Search results for: multiple trauma
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5258

Search results for: multiple trauma

4418 Case of A Huge Retroperitoneal Abscess Spanning from the Diaphragm to the Pelvic Brim

Authors: Christopher Leung, Tony Kim, Rebecca Lendzion, Scott Mackenzie

Abstract:

Retroperitoneal abscesses are a rare but serious condition with often delayed diagnosis, non-specific symptoms, multiple causes and high morbidity/mortality. With the advent of more readily available cross-sectional imaging, retroperitoneal abscesses are treated earlier and better outcomes are achieved. Occasionally, a retroperitoneal abscess is present as a huge retroperitoneal abscess, as evident in this 53-year-old male. With a background of chronic renal disease and left partial nephrectomy, this gentleman presented with a one-month history of left flank pain without any other symptoms, including fevers or abdominal pain. CT abdomen and pelvis demonstrated a huge retroperitoneal abscess spanning from the diaphragm, abutting the spleen, down to the iliopsoas muscle and abutting the iliac vessels at the pelvic brim. This large retroperitoneal abscess required open drainage as well as drainage by interventional radiology. A long course of intravenous antibiotics and multiple drainages was required to drain the abscess. His blood culture and fluid culture grew Proteus species suggesting a urinary source, likely from his non-functioning kidney, which had a partial nephrectomy. Such a huge retroperitoneal abscess has rarely been described in the literature. The learning point here is that the basic principle of source control and antibiotics is paramount in treating retroperitoneal abscesses regardless of the size of the abscess.

Keywords: retroperitoneal abscess, retroperitoneal mass, sepsis, genitourinary infection

Procedia PDF Downloads 221
4417 Refugees’inclusion: The Psychological Screening and the Educational Tools in Portugal

Authors: Sandra Figueiredo

Abstract:

To guarantee the well-being and the academic achievement it is crucial into the global society to develop techniques to assess language competence and control psychological aspects on the second language learning context. The current scenario of the war conflicts that are emerging mostly in Europe and Middle East have been resulting in forced immigration and refugees’ maladjustment. The inclusion is the priority for United Nations concerning the sustainability of societies. For inclusion, psychological screening tests and educational tools are urgent. Method: Approximately 100 refugees from Ukraine were assessed, in Portugal, under the administration of the PCL-5. This 20-item instrument evaluates the Post-Traumatic Disorder. Expected results: The statistical analysis will be performed with the International Database Analyzer and SPSS (v. 28). The results expected are the relationship between traumatic events caused by war and post-traumatic symptomatology (anxiety, hypervigilance, stress). Implications: The data will be discussed concerning the problems of belonging, the psychological constraints and educational attainment (language needs included) experienced by the individuals more recently arrived to the hosting societies. The refugees’ acculturation process and the emotional regulation will be addressed.

Keywords: refugees, immigration, educational needs, trauma, inclusion, second language.

Procedia PDF Downloads 58
4416 Learning Curve Effect on Materials Procurement Schedule of Multiple Sister Ships

Authors: Vijaya Dixit Aasheesh Dixit

Abstract:

Shipbuilding industry operates in Engineer Procure Construct (EPC) context. Product mix of a shipyard comprises of various types of ships like bulk carriers, tankers, barges, coast guard vessels, sub-marines etc. Each order is unique based on the type of ship and customized requirements, which are engineered into the product right from design stage. Thus, to execute every new project, a shipyard needs to upgrade its production expertise. As a result, over the long run, holistic learning occurs across different types of projects which contributes to the knowledge base of the shipyard. Simultaneously, in the short term, during execution of a project comprising of multiple sister ships, repetition of similar tasks leads to learning at activity level. This research aims to capture above learnings of a shipyard and incorporate learning curve effect in project scheduling and materials procurement to improve project performance. Extant literature provides support for the existence of such learnings in an organization. In shipbuilding, there are sequences of similar activities which are expected to exhibit learning curve behavior. For example, the nearly identical structural sub-blocks which are successively fabricated, erected, and outfitted with piping and electrical systems. Learning curve representation can model not only a decrease in mean completion time of an activity, but also a decrease in uncertainty of activity duration. Sister ships have similar material requirements. The same supplier base supplies materials for all the sister ships within a project. On one hand, this provides an opportunity to reduce transportation cost by batching the order quantities of multiple ships. On the other hand, it increases the inventory holding cost at shipyard and the risk of obsolescence. Further, due to learning curve effect the production scheduled of each consequent ship gets compressed. Thus, the material requirement schedule of every next ship differs from its previous ship. As more and more ships get constructed, compressed production schedules increase the possibility of batching the orders of sister ships. This work aims at integrating materials management with project scheduling of long duration projects for manufacturing of multiple sister ships. It incorporates the learning curve effect on progressively compressing material requirement schedules and addresses the above trade-off of transportation cost and inventory holding and shortage costs while satisfying budget constraints of various stages of the project. The activity durations and lead time of items are not crisp and are available in the form of probabilistic distribution. A Stochastic Mixed Integer Programming (SMIP) model is formulated which is solved using evolutionary algorithm. Its output provides ordering dates of items and degree of order batching for all types of items. Sensitivity analysis determines the threshold number of sister ships required in a project to leverage the advantage of learning curve effect in materials management decisions. This analysis will help materials managers to gain insights about the scenarios: when and to what degree is it beneficial to treat a multiple ship project as an integrated one by batching the order quantities and when and to what degree to practice distinctive procurement for individual ship.

Keywords: learning curve, materials management, shipbuilding, sister ships

Procedia PDF Downloads 502
4415 An Overbooking Model for Car Rental Service with Different Types of Cars

Authors: Naragain Phumchusri, Kittitach Pongpairoj

Abstract:

Overbooking is a very useful revenue management technique that could help reduce costs caused by either undersales or oversales. In this paper, we propose an overbooking model for two types of cars that can minimize the total cost for car rental service. With two types of cars, there is an upgrade possibility for lower type to upper type. This makes the model more complex than one type of cars scenario. We have found that convexity can be proved in this case. Sensitivity analysis of the parameters is conducted to observe the effects of relevant parameters on the optimal solution. Model simplification is proposed using multiple linear regression analysis, which can help estimate the optimal overbooking level using appropriate independent variables. The results show that the overbooking level from multiple linear regression model is relatively close to the optimal solution (with the adjusted R-squared value of at least 72.8%). To evaluate the performance of the proposed model, the total cost was compared with the case where the decision maker uses a naïve method for the overbooking level. It was found that the total cost from optimal solution is only 0.5 to 1 percent (on average) lower than the cost from regression model, while it is approximately 67% lower than the cost obtained by the naïve method. It indicates that our proposed simplification method using regression analysis can effectively perform in estimating the overbooking level.

Keywords: overbooking, car rental industry, revenue management, stochastic model

Procedia PDF Downloads 172
4414 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms

Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao

Abstract:

Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.

Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50

Procedia PDF Downloads 139
4413 The Impact of Missense Mutation in Phosphatidylinositol Glycan Class A Associated to Paroxysmal Nocturnal Hemoglobinuria and Multiple Congenital Anomalies-Hypotonia-Seizures Syndrome 2: A Computational Study

Authors: Ashish Kumar Agrahari, Amit Kumar

Abstract:

Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal blood disorder that manifests with hemolytic anemia, thrombosis, and peripheral blood cytopenias. The disease is caused by the deficiency of two glycosylphosphatidylinositols (GPI)-anchored proteins (CD55 and CD59) in the hemopoietic stem cells. The deficiency of GPI-anchored proteins has been associated with the somatic mutations in phosphatidylinositol glycan class A (PIGA). However, the mutations that do not cause PNH is associated with the multiple congenital anomalies-hypotonia-seizures syndrome 2 (MCAHS2). To best of our knowledge, no computational study has been performed to explore the atomistic level impact of PIGA mutations on the structure and dynamics of the protein. In the current work, we are mainly interested to get insights into the molecular mechanism of PIGA mutations. In the initial step, we screened the most pathogenic mutations from the pool of publicly available mutations. Further, to get a better understanding, pathogenic mutations were mapped to the modeled structure and subjected to 50ns molecular dynamics simulation. Our computational study suggests that four mutations are highly vulnerable to altering the structural conformation and stability of the PIGA protein, which illustrates its association with PNH and MCAHS2 phenotype.

Keywords: homology modeling, molecular dynamics simulation, missense mutations PNH, MCAHS2, PIGA

Procedia PDF Downloads 145
4412 Semantic Differences between Bug Labeling of Different Repositories via Machine Learning

Authors: Pooja Khanal, Huaming Zhang

Abstract:

Labeling of issues/bugs, also known as bug classification, plays a vital role in software engineering. Some known labels/classes of bugs are 'User Interface', 'Security', and 'API'. Most of the time, when a reporter reports a bug, they try to assign some predefined label to it. Those issues are reported for a project, and each project is a repository in GitHub/GitLab, which contains multiple issues. There are many software project repositories -ranging from individual projects to commercial projects. The labels assigned for different repositories may be dependent on various factors like human instinct, generalization of labels, label assignment policy followed by the reporter, etc. While the reporter of the issue may instinctively give that issue a label, another person reporting the same issue may label it differently. This way, it is not known mathematically if a label in one repository is similar or different to the label in another repository. Hence, the primary goal of this research is to find the semantic differences between bug labeling of different repositories via machine learning. Independent optimal classifiers for individual repositories are built first using the text features from the reported issues. The optimal classifiers may include a combination of multiple classifiers stacked together. Then, those classifiers are used to cross-test other repositories which leads the result to be deduced mathematically. The produce of this ongoing research includes a formalized open-source GitHub issues database that is used to deduce the similarity of the labels pertaining to the different repositories.

Keywords: bug classification, bug labels, GitHub issues, semantic differences

Procedia PDF Downloads 200
4411 An Investigation on Orthopedic Rehabilitation by Avoiding Thermal Necrosis

Authors: R. V. Dahibhate, A. B. Deoghare, P. M. Padole

Abstract:

Maintaining natural integrity of biosystem is paramount significant for orthopedic surgeon while performing surgery. Restoration is challenging task to rehabilitate trauma patient. Drilling is an inevitable procedure to fix implants. The task leads to rise in temperature at the contact site which intends to thermal necrosis. A precise monitoring can avoid thermal necrosis. To accomplish it, data acquiring instrument is integrated with the drill bit. To contemplate it, electronic feedback system is developed. It not only measures temperature without any physical contact in between measuring device and target but also visualizes the site and monitors correct movement of tool path. In the current research work an infrared thermometer data acquisition system is used which monitors variation in temperature at the drilling site and a camera captured movement of drill bit advancement. The result is presented in graphical form which represents variations in temperature, drill rotation and time. A feedback system helps in keeping drill speed in threshold limit.

Keywords: thermal necrosis, infrared thermometer, drilling tool, feedback system

Procedia PDF Downloads 231
4410 Impact of the COVID-19 Pandemic and Social Isolation on the Clients’ Experiences in Counselling and their Access to Services: Perspectives of Violence Against Women Program Staff - A Qualitative Study

Authors: Habiba Nahzat, Karen Crow, Lisa Manuel, Maria Huijbregts

Abstract:

Background and Rationale: The World Health Organization (WHO) declared COVID-19 a pandemic on March 11, 2020. Shortly after, the Ontario provincial and Toronto municipal governments also released multiple directives that led to the mass closure of businesses both in the public and private sectors. Recent research has identified connections between Intimate Partner Violence (IPV) and COVID-19 related stressors - especially because of lockdown and social isolation measures. Psychological impacts of lengthy seclusion coupled with disconnection from extended family and diminished support services can take a toll on families at risk and may increase mental health issues and the prevalence of IPV. Research Question: Thus, the purpose of the study was to understand the perspective of the Violence Against Women (VAW) program staff on the impact of the COVID-19 pandemic; we especially wanted to understand staff views of restrictions on clients’ counseling experiences and the ability to access services in general. The study also aimed to examine VAW program staff experiences regarding remote work and explore how the pandemic restriction measures affected the ability of their program operations to support their clients and each other. Method: A cross-sectional, descriptive qualitative study was conducted with a purposive sample of 9 VAW program staff – eight VAW counselors and one VAW manager. Prior to data collection, program staff collaborated in the development of the study purpose, interview questions and methodology. Ethics approval was obtained from the sponsoring organization’s Research Ethics Board. In-depth individual interviews were conducted with study participants using a semi-structured interview questionnaire. Brief demographic information was also collected prior to the interview. Descriptive statistics were used to analyze quantitative data and qualitative data was analyzed by thematic content analysis. Results: Findings from this study indicate that the COVID-19 pandemic restrictions had an adverse impact on clients seeking VAW services based on VAW staff perspectives. Program staff reported a perceived increase in abuse among women, especially in emotional and financial abuse and experiences of isolation and trauma. Findings further highlight the challenges women experienced when trying to access services in general as well as counseling and legal services. This was perceived to be more prominent among newcomers and marginalized women. The study also revealed client and staff challenges when participating in virtual counseling, their innovations and clients’ creativity in accessing needed counseling and how staff over time adapted to providing virtual support during the pandemic. Conclusion and Next Steps: This study builds upon existing evidence on the impact of COVID-19 restrictions on VAW and may inform future research to better understand the association between the COVID-19 pandemic restrictions and VAW on a broader scale and to inform and support possible short-term and long-term changes in the client experience and counselling practice.

Keywords: COVID-19, pandemic, virtual, violence against women (VAW)

Procedia PDF Downloads 189
4409 Hybrid Weighted Multiple Attribute Decision Making Handover Method for Heterogeneous Networks

Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz

Abstract:

Small cell deployment in 5G networks is a promising technology to enhance capacity and coverage. However, unplanned deployment may cause high interference levels and high number of unnecessary handovers, which in turn will result in an increase in the signalling overhead. To guarantee service continuity, minimize unnecessary handovers, and reduce signalling overhead in heterogeneous networks, it is essential to properly model the handover decision problem. In this paper, we model the handover decision according to Multiple Attribute Decision Making (MADM) method, specifically Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). In this paper, we propose a hybrid TOPSIS method to control the handover in heterogeneous network. The proposed method adopts a hybrid weighting, which is a combination of entropy and standard deviation. A hybrid weighting control parameter is introduced to balance the impact of the standard deviation and entropy weighting on the network selection process and the overall performance. Our proposed method shows better performance, in terms of the number of frequent handovers and the mean user throughput, compared to the existing methods.

Keywords: handover, HetNets, interference, MADM, small cells, TOPSIS, weight

Procedia PDF Downloads 149
4408 Joint Modeling of Longitudinal and Time-To-Event Data with Latent Variable

Authors: Xinyuan Y. Song, Kai Kang

Abstract:

Joint models for analyzing longitudinal and survival data are widely used to investigate the relationship between a failure time process and time-variant predictors. A common assumption in conventional joint models in the survival analysis literature is that all predictors are observable. However, this assumption may not always be supported because unobservable traits, namely, latent variables, which are indirectly observable and should be measured through multiple observed variables, are commonly encountered in the medical, behavioral, and financial research settings. In this study, a joint modeling approach to deal with this feature is proposed. The proposed model comprises three parts. The first part is a dynamic factor analysis model for characterizing latent variables through multiple observed indicators over time. The second part is a random coefficient trajectory model for describing the individual trajectories of latent variables. The third part is a proportional hazard model for examining the effects of time-invariant predictors and the longitudinal trajectories of time-variant latent risk factors on hazards of interest. A Bayesian approach coupled with a Markov chain Monte Carlo algorithm to perform statistical inference. An application of the proposed joint model to a study on the Alzheimer's disease neuroimaging Initiative is presented.

Keywords: Bayesian analysis, joint model, longitudinal data, time-to-event data

Procedia PDF Downloads 144
4407 Effect of Climate Variability on Honeybee's Production in Ondo State, Nigeria

Authors: Justin Orimisan Ijigbade

Abstract:

The study was conducted to assess the effect of climate variability on honeybee’s production in Ondo State, Nigeria. Multistage sampling technique was employed to collect the data from 60 beekeepers across six Local Government Areas in Ondo State. Data collected were subjected to descriptive statistics and multiple regression model analyses. The results showed that 93.33% of the respondents were male with 80% above 40 years of age. Majority of the respondents (96.67%) had formal education and 90% produced honey for commercial purpose. The result revealed that 90% of the respondents admitted that low temperature as a result of long hours/period of rainfall affected the foraging efficiency of the worker bees, 73.33% claimed that long period of low humidity resulted in low level of nectar flow, while 70% submitted that high temperature resulted in improper composition of workers, dunes and queen in the hive colony. The result of multiple regression showed that beekeepers’ experience, educational level, access to climate information, temperature and rainfall were the main factors affecting honey bees production in the study area. Therefore, beekeepers should be given more education on climate variability and its adaptive strategies towards ensuring better honeybees production in the study area.

Keywords: climate variability, honeybees production, humidity, rainfall and temperature

Procedia PDF Downloads 272
4406 A Framework for Designing Complex Product-Service Systems with a Multi-Domain Matrix

Authors: Yoonjung An, Yongtae Park

Abstract:

Offering a Product-Service System (PSS) is a well-accepted strategy that companies may adopt to provide a set of systemic solutions to customers. PSSs were initially provided in a simple form but now take diversified and complex forms involving multiple services, products and technologies. With the growing interest in the PSS, frameworks for the PSS development have been introduced by many researchers. However, most of the existing frameworks fail to examine various relations existing in a complex PSS. Since designing a complex PSS involves full integration of multiple products and services, it is essential to identify not only product-service relations but also product-product/ service-service relations. It is also equally important to specify how they are related for better understanding of the system. Moreover, as customers tend to view their purchase from a more holistic perspective, a PSS should be developed based on the whole system’s requirements, rather than focusing only on the product requirements or service requirements. Thus, we propose a framework to develop a complex PSS that is coordinated fully with the requirements of both worlds. Specifically, our approach adopts a multi-domain matrix (MDM). A MDM identifies not only inter-domain relations but also intra-domain relations so that it helps to design a PSS that includes highly desired and closely related core functions/ features. Also, various dependency types and rating schemes proposed in our approach would help the integration process.

Keywords: inter-domain relations, intra-domain relations, multi-domain matrix, product-service system design

Procedia PDF Downloads 641
4405 Automatic Identification and Monitoring of Wildlife via Computer Vision and IoT

Authors: Bilal Arshad, Johan Barthelemy, Elliott Pilton, Pascal Perez

Abstract:

Getting reliable, informative, and up-to-date information about the location, mobility, and behavioural patterns of animals will enhance our ability to research and preserve biodiversity. The fusion of infra-red sensors and camera traps offers an inexpensive way to collect wildlife data in the form of images. However, extracting useful data from these images, such as the identification and counting of animals remains a manual, time-consuming, and costly process. In this paper, we demonstrate that such information can be automatically retrieved by using state-of-the-art deep learning methods. Another major challenge that ecologists are facing is the recounting of one single animal multiple times due to that animal reappearing in other images taken by the same or other camera traps. Nonetheless, such information can be extremely useful for tracking wildlife and understanding its behaviour. To tackle the multiple count problem, we have designed a meshed network of camera traps, so they can share the captured images along with timestamps, cumulative counts, and dimensions of the animal. The proposed method takes leverage of edge computing to support real-time tracking and monitoring of wildlife. This method has been validated in the field and can be easily extended to other applications focusing on wildlife monitoring and management, where the traditional way of monitoring is expensive and time-consuming.

Keywords: computer vision, ecology, internet of things, invasive species management, wildlife management

Procedia PDF Downloads 138
4404 The Dark History of American Psychiatry: Racism and Ethical Provider Responsibility

Authors: Mary Katherine Hoth

Abstract:

Despite racial and ethnic disparities in American psychiatry being well-documented, there remains an apathetic attitude among nurses and providers within the field to engage in active antiracism and provide equitable, recovery-oriented care. It is insufficient to be a “colorblind” nurse or provider and state that call care provided is identical for every patient. Maintaining an attitude of “colorblindness” perpetuates the racism prevalent throughout healthcare and leads to negative patient outcomes. The purpose of this literature review is to highlight the how the historical beginnings of psychiatry have evolved into the disparities seen in today’s practice, as well as to provide some insight on methods that providers and nurses can employ to actively participate in challenging these racial disparities. Background The application of psychiatric medicine to White people versus Black, Indigenous, and other People of Color has been distinctly different as a direct result of chattel slavery and the development of pseudoscience “diagnoses” in the 19th century. This weaponization of the mental health of Black people continues to this day. Population The populations discussed are Black, Indigenous, and other People of Color, with a primary focus on Black people’s experiences with their mental health and the field of psychiatry. Methods A literature review was conducted using CINAHL, EBSCO, MEDLINE, and PubMed databases with the following terms: psychiatry, mental health, racism, substance use, suicide, trauma-informed care, disparities and recovery-oriented care. Articles were further filtered based on meeting the criteria of peer-reviewed, full-text availability, written in English, and published between 2018 and 2023. Findings Black patients are more likely to be diagnosed with psychotic disorders and prescribed antipsychotic medications compared to White patients who were more often diagnosed with mood disorders and prescribed antidepressants. This same disparity is also seen in children and adolescents, where Black children are more likely to be diagnosed with behavior problems such as Oppositional Defiant Disorder (ODD) and White children with the same presentation are more likely to be diagnosed with Attention Hyperactivity Disorder. Medications advertisements for antipsychotics like Haldol as recent as 1974 portrayed a Black man, labeled as “agitated” and “aggressive”, a trope we still see today in police violence cases. The majority of nursing and medical school programs do not provide education on racism and how to actively combat it in practice, leaving many healthcare professionals acutely uneducated and unaware of their own biases and racism, as well as structural and institutional racism. Conclusions Racism will continue to grow wherever it is given time, space, and energy. Providers and nurses have an ethical obligation to educate themselves, actively deconstruct their personal racism and bias, and continuously engage in active antiracism by dismantling racism wherever it is encountered, be it structural, institutional, or scientific racism. Agents of change at the patient care level not only improve the outcomes of Black patients, but it will also lead the way in ensuring Black, Indigenous, and other People of Color are included in research of methods and medications in psychiatry in the future.

Keywords: disparities, psychiatry, racism, recovery-oriented care, trauma-informed care

Procedia PDF Downloads 129
4403 Object-Scene: Deep Convolutional Representation for Scene Classification

Authors: Yanjun Chen, Chuanping Hu, Jie Shao, Lin Mei, Chongyang Zhang

Abstract:

Traditional image classification is based on encoding scheme (e.g. Fisher Vector, Vector of Locally Aggregated Descriptor) with low-level image features (e.g. SIFT, HoG). Compared to these low-level local features, deep convolutional features obtained at the mid-level layer of convolutional neural networks (CNN) have richer information but lack of geometric invariance. For scene classification, there are scattered objects with different size, category, layout, number and so on. It is crucial to find the distinctive objects in scene as well as their co-occurrence relationship. In this paper, we propose a method to take advantage of both deep convolutional features and the traditional encoding scheme while taking object-centric and scene-centric information into consideration. First, to exploit the object-centric and scene-centric information, two CNNs that trained on ImageNet and Places dataset separately are used as the pre-trained models to extract deep convolutional features at multiple scales. This produces dense local activations. By analyzing the performance of different CNNs at multiple scales, it is found that each CNN works better in different scale ranges. A scale-wise CNN adaption is reasonable since objects in scene are at its own specific scale. Second, a fisher kernel is applied to aggregate a global representation at each scale and then to merge into a single vector by using a post-processing method called scale-wise normalization. The essence of Fisher Vector lies on the accumulation of the first and second order differences. Hence, the scale-wise normalization followed by average pooling would balance the influence of each scale since different amount of features are extracted. Third, the Fisher vector representation based on the deep convolutional features is followed by a linear Supported Vector Machine, which is a simple yet efficient way to classify the scene categories. Experimental results show that the scale-specific feature extraction and normalization with CNNs trained on object-centric and scene-centric datasets can boost the results from 74.03% up to 79.43% on MIT Indoor67 when only two scales are used (compared to results at single scale). The result is comparable to state-of-art performance which proves that the representation can be applied to other visual recognition tasks.

Keywords: deep convolutional features, Fisher Vector, multiple scales, scale-specific normalization

Procedia PDF Downloads 331
4402 Manifestation of Behavioral and Emotional Disturbances in News Reporters Covering Traumatic Events

Authors: Misbah Shahzadi

Abstract:

The present study was conducted to identify the emotional and behavioral disturbances among the News Reporters covering Traumatic events. In the present study, a sample of 50 News Reporters belonging to the national and the local news agencies were selected from Rawalpindi and Islamabad who had covered any traumatic event in the past one year. Rotter’s Incomplete Sentence Blank (RISB) and Impact of Event Scale interpretations were used to assess a variety of emotional and behavioral patterns of News Reporters. Results showed that some of the frequent emotional and behavioral reactions exhibited by individuals like withdrawal, anxiety\depression, aggression, hyperarousal and avoidance behavior whereas gender-based comparisons indicated that there is no significant gender difference in the News Reporters in manifestations of behavioral and emotional disturbances. It is concluded that significant negative emotional and behavioral reactions are exhibited by the News Reporters who cover traumatic events. The study identifies the negative emotional and behavioral reactions/disturbances after trauma, which can be helpful for identifying problematic areas for counseling and therapeutic interventions for these News Reporters.

Keywords: behavioural disturbance, emotional disturbance, news reporters, traumatic events

Procedia PDF Downloads 430
4401 Targeting Calcium Dysregulation for Treatment of Dementia in Alzheimer's Disease

Authors: Huafeng Wei

Abstract:

Dementia in Alzheimer’s Disease (AD) is the number one cause of dementia internationally, without effective treatments. Increasing evidence suggest that disruption of intracellular calcium homeostasis, primarily pathological elevation of cytosol and mitochondria but reduction of endoplasmic reticulum (ER) calcium concentrations, play critical upstream roles on multiple pathologies and associated neurodegeneration, impaired neurogenesis, synapse, and cognitive dysfunction in various AD preclinical studies. The last federal drug agency (FDA) approved drug for AD dementia treatment, memantine, exert its therapeutic effects by ameliorating N-methyl-D-aspartate (NMDA) glutamate receptor overactivation and subsequent calcium dysregulation. More research works are needed to develop other drugs targeting calcium dysregulation at multiple pharmacological acting sites for future effective AD dementia treatment. Particularly, calcium channel blockers for the treatment of hypertension and dantrolene for the treatment of muscle spasm and malignant hyperthermia can be repurposed for this purpose. In our own research work, intranasal administration of dantrolene significantly increased its brain concentrations and durations, rendering it a more effective therapeutic drug with less side effects for chronic AD dementia treatment. This review summarizesthe progress of various studies repurposing drugs targeting calcium dysregulation for future effective AD dementia treatment as potentially disease-modifying drugs.

Keywords: alzheimer, calcium, cognitive dysfunction, dementia, neurodegeneration, neurogenesis

Procedia PDF Downloads 182
4400 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids

Authors: Niklas Panten, Eberhard Abele

Abstract:

This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.

Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control

Procedia PDF Downloads 195
4399 Resistance Spot Welding of Boron Steel 22MnB5 with Complex Welding Programs

Authors: Szymon Kowieski, Zygmunt Mikno

Abstract:

The study involved the optimization of process parameters during resistance spot welding of Al-coated martensitic boron steel 22MnB5, applied in hot stamping, performed using a programme with a multiple current impulse mode and a programme with variable pressure force. The aim of this research work was to determine the possibilities of a growth in welded joint strength and to identify the expansion of a welding lobe. The process parameters were adjusted on the basis of welding process simulation and confronted with experimental data. 22MnB5 steel is known for its tendency to obtain high hardness values in weld nuggets, often leading to interfacial failures (observed in the study-related tests). In addition, during resistance spot welding, many production-related factors can affect process stability, e.g. welding lobe narrowing, and lead to the deterioration of quality. Resistance spot welding performed using the above-named welding programme featuring 3 levels of force made it possible to achieve 82% of welding lobe extension. Joints made using the multiple current impulse program, where the total welding time was below 1.4s, revealed a change in a peeling mode (to full plug) and an increase in weld tensile shear strength of 10%.

Keywords: 22MnB5, hot stamping, interfacial fracture, resistance spot welding, simulation, single lap joint, welding lobe

Procedia PDF Downloads 386
4398 The Mediation Effect of PTSD and Aggression on the Relationship of Childhood Physical Abuse and Suicidal Behavior in Homeless People

Authors: Jina Hong, Seongeun Ryu, Sungeun You

Abstract:

Suicide rate among homeless people are much higher than one in the general population. The purpose of this study was to examine the mediating effect of PTSD and aggression in the relationship between childhood physical abuse and suicidal behavior among homeless people. One hundred one homeless were recruited from street and shelters in Korea. Face-to-face interviews were conducted by master’s level graduate students or facility employees of shelters. All participants completed the Suicidal Behaviors Questionnaire-Revised (SBQ-R), Life History of Aggression Questionnaire (LHAQ), Primary Care PTSD (PC-PTSD), and Traumatic Life Events Questionnaire (TLEQ). The average age of homeless people participated in the study was 55.2 years (SD = 10.7) with the age range of 30 to 87. Results indicated that PTSD symptoms and aggression fully mediated the relationship between childhood physical abuse and suicidal behavior among the homeless. These findings suggest the need for trauma-informed care for the homeless, and warrant the need for psychological services for PTSD and aggression in order to reduce suicide risk among homeless people.

Keywords: aggression, homeless, PTSD, suicidal behavior

Procedia PDF Downloads 381
4397 Indigenous Storytelling: Transformation for Health, Emotions and Spirituality

Authors: Annabelle Nelson

Abstract:

This literature review documents indigenous storytelling as it functions to help humans face adversity and find emotional strength by aligning with nature. Archetypes in stories can transform the inner world from a Jungian perspective. Joseph Campbell’s hero-heroine cycle depicts the structure of stories to include a call to adventure, tests, helpers, and a return as the transformed person can help him or herself and even help their communities. By showcasing certain character traits, such as bravery or perseverance or humility, stories give maps for humans to face adversity. The main characters or archetypes in stories, as Carl Jung posited, provide a vehicle that can open consciousness if a listener identifies with the character. As documented in the review, this has many benefits. First, it can open consciousness to the collective unconscious for insight and intuitive clarity, as well as healing and release emotional trauma. The resultant spacious quality of consciousness allows the spiritual self to present insights to conscious awareness. Research in applied youth development programs demonstrates the utility of storytelling to prompt healthy choices and transform difficult life experience into success.

Keywords: archetypes, learning, storytelling, transformation

Procedia PDF Downloads 187
4396 Pinch Technology for Minimization of Water Consumption at a Refinery

Authors: W. Mughees, M. Alahmad

Abstract:

Water is the most significant entity that controls local and global development. For the Gulf region, especially Saudi Arabia, with its limited potable water resources, the potential of the fresh water problem is highly considerable. In this research, the study involves the design and analysis of pinch-based water/wastewater networks. Multiple water/wastewater networks were developed using pinch analysis involving direct recycle/material recycle method. Property-integration technique was adopted to carry out direct recycle method. Particularly, a petroleum refinery was considered as a case study. In direct recycle methodology, minimum water discharge and minimum fresh water resource targets were estimated. Re-design (or retrofitting) of water allocation in the networks was undertaken. Chemical Oxygen Demand (COD) and hardness properties were taken as pollutants. This research was based on single and double contaminant approach for COD and hardness and the amount of fresh water was reduced from 340.0 m3/h to 149.0 m3/h (43.8%), 208.0 m3/h (61.18%) respectively. While regarding double contaminant approach, reduction in fresh water demand was 132.0 m3/h (38.8%). The required analysis was also carried out using mathematical programming technique. Operating software such as LINGO was used for these studies which have verified the graphical method results in a valuable and accurate way. Among the multiple water networks, the one possible water allocation network was developed based on mass exchange.

Keywords: minimization, water pinch, water management, pollution prevention

Procedia PDF Downloads 477
4395 Balance Control Mechanisms in Individuals With Multiple Sclerosis in Virtual Reality Environment

Authors: Badriah Alayidi, Emad Alyahya

Abstract:

Background: Most people with Multiple Sclerosis (MS) report worsening balance as the condition progresses. Poor balance control is also well known to be a significant risk factor for both falling and fear of falling. The increased risk of falls with disease progression thus makes balance control an essential target of gait rehabilitation amongst people with MS. Intervention programs have developed various methods to improve balance control, and accumulating evidence suggests that exercise programs may help people with MS improve their balance. Among these methods, virtual reality (VR) is growing in popularity as a balance-training technique owing to its potential benefits, including better compliance and greater user happiness. However, it is not clear if a VR environment will induce different balance control mechanisms in MS as compared to healthy individuals or traditional environments. Therefore, this study aims to examine how individuals with MS control their balance in a VR setting. Methodology: The proposed study takes an empirical approach to estimate and determine the role of balance response in persons with MS using a VR environment. It will use primary data collected through patient observations, physiological and biomechanical evaluation of balance, and data analysis. Results: The preliminary systematic review and meta-analysis indicated that there was variability in terms of the outcome assessing balance response in people with MS. The preliminary results of these assessments have the potential to provide essential indicators of the progression of MS and contribute to the individualization of treatment and evaluation of the interventions’ effectiveness. The literature describes patients who have had the opportunity to experiment in VR settings and then used what they have learned in the real world, suggesting that this VR setting could be more appealing than conditional settings. The findings of the proposed study will be beneficial in estimating and determining the effect of VR on balance control in persons with MS. In previous studies, VR was shown to be an interesting approach to neurological rehabilitation, but more data are needed to support this approach in MS. Conclusions: The proposed study enables an assessment of balance and evaluations of a variety of physiological implications related to neural activity as well as biomechanical implications related to movement analysis.

Keywords: multiple sclerosis, virtual reality, postural control, balance

Procedia PDF Downloads 74
4394 Algerian Literature Written in English: A Comparative Analysis of Four Novels and Their Historical, Cultural, and Identity Themes

Authors: Wafa Nouari

Abstract:

This study compares four novels written in English by Algerian writers: Donkey Heart Monkey Mind by Djaffar Chetouane, Pebble in the River by Noufel Bouzeboudja, Sophia in the White City by Belkacem Mezghouchene, and The Inner Light of Darkness by Iheb Kharab. It applies comparative research methods and cultural studies as the literary theory to analyze how these novels depict Algeria’s culture, history, and identity through their genre, style, tone, perspective, and structure. It identifies some common themes shared by them, such as the quest for freedom and dignity in a context of oppression and colonialism and the use of storytelling, imagination, and creativity as coping mechanisms for trauma and adversity. It also highlights their differences in terms of style, genre, setting, period, and perspectives. It concludes that these novels offer rich and diverse insights into Algeria and its multifaceted reality. It also discusses some limitations and challenges related to Algerian literature in English and suggests some directions for future research.

Keywords: Algeri an literature in English, comparative research methods, cultural studies, diversity and complexity

Procedia PDF Downloads 138
4393 Mobility Management for Pedestrian Accident Predictability and Mitigation Strategies Using Multiple

Authors: Oscar Norman Nekesa, Yoshitaka Kajita

Abstract:

Tom Mboya Street is a vital urban corridor within the spectrum of Nairobi city, it experiences high volumes of pedestrian and vehicular traffic. Despite past intervention measures to lessen this catastrophe, rates have remained high. This highlights significant safety concerns that need urgent attention. This study investigates the correlation and pedestrian accident predictability with significant independent variables using multiple linear regression to model to develop effective mobility management strategies for accident mitigation. The methodology involves collecting and analyzing data on pedestrian accidents and various related independent variables. Data sources include the National Transport and Safety Authority (NTSA), Kenya National Bureau of Statistics, and Nairobi City County records, covering five years. This study aims to investigate that traffic volumes (pedestrian and vehicle), Vehicular speed, human factors, illegal parking, policy issues, urban-land use, built environment, traffic signals conditions, inadequate lighting, and insufficient traffic control measures significantly have predictability with the rate of pedestrian accidents. Explanatory variables related to road design and geometry are significant in predictor models for the Tom Mboya Road link but less influential in junction along the 5 km stretch road models. The most impactful variable across all models was vehicular traffic flow. The study recommends infrastructural improvements, enhanced enforcement, and public awareness campaigns to reduce accidents and improve urban mobility. These insights can inform policy-making and urban planning to enhance pedestrian safety along the dense packed Tom Mboya Street and similar urban settings. The findings will inform evidence-based interventions to enhance pedestrian safety and improve urban mobility.

Keywords: multiple linear regression, urban mobility, traffic management, Nairobi, Tom Mboya street, infrastructure conditions., pedestrian safety, correlation and prediction

Procedia PDF Downloads 25
4392 Fibroblast Compatibility of Core-Shell Coaxially Electrospun Hybrid Poly(ε-Caprolactone)/Chitosan Scaffolds

Authors: Hilal Turkoglu Sasmazel, Ozan Ozkan, Seda Surucu

Abstract:

Tissue engineering is the field of treating defects caused by injuries, trauma or acute/chronic diseases by using artificial scaffolds that mimic the extracellular matrix (ECM), the natural biological support for the tissues and cells within the body. The main aspects of a successful artificial scaffold are (i) large surface area in order to provide multiple anchorage points for cells to attach, (ii) suitable porosity in order to achieve 3 dimensional growth of the cells within the scaffold as well as proper transport of nutrition, biosignals and waste and (iii) physical, chemical and biological compatibility of the material in order to obtain viability throughout the healing process. By hybrid scaffolds where two or more different materials were combined with advanced fabrication techniques into complex structures, it is possible to combine the advantages of individual materials into one single structure while eliminating the disadvantages of each. Adding this to the complex structure provided by advanced fabrication techniques enables obtaining the desired aspects of a successful artificial tissue scaffold. In this study, fibroblast compatibility of poly(ε-caprolactone) (PCL)/chitosan core-shell electrospun hybrid scaffolds with proper mechanical, chemical and physical properties successfully developed in our previous study was investigated. Standard 7-day cell culture was carried out with L929 fibroblast cell line. The viability of the cells cultured with the scaffolds was monitored with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay for every 48 h starting with 24 h after the initial seeding. In this assay, blank commercial tissue culture polystyrene (TCPS) Petri dishes, single electrospun PCL and single electrospun chitosan mats were used as control in order to compare and contrast the performance of the hybrid scaffolds. The adhesion, proliferation, spread and growth of the cells on/within the scaffolds were observed visually on the 3rd and the 7th days of the culture period with confocal laser scanning microscopy (CSLM) and scanning electron microscopy (SEM). The viability assay showed that the hybrid scaffolds caused no toxicity for fibroblast cells and provided a steady increase in cell viability, effectively doubling the cell density for every 48 h for the course of 7 days, as compared to TCPS, single electrospun PCL or chitosan mats. The cell viability on the hybrid scaffold was ~2 fold better compared to TCPS because of its 3D ECM-like structure compared to 2D flat surface of commercially cell compatible TCPS, and the performance was ~2 fold and ~10 fold better compared to single PCL and single chitosan mats, respectively, even though both fabricated similarly with electrospinning as non-woven fibrous structures, because single PCL and chitosan mats were either too hydrophobic or too hydrophilic to maintain cell attachment points. The viability results were verified with visual images obtained with CSLM and SEM, in which cells found to achieve characteristic spindle-like fibroblast shape and spread on the surface as well within the pores successfully at high densities.

Keywords: chitosan, core-shell, fibroblast, electrospinning, PCL

Procedia PDF Downloads 176
4391 Reimagining Landscapes: Psychological Responses and Behavioral Shifts in the Aftermath of the Lytton Creek Fire

Authors: Tugba Altin

Abstract:

In an era where the impacts of climate change resonate more pronouncedly than ever, communities globally grapple with events bearing both tangible and intangible ramifications. Situating this within the evolving landscapes of Psychological and Behavioral Sciences, this research probes the profound psychological and behavioral responses evoked by such events. The Lytton Creek Fire of 2021 epitomizes these challenges. While tangible destruction is immediate and evident, the intangible repercussions—emotional distress, disintegration of cultural landscapes, and disruptions in place attachment (PA)—require meticulous exploration. PA, emblematic of the emotional and cognitive affiliations individuals nurture with their environments, emerges as a cornerstone for comprehending how environmental cataclysms influence cultural identity and bonds to land. This study, harmonizing the core tenets of an interpretive phenomenological approach with a hermeneutic framework, underscores the pivotal nature of this attachment. It delves deep into the realm of individuals' experiences post the Lytton Creek Fire, unraveling the intricate dynamics of PA amidst such calamity. The study's methodology deviates from conventional paradigms. Instead of traditional interview techniques, it employs walking audio sessions and photo elicitation methods, granting participants the agency to immerse, re-experience, and vocalize their sentiments in real-time. Such techniques shed light on spatial narratives post-trauma and capture the otherwise elusive emotional nuances, offering a visually rich representation of place-based experiences. Central to this research is the voice of the affected populace, whose lived experiences and testimonies form the nucleus of the inquiry. As they renegotiate their bonds with transformed environments, their narratives reveal the indispensable role of cultural landscapes in forging place-based identities. Such revelations accentuate the necessity of integrating both tangible and intangible trauma facets into community recovery strategies, ensuring they resonate more profoundly with affected individuals. Bridging the domains of environmental psychology and behavioral sciences, this research accentuates the intertwined nature of tangible restoration with the imperative of emotional and cultural recuperation post-environmental disasters. It advocates for adaptation initiatives that are rooted in the lived realities of the affected, emphasizing a holistic approach that recognizes the profundity of human connections to landscapes. This research advocates the interdisciplinary exchange of ideas and strategies in addressing post-disaster community recovery strategies. It not only enriches the climate change discourse by emphasizing the human facets of disasters but also reiterates the significance of an interdisciplinary approach, encompassing psychological and behavioral nuances, for fostering a comprehensive understanding of climate-induced traumas. Such a perspective is indispensable for shaping more informed, empathetic, and effective adaptation strategies.

Keywords: place attachment, community recovery, disaster response, restorative landscapes, sensory response, visual methodologies

Procedia PDF Downloads 59
4390 Retrospective Casenote Audit of Venous Thromboembolism Prophylaxis in Maxillofacial Patients

Authors: Joshua Abraham, Craig Wales

Abstract:

Abstract—SIGN Guideline 122 recommends that all patients who are admitted to hospital are assessed for venous thromboembolism risk within 24 hours of admission. NHS Greater Glasgow and Clyde provide guidance on this in the form of a proforma. Patients are then subsequently prescribed either thrombo-embolic-deterrent stockings (TEDS)/low molecular weight heparin (LMWH) for the prevention of VTE based on their score. A retrospective casenote audit of a random sample of fifty oncology and trauma inpatients at the QEUH in December 2019 was performed. 90% of patients had a risk assessment conducted as evidenced by a completed proforma. In 78% of these patients, the proforma fully completed. Overall 94% of patients had some for of thromboprophylaxis prescribed in the form of TEDS or LMWH. A lack of 100% compliance against the given standards highlighted potential implications for patient safety, but also medico-legal ramifications for staff. Clinical judgement can only be relied upon if there is written documentation as evidence. Further staff education and the suggestion of a written prompt to the clerk-in documentation will hopefully improve compliance, whilst a repeat audit should demonstrate any improvement.

Keywords: Maxillofacial , Thromboembolism, Thromboprophylaxis , Prescription

Procedia PDF Downloads 159
4389 The Actoprotective Efficiency of Pyrimidine Derivatives

Authors: Nail Nazarov, Vladimir Zobov, Alexandra Vyshtakalyuk, Vyacheslav Semenov, Irina Galyametdinova, Vladimir Reznik

Abstract:

There have been studied effects of xymedon and six new pyrimidine derivatives, that are close and distant analogs of xymedon, on rats' working capacity in the test 'swimming to failure'. It has been shown that a single administration of the studied compounds did not have a statistically significant effect in the test. In the conditions of multiple intraperitoneal administration of the studied pyrimidine derivatives, the compound L-ascorbate, 1-(2-hydroxyethyl)-4.6-dimethyl-1.2-dihydropyrimidine-2-one had the lowest toxicity and the most pronounced actoprotective effect. Introduction in the dose of 20 mg/kg caused a statistically significant increase 440 % in the duration of swimming of rats on the 14th day of the experiment compared with the control group. Multiple administration of the compound in the conditions of physical load did not affect leucopoiesis but stimulates erythropoiesis resulting in an increase in the number of erythrocytes and a hemoglobin level. The substance introduction under mixed exhausting loads prevented such changes of blood biochemical parameters as reduction of glucose, increased of urea and lactic acid levels, what indicates improvement in the animals' tolerability of loads and an anti-catabolic effect of the compound. Absence of hepato and cardiotoxic effects of the substance has been shown. This work was performed with the financial support of Russian Science Foundation (grant № 14-50-00014).

Keywords: actoprotectors, physical working capacity, pyrimidine derivatives, xymedon

Procedia PDF Downloads 291