographical units according to the benthic substrate types, depth, coastal types, water temperature, and salinity, given the integrity of biological and ecological process, the area of the biogeographical units is not less than 1,000 km². This research is of great use to the coastal management and biodiversity conservation for local and central government, and provide important scientific support for future spatial planning and management of coastal waters and sustainable use of marine biodiversity.

Keywords: spatial classification, marine biodiversity, bio-geographical, conservation

Procedia PDF Downloads 152
4761 Investigating the Effects of Density and Different Nitrogen Nutritional Systems on Yield, Yield Components and Essential Oil of Fennel (Foeniculum Vulgare Mill.)

Authors: Mohammadreza Delfieh, Seyed Ali Mohammad Modarres Sanavy, Rouzbeh Farhoudi

Abstract:

Fennel is of most important medicinal plants which is widely used in food and pharmaceutical industries. In order to investigate the effect of different nitrogen nutritional systems including chemical, organic and biologic ones at different plant densities on yield, yield components and seed essential oil content and yield of this valuable medicinal plant, a field experiment was carried out in 2013-2014 agricultural season at Islamic Azad University of Shoushtar agricultural college in split plot design with 18 treatments and based on completely randomized blocks design. Different nitrogen system treatments consisting of: 1. N1 or control (Uniformly spreading urea fertilizer in the plot, 50% at planting time and 50% at stem elongation), 2. N2 (Uniformly spreading 50% of urea fertilizer in the plot at planting time and spraying the other 50% of urea fertilizer at stem elongation on fennel foliage), 3. N3 or cow manure, 4. N4 or biofertilizer (Inoculation of fennel seeds with Azotobacter and Azospirillum), 5. N5 or Integrated-1 (Cow manure + uniformly spreading urea fertilizer in the plot at stem elongation), 6. N6 or Integrated-2 (Cow manure + Inoculation of fennel seeds with Azotobacter and Azospirillum) were applied to the main plots. Three fennel densities consisting of: 1. FD1 (60 plant/m2), 2. FD2 (80 plant/m2) and 3. FD3 (100 plant/m2) were applied to subplots. Results showed that all of the traits were significantly affected by applied treatments (P 0.01). The interaction between treatments also were significant at 5 percent level for shoot dry weight and at 1 percent level for other traits. Based on the results, using the Integrated-1 treatment at 100 plant per m2 produced 94.575 g/m2 seed yield containing 3.375 percent of essential oil. Utilization of such combination not only could lead to a desirable fennel quantity and quality, but also is more consistent with environment.

Keywords: fennel (foeniculum vulgare mill.), nutritional system, nitrogen, biofertilizer, organic fertilizer, chemical fertilizer, density

Procedia PDF Downloads 459
4760 Production Structures of Energy Based on Water Force, Its Infrastructure Protection, and Possible Causes of Failure

Authors: Gabriela-Andreea Despescu, Mădălina-Elena Mavrodin, Gheorghe Lăzăroiu, Florin Adrian Grădinaru

Abstract:

The purpose of this paper is to contribute to the enhancement of a hydroelectric plant protection by coordinating protection measures and existing security and introducing new measures under a risk management process. Also, the plan identifies key critical elements of a hydroelectric plant, from its level vulnerabilities and threats it is subjected to in order to achieve the necessary protection measures to reduce the level of risk.

Keywords: critical infrastructure, risk analysis, critical infrastructure protection, vulnerability, risk management, turbine, impact analysis

Procedia PDF Downloads 547
4759 Utilization of Kitchen Waste inside Green House Chamber: A Community Level Biogas Programme

Authors: Ravi P. Agrahari

Abstract:

The present study was undertaken with the objective of evaluating kitchen waste as an alternative organic material for biogas production in community level biogas plant. The field study was carried out for one month (January 19, 2012– February 17, 2012) at Centre for Energy Studies, IIT Delhi, New Delhi, India. This study involves the uses of greenhouse canopy to increase the temperature for the production of biogas in winter period. In continuation, a semi-continuous study was conducted for one month with the retention time of 30 days under batch system. The gas generated from the biogas plant was utilized for cooking (burner) and lighting (lamp) purposes. Gas productions in the winter season registered lower than other months. It can be concluded that the solar greenhouse assisted biogas plant can be efficiently adopted in colder region or in winter season because temperature plays a major role in biogas production. 

Keywords: biogas, green house chamber, organic material, solar intensity, batch system

Procedia PDF Downloads 394
4758 Classifying Blog Texts Based on the Psycholinguistic Features of the Texts

Authors: Hyung Jun Ahn

Abstract:

With the growing importance of social media, it is imperative to analyze it to understand the users. Users share useful information and their experience through social media, where much of what is shared is in the form of texts. This study focused on blogs and aimed to test whether the psycho-linguistic characteristics of blog texts vary with the subject or the type of experience of the texts. For this goal, blog texts about four different types of experience, Go, skiing, reading, and musical were collected through the search API of the Tistory blog service. The analysis of the texts showed that various psycholinguistic characteristics of the texts are different across the four categories of the texts. Moreover, the machine learning experiment using the characteristics for automatic text classification showed significant performance. Specifically, the ensemble method, based on functional tree and bagging appeared to be most effective in classification.

Keywords: blog, social media, text analysis, psycholinguistics

Procedia PDF Downloads 279
4757 Evolving Convolutional Filter Using Genetic Algorithm for Image Classification

Authors: Rujia Chen, Ajit Narayanan

Abstract:

Convolutional neural networks (CNN), as typically applied in deep learning, use layer-wise backpropagation (BP) to construct filters and kernels for feature extraction. Such filters are 2D or 3D groups of weights for constructing feature maps at subsequent layers of the CNN and are shared across the entire input. BP as a gradient descent algorithm has well-known problems of getting stuck at local optima. The use of genetic algorithms (GAs) for evolving weights between layers of standard artificial neural networks (ANNs) is a well-established area of neuroevolution. In particular, the use of crossover techniques when optimizing weights can help to overcome problems of local optima. However, the application of GAs for evolving the weights of filters and kernels in CNNs is not yet an established area of neuroevolution. In this paper, a GA-based filter development algorithm is proposed. The results of the proof-of-concept experiments described in this paper show the proposed GA algorithm can find filter weights through evolutionary techniques rather than BP learning. For some simple classification tasks like geometric shape recognition, the proposed algorithm can achieve 100% accuracy. The results for MNIST classification, while not as good as possible through standard filter learning through BP, show that filter and kernel evolution warrants further investigation as a new subarea of neuroevolution for deep architectures.

Keywords: neuroevolution, convolutional neural network, genetic algorithm, filters, kernels

Procedia PDF Downloads 186
4756 Spermiogram Values of Fertile Men in Malatya Region

Authors: Aliseydi Bozkurt, Ugur Yılmaz

Abstract:

Objective: It was aimed to evaluate the current status of semen parameters in fertile males with one or more children and whose wife having a pregnancy for the last 1-12 months in Malatya region. Methods: Sperm samples were obtained from 131 voluntary fertile men. In each analysis, sperm volume (ml), number of sperm (sperm/ml), sperm motility and sperm viscosity were examined with Makler device. Classification was made according to World Health Organization (WHO) criteria. Results: Mean ejaculate volume ranged from 1.5 ml to 5.5 ml, sperm count ranged from 27 to 180 million/ml and motility ranged from 35 to 90%. Sperm motility was found to be on average; 69.9% in A, 7.6% in B, 8.7% in C, 13.3% in D category. Conclusion: The mean spermiogram values of fertile males in Malatya region were found to be similar to those in fertile males determined by the WHO. This study has a regional classification value in terms of spermiogram values.

Keywords: fertile men, infertility, spermiogram, sperm motility

Procedia PDF Downloads 352
4755 The Study on Energy Saving in Clarification Process for Water Treatment Plant

Authors: Wiwat Onnakklum

Abstract:

Clarification is the turbidity removal process of water treatment plant. This paper was to study the factors affecting on energy consumption in order to control energy saving strategy. The factors studied were raw water turbidity in the range of 26-40 NTU and production rate in the range of 3.76-5.20 m³/sec. Clarifiers were sludge blanket and sludge recirculation clarifier. Experimental results found that the raw water turbidity was not affected significantly by energy consumption, while the production rate was affected significantly by energy consumption. Sludge blanket clarifier provided lower energy consumption than sludge recirculation clarifier about 32-37%. Subsequently, the operating pattern in production rate can be arranged to decreased energy consumption. The results showed that it can be reduced about 5.09 % of energy saving of clarification process about 754,655 Baht per year.

Keywords: sludge blanket clarifier, sludge recirculation clarifier, water treatment plant, energy

Procedia PDF Downloads 325
4754 Classification Using Worldview-2 Imagery of Giant Panda Habitat in Wolong, Sichuan Province, China

Authors: Yunwei Tang, Linhai Jing, Hui Li, Qingjie Liu, Xiuxia Li, Qi Yan, Haifeng Ding

Abstract:

The giant panda (Ailuropoda melanoleuca) is an endangered species, mainly live in central China, where bamboos act as the main food source of wild giant pandas. Knowledge of spatial distribution of bamboos therefore becomes important for identifying the habitat of giant pandas. There have been ongoing studies for mapping bamboos and other tree species using remote sensing. WorldView-2 (WV-2) is the first high resolution commercial satellite with eight Multi-Spectral (MS) bands. Recent studies demonstrated that WV-2 imagery has a high potential in classification of tree species. The advanced classification techniques are important for utilising high spatial resolution imagery. It is generally agreed that object-based image analysis is a more desirable method than pixel-based analysis in processing high spatial resolution remotely sensed data. Classifiers that use spatial information combined with spectral information are known as contextual classifiers. It is suggested that contextual classifiers can achieve greater accuracy than non-contextual classifiers. Thus, spatial correlation can be incorporated into classifiers to improve classification results. The study area is located at Wuyipeng area in Wolong, Sichuan Province. The complex environment makes it difficult for information extraction since bamboos are sparsely distributed, mixed with brushes, and covered by other trees. Extensive fieldworks in Wuyingpeng were carried out twice. The first one was on 11th June, 2014, aiming at sampling feature locations for geometric correction and collecting training samples for classification. The second fieldwork was on 11th September, 2014, for the purposes of testing the classification results. In this study, spectral separability analysis was first performed to select appropriate MS bands for classification. Also, the reflectance analysis provided information for expanding sample points under the circumstance of knowing only a few. Then, a spatially weighted object-based k-nearest neighbour (k-NN) classifier was applied to the selected MS bands to identify seven land cover types (bamboo, conifer, broadleaf, mixed forest, brush, bare land, and shadow), accounting for spatial correlation within classes using geostatistical modelling. The spatially weighted k-NN method was compared with three alternatives: the traditional k-NN classifier, the Support Vector Machine (SVM) method and the Classification and Regression Tree (CART). Through field validation, it was proved that the classification result obtained using the spatially weighted k-NN method has the highest overall classification accuracy (77.61%) and Kappa coefficient (0.729); the producer’s accuracy and user’s accuracy achieve 81.25% and 95.12% for the bamboo class, respectively, also higher than the other methods. Photos of tree crowns were taken at sample locations using a fisheye camera, so the canopy density could be estimated. It is found that it is difficult to identify bamboo in the areas with a large canopy density (over 0.70); it is possible to extract bamboos in the areas with a median canopy density (from 0.2 to 0.7) and in a sparse forest (canopy density is less than 0.2). In summary, this study explores the ability of WV-2 imagery for bamboo extraction in a mountainous region in Sichuan. The study successfully identified the bamboo distribution, providing supporting knowledge for assessing the habitats of giant pandas.

Keywords: bamboo mapping, classification, geostatistics, k-NN, worldview-2

Procedia PDF Downloads 313
4753 Automatic Motion Trajectory Analysis for Dual Human Interaction Using Video Sequences

Authors: Yuan-Hsiang Chang, Pin-Chi Lin, Li-Der Jeng

Abstract:

Advance in techniques of image and video processing has enabled the development of intelligent video surveillance systems. This study was aimed to automatically detect moving human objects and to analyze events of dual human interaction in a surveillance scene. Our system was developed in four major steps: image preprocessing, human object detection, human object tracking, and motion trajectory analysis. The adaptive background subtraction and image processing techniques were used to detect and track moving human objects. To solve the occlusion problem during the interaction, the Kalman filter was used to retain a complete trajectory for each human object. Finally, the motion trajectory analysis was developed to distinguish between the interaction and non-interaction events based on derivatives of trajectories related to the speed of the moving objects. Using a database of 60 video sequences, our system could achieve the classification accuracy of 80% in interaction events and 95% in non-interaction events, respectively. In summary, we have explored the idea to investigate a system for the automatic classification of events for interaction and non-interaction events using surveillance cameras. Ultimately, this system could be incorporated in an intelligent surveillance system for the detection and/or classification of abnormal or criminal events (e.g., theft, snatch, fighting, etc.).

Keywords: motion detection, motion tracking, trajectory analysis, video surveillance

Procedia PDF Downloads 548
4752 Concentric Circle Detection based on Edge Pre-Classification and Extended RANSAC

Authors: Zhongjie Yu, Hancheng Yu

Abstract:

In this paper, we propose an effective method to detect concentric circles with imperfect edges. First, the gradient of edge pixel is coded and a 2-D lookup table is built to speed up normal generation. Then we take an accumulator to estimate the rough center and collect plausible edges of concentric circles through gradient and distance. Later, we take the contour-based method, which takes the contour and edge intersection, to pre-classify the edges. Finally, we use the extended RANSAC method to find all the candidate circles. The center of concentric circles is determined by the two circles with the highest concentricity. Experimental results demonstrate that the proposed method has both good performance and accuracy for the detection of concentric circles.

Keywords: concentric circle detection, gradient, contour, edge pre-classification, RANSAC

Procedia PDF Downloads 131
4751 Life Cycle Assessment of Biogas Energy Production from a Small-Scale Wastewater Treatment Plant in Central Mexico

Authors: Joel Bonales, Venecia Solorzano, Carlos Garcia

Abstract:

A great percentage of the wastewater generated in developing countries don’t receive any treatment, which leads to numerous environmental impacts. In response to this, a paradigm change in the current wastewater treatment model based on large scale plants towards a small and medium scale based model has been proposed. Nevertheless, small scale wastewater treatment (SS-WTTP) with novel technologies such as anaerobic digesters, as well as the utilization of derivative co-products such as biogas, still presents diverse environmental impacts which must be assessed. This study consisted in a Life Cycle Assessment (LCA) performed to a SS-WWTP which treats wastewater from a small commercial block in the city of Morelia, Mexico. The treatment performed in the SS-WWTP consists in anaerobic and aerobic digesters with a daily capacity of 5,040 L. Two different scenarios were analyzed: the current plant conditions and a hypothetical energy use of biogas obtained in situ. Furthermore, two different allocation criteria were applied: full impact allocation to the system’s main product (treated water) and substitution credits for replacing Mexican grid electricity (biogas) and clean water pumping (treated water). The results showed that the analyzed plant had bigger impacts than what has been reported in the bibliography in the basis of wastewater volume treated, which may imply that this plant is currently operating inefficiently. The evaluated impacts appeared to be focused in the aerobic digestion and electric generation phases due to the plant’s particular configuration. Additional findings prove that the allocation criteria applied is crucial for the interpretation of impacts and that that the energy use of the biogas obtained in this plant can help mitigate associated climate change impacts. It is concluded that SS-WTTP is a environmentally sound alternative for wastewater treatment from a systemic perspective. However, this type of studies must be careful in the selection of the allocation criteria and replaced products, since these factors have a great influence in the results of the assessment.

Keywords: biogas, life cycle assessment, small scale treatment, wastewater treatment

Procedia PDF Downloads 124
4750 Comparison of Artificial Neural Networks and Statistical Classifiers in Olive Sorting Using Near-Infrared Spectroscopy

Authors: İsmail Kavdır, M. Burak Büyükcan, Ferhat Kurtulmuş

Abstract:

Table olive is a valuable product especially in Mediterranean countries. It is usually consumed after some fermentation process. Defects happened naturally or as a result of an impact while olives are still fresh may become more distinct after processing period. Defected olives are not desired both in table olive and olive oil industries as it will affect the final product quality and reduce market prices considerably. Therefore it is critical to sort table olives before processing or even after processing according to their quality and surface defects. However, doing manual sorting has many drawbacks such as high expenses, subjectivity, tediousness and inconsistency. Quality criterions for green olives were accepted as color and free of mechanical defects, wrinkling, surface blemishes and rotting. In this study, it was aimed to classify fresh table olives using different classifiers and NIR spectroscopy readings and also to compare the classifiers. For this purpose, green (Ayvalik variety) olives were classified based on their surface feature properties such as defect-free, with bruised defect and with fly defect using FT-NIR spectroscopy and classification algorithms such as artificial neural networks, ident and cluster. Bruker multi-purpose analyzer (MPA) FT-NIR spectrometer (Bruker Optik, GmbH, Ettlingen Germany) was used for spectral measurements. The spectrometer was equipped with InGaAs detectors (TE-InGaAs internal for reflectance and RT-InGaAs external for transmittance) and a 20-watt high intensity tungsten–halogen NIR light source. Reflectance measurements were performed with a fiber optic probe (type IN 261) which covered the wavelengths between 780–2500 nm, while transmittance measurements were performed between 800 and 1725 nm. Thirty-two scans were acquired for each reflectance spectrum in about 15.32 s while 128 scans were obtained for transmittance in about 62 s. Resolution was 8 cm⁻¹ for both spectral measurement modes. Instrument control was done using OPUS software (Bruker Optik, GmbH, Ettlingen Germany). Classification applications were performed using three classifiers; Backpropagation Neural Networks, ident and cluster classification algorithms. For these classification applications, Neural Network tool box in Matlab, ident and cluster modules in OPUS software were used. Classifications were performed considering different scenarios; two quality conditions at once (good vs bruised, good vs fly defect) and three quality conditions at once (good, bruised and fly defect). Two spectrometer readings were used in classification applications; reflectance and transmittance. Classification results obtained using artificial neural networks algorithm in discriminating good olives from bruised olives, from olives with fly defect and from the olive group including both bruised and fly defected olives with success rates respectively changing between 97 and 99%, 61 and 94% and between 58.67 and 92%. On the other hand, classification results obtained for discriminating good olives from bruised ones and also for discriminating good olives from fly defected olives using the ident method ranged between 75-97.5% and 32.5-57.5%, respectfully; results obtained for the same classification applications using the cluster method ranged between 52.5-97.5% and between 22.5-57.5%.

Keywords: artificial neural networks, statistical classifiers, NIR spectroscopy, reflectance, transmittance

Procedia PDF Downloads 246
4749 The Temporal Pattern of Bumble Bees in Plant Visiting

Authors: Zahra Shakoori, Farid Salmanpour

Abstract:

Pollination services are a vital service for the ecosystem to maintain environmental stability. The decline of pollinators can disrupt the ecological balance by affecting components of biodiversity. Bumble bees are crucial pollinators, playing a vital role in maintaining plant diversity. This study investigated the temporal patterns of their visitation to flowers in Kiasar National Park, Iran. Observations were conducted in Jun 2024, totaling 442 person-minutes of observation. Five species of bumble bees were identified. The study revealed that they consistently visited an average of 12-15 flowers per minute, regardless of species. The findings highlight the importance of protecting natural habitats, where their populations are thriving in the absence of human-induced stressors. This study was conducted in Kiasar National Park, located in the southeast of Mazandaran, northern Iran. The surveyed area, at an altitude of 1800-2200 meters, includes both forest and pasture. Bumble bee surveys were carried out on sunny days from June 2024, starting at dawn and ending at sunset. To avoid double-counting, we systematically searched for foraging habitats on low-sloping ridges with high mud density, frequently moving between patches. We recorded bumble bee visits to flowers and plant species per minute using direct observation, a stopwatch, and a pre-prepared form. We used statistical analysis of variance (ANOVA) with a confidence level of 95% to examine potential differences in foraging rates across different bumble bee species, flowers, plant bases, and plant species visited. Bumble bee identification relied on morphological indicators. A total of 442 person-minutes of bumble bee observations were recorded. Five species of bumble bees (Bombus fragrans, Bombus haematurus, Bombus lucorum, Bombus melanurus, Bombus terrestris) were identified during the study. The results of this study showed that the visits of bumble bees to flower sources were not different from each other. In general, bumble bees visit an average of 12-15 flowers every 60 seconds. In addition, at the same time they visit between 3-5 plant bases. Finally, they visit an average of 1 to 3 plant species per minute. While many taxa contribute to pollination, insects—especially bees—are crucial for maintaining plant diversity and ecosystem functions. As plant diversity increases, the stopping rate of pollinating insects rises, which reduces their foraging activity. Bumble bees, therefore, stop more frequently in natural areas than in agricultural fields due to higher plant diversity. Our findings emphasize the need to protect natural habitats like Kiasar National Park, where bumble bees thrive without human-induced stressors like pesticides, livestock grazing, and pollution. With bumble bee populations declining globally, further research is essential to understand their behavior in different environments and develop effective conservation strategies to protect them.

Keywords: bumble bees, pollination, pollinator, plant diversity, Iran

Procedia PDF Downloads 28
4748 A Comparative Analysis of Classification Models with Wrapper-Based Feature Selection for Predicting Student Academic Performance

Authors: Abdullah Al Farwan, Ya Zhang

Abstract:

In today’s educational arena, it is critical to understand educational data and be able to evaluate important aspects, particularly data on student achievement. Educational Data Mining (EDM) is a research area that focusing on uncovering patterns and information in data from educational institutions. Teachers, if they are able to predict their students' class performance, can use this information to improve their teaching abilities. It has evolved into valuable knowledge that can be used for a wide range of objectives; for example, a strategic plan can be used to generate high-quality education. Based on previous data, this paper recommends employing data mining techniques to forecast students' final grades. In this study, five data mining methods, Decision Tree, JRip, Naive Bayes, Multi-layer Perceptron, and Random Forest with wrapper feature selection, were used on two datasets relating to Portuguese language and mathematics classes lessons. The results showed the effectiveness of using data mining learning methodologies in predicting student academic success. The classification accuracy achieved with selected algorithms lies in the range of 80-94%. Among all the selected classification algorithms, the lowest accuracy is achieved by the Multi-layer Perceptron algorithm, which is close to 70.45%, and the highest accuracy is achieved by the Random Forest algorithm, which is close to 94.10%. This proposed work can assist educational administrators to identify poor performing students at an early stage and perhaps implement motivational interventions to improve their academic success and prevent educational dropout.

Keywords: classification algorithms, decision tree, feature selection, multi-layer perceptron, Naïve Bayes, random forest, students’ academic performance

Procedia PDF Downloads 166
4747 Curvelet Features with Mouth and Face Edge Ratios for Facial Expression Identification

Authors: S. Kherchaoui, A. Houacine

Abstract:

This paper presents a facial expression recognition system. It performs identification and classification of the seven basic expressions; happy, surprise, fear, disgust, sadness, anger, and neutral states. It consists of three main parts. The first one is the detection of a face and the corresponding facial features to extract the most expressive portion of the face, followed by a normalization of the region of interest. Then calculus of curvelet coefficients is performed with dimensionality reduction through principal component analysis. The resulting coefficients are combined with two ratios; mouth ratio and face edge ratio to constitute the whole feature vector. The third step is the classification of the emotional state using the SVM method in the feature space.

Keywords: facial expression identification, curvelet coefficient, support vector machine (SVM), recognition system

Procedia PDF Downloads 232
4746 Phytoextraction of Some Heavy Metals from Artificially Polluted soil

Authors: Kareem Kalo Qassim, Hassan A. M. Mezori

Abstract:

The bioaccumulation of heavy metals in the environment has become a matter of public interest because it persists in the soil longer than other components of the biosphere. Bioremediation has emerged as the ideal alternative environmentally friendly and ecological sound technology for removing pollutants from polluted sites. Phytoremediation is an attractive remediation technology that makes use of plants to remove contaminants from the environment. A pot experiment was conducted under lath house conditions to evaluate the ability of plants (H. Annuus, S. Bicolor, and Z. Mays) to phytoextract heavy metals from artificially polluted soils by different concentrations of Cadmium, Lead, and Copper (0, 100, 200, 200 + EDTA). The Seed germination was influenced by the presence of heavy metals and inhibition increased by increasing the heavy metals concentration. A significant difference was observed in the effect of lead and copper. Generally, the length of root, shoot, and intact plant was reduced by all the concentrations used in the experiments. The root system was affected more than the shoot system of the same plants. All heavy metals concentrations caused a reduction in the dry weight and chlorophyll content of all tested plant species; the reduction was increased by increasing the concentration of all heavy metals, especially when EDTA was added. The Bioaccumulation of heavy metals concentration of all the tested plants increased by increasing the concentration. The highest accumulation of cadmium was (81.77mg kg⁻¹), and copper was ( 65.07 mg kg⁻¹) in S. bicolor, while lead-in H. annuus was (60.74 mg kg⁻¹). The order of accumulation of heavy metals in all the tested plant species in the root system and the intact plant was as follows: H. annuus ˃ S. bicolor ˃ Z. mays and shoot system was: H. annuus ˃ Z. mays ˃ S. bicolor. The highest TF of cadmium was (0.41) in H. annuus; lead was (0.72) in Z. mays and S. bicolor, and copper was (0.44) in Z. mays. The tested plant species varied in their response to the heavy metals and the inhibition was concentration depended. In general, the roots system was more affected by heavy metals toxicity than the shoots system; the roots system accumulated more heavy metals in the roots than the shoots system. The addition of EDTA to the last concentration of heavy metals facilitated the availably and absorption of heavy metals from the polluted soil by all tested plant species.

Keywords: phytoextyraction, phytoremediation, translocation, heavy metals, soil pollution

Procedia PDF Downloads 148
4745 A Novel Approach for Energy Utilisation in a Pyrolysis Plant

Authors: S. Murugan, Bohumil Horak

Abstract:

Pyrolysis is one of the possible technologies to derive energy from waste organic substances. In recent years, pilot level and demonstrated plants have been installed in few countries. The heat energy lost during the process is not effectively utilized resulting in less savings of energy and money. This paper proposes a novel approach to integrate a combined heat and power unit(CHP) and reduce the primary energy consumption in a tyre pyrolysis pilot plant. The proposal primarily uses the micro combined heat and power concept that will help to produce both heat and power in the process.

Keywords: pyrolysis, waste tyres, waste plastics, biomass, waste heat

Procedia PDF Downloads 328
4744 Techno-Economic Analysis of the Production of Aniline

Authors: Dharshini M., Hema N. S.

Abstract:

The project for the production of aniline is done by providing 295.46 tons per day of nitrobenzene as feed. The material and energy balance calculations for the different equipment like distillation column, heat exchangers, reactor and mixer are carried out with simulation via DWSIM. The conversion of nitrobenzene to aniline by hydrogenation process is considered to be 96% and the total production of the plant was found to be 215 TPD. The cost estimation of the process is carried out to estimate the feasibility of the plant. The net profit and percentage return of investment is estimated to be ₹27 crores and 24.6%. The payback period was estimated to be 4.05 years and the unit production cost is ₹113/kg. A techno-economic analysis was performed for the production of aniline; the result includes economic analysis and sensitivity analysis of critical factors. From economic analysis, larger the plant scale increases the total capital investment and annual operating cost, even though the unit production cost decreases. Uncertainty analysis was performed to predict the influence of economic factors on profitability and the scenario analysis is one way to quantify uncertainty. In scenario analysis the best-case scenario and the worst-case scenario are compared with the base case scenario. The best-case scenario was found at a feed rate of 120 kmol/hr with a unit production cost of ₹112.05/kg and the worst-case scenario was found at a feed rate of 60 kmol/hr with a unit production cost of ₹115.9/kg. The base case is closely related to the best case by 99.2% in terms of unit production cost. since the unit production cost is less and the profitability is more with less payback time, it is feasible to construct a plant at this capacity.

Keywords: aniline, nitrobenzene, economic analysis, unit production cost

Procedia PDF Downloads 108
4743 Experimental and Analytical Design of Rigid Pavement Using Geopolymer Concrete

Authors: J. Joel Bright, P. Peer Mohamed, M. Aswin SAangameshwaran

Abstract:

The increasing usage of concrete produces 80% of carbon dioxide in the atmosphere. Hence, this results in various environmental effects like global warming. The amount of the carbon dioxide released during the manufacture of OPC due to the calcination of limestone and combustion of fossil fuel is in the order of one ton for every ton of OPC produced. Hence, to minimize this Geo Polymer Concrete was introduced. Geo polymer concrete is produced with 0% cement, and hence, it is eco-friendly and it also uses waste product from various industries like thermal power plant, steel manufacturing plant, and paper waste materials. This research is mainly about using Geo polymer concrete for pavement which gives very high strength than conventional concrete and at the same time gives way for sustainable development.

Keywords: activator solution, GGBS, fly ash, metakaolin

Procedia PDF Downloads 468
4742 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting

Authors: Kemal Polat

Abstract:

In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.

Keywords: fuzzy C-means clustering, fuzzy C-means clustering based attribute weighting, Pima Indians diabetes, SVM

Procedia PDF Downloads 413
4741 A Study on the Vegetative and Osmolyte Accumulation of Capsicum frutescens L. under Zinc Metal Stress

Authors: Ja’afar Umar, Adamu Aliyu Aliero

Abstract:

Plant growth, biochemical parameters, zinc metal concentrations were determined for Capsicum frutescens L. in response to varied concentration of zinc metal. The plant exhibited a decline in the vegetative parameters measured. Free proline and glycine betaine content increases with increasing concentration of zinc metal and differ significantly (P<0.05). It can be concluded that the osmolyte (pro and GB) accumulations, and high length of stem and wide leaf expansion are possible indicator of tolerance to heavy metals (Zinc) in Capsicum frutescens.

Keywords: zinc metal, osmolyte, Capsicum frutescens, stress

Procedia PDF Downloads 484
4740 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks

Authors: Naghmeh Moradpoor Sheykhkanloo

Abstract:

Structured Query Language Injection (SQLI) attack is a code injection technique in which malicious SQL statements are inserted into a given SQL database by simply using a web browser. Losing data, disclosing confidential information or even changing the value of data are the severe damages that SQLI attack can cause on a given database. SQLI attack has also been rated as the number-one attack among top ten web application threats on Open Web Application Security Project (OWASP). OWASP is an open community dedicated to enabling organisations to consider, develop, obtain, function, and preserve applications that can be trusted. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLI attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLI attack categories, and an NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLI attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.

Keywords: neural networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection

Procedia PDF Downloads 469