Search results for: international ovarian tumor analysis classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32181

Search results for: international ovarian tumor analysis classification

31341 Investigating the Causes of Human Error-Induced Incidents in the Maintenance Operations of Petrochemical Industry by Using Human Factors Analysis and Classification System

Authors: Omid Kalatpour, Mohammadreza Ajdari

Abstract:

This article studied the possible causes of human error-induced incidents in the petrochemical industry maintenance activities by using Human Factors Analysis and Classification System (HFACS). The purpose of the study was anticipating and identifying these causes and proposing corrective and preventive actions. Maintenance department in a petrochemical company was selected for research. A checklist of human error-induced incidents was developed based on four HFACS main levels and nineteen sub-groups. Hierarchical task analysis (HTA) technique was used to identify maintenance activities and tasks. The main causes of possible incidents were identified by checklist and recorded. Corrective and preventive actions were defined depending on priority. Analyzing the worksheets of 444 activities in four levels of HFACS showed 37.6% of the causes were at the level of unsafe actions, 27.5% at the level of unsafe supervision, 20.9% at the level of preconditions for unsafe acts and 14% of the causes were at the level of organizational effects. The HFACS sub-groups showed errors (24.36%) inadequate supervision (14.89%) and violations (13.26%) with the most frequency. According to findings of this study, increasing the training effectiveness of operators and supervision improvement respectively are the most important measures in decreasing the human error-induced incidents in petrochemical industry maintenance.

Keywords: human error, petrochemical industry, maintenance, HFACS

Procedia PDF Downloads 242
31340 Investigation of Topic Modeling-Based Semi-Supervised Interpretable Document Classifier

Authors: Dasom Kim, William Xiu Shun Wong, Yoonjin Hyun, Donghoon Lee, Minji Paek, Sungho Byun, Namgyu Kim

Abstract:

There have been many researches on document classification for classifying voluminous documents automatically. Through document classification, we can assign a specific category to each unlabeled document on the basis of various machine learning algorithms. However, providing labeled documents manually requires considerable time and effort. To overcome the limitations, the semi-supervised learning which uses unlabeled document as well as labeled documents has been invented. However, traditional document classifiers, regardless of supervised or semi-supervised ones, cannot sufficiently explain the reason or the process of the classification. Thus, in this paper, we proposed a methodology to visualize major topics and class components of each document. We believe that our methodology for visualizing topics and classes of each document can enhance the reliability and explanatory power of document classifiers.

Keywords: data mining, document classifier, text mining, topic modeling

Procedia PDF Downloads 403
31339 Regulating Nanocarrier and Mononuclear Phagocyte System Interactions through Esomeprazole-Based Preconditioning Strategy

Authors: Zakia Belhadj, Bing He, Hua Zhang, Xueqing Wang, Wenbing Dai, Qiang Zhang

Abstract:

Mononuclear phagocyte system (MPS) forms an abominable obstacle hampering the tumor delivery efficiency of nanoparticles. Passively targeted nanocarriers have received clinical approval over the past 20 years. However, none of the actively targeted nanocarriers have entered clinical trials. Thus it is important to endue effective targeting ability to actively targeted approaches by overcoming biological barriers to nanoparticle drug delivery. Here, it presents that an Esomeprazole-based preconditioning strategy for regulating nanocarrier-MPS interaction to substantially prolong circulation time and enhance tumor targeting of nanoparticles. In vitro, the clinically approved proton pump inhibitor Esomeprazole “ESO” was demonstrated to reduce interactions between macrophages and subsequently injected targeted vesicles by interfering with their lysosomal trafficking. Of note, in vivo studies demonstrated that ESO pretreatment greatly decreased the liver and spleen uptake of c(RGDm7)-modified vesicles, highly enhanced their tumor accumulation, thereby provided superior therapeutic efficacy of c(RGDm7)-modified vesicles co-loaded with Doxorubicin (DOX) and Gefitinib (GE). This MPS-preconditioning strategy using ESO provides deeper insights into regulating nanoparticles interaction with the phagocytic system and enhancing their cancer cells' accessibility for anticancer therapy.

Keywords: esomeprazole (ESO), mononuclear phagocyte system (MPS), preconditioning strategy, targeted lipid vesicles

Procedia PDF Downloads 176
31338 Probabilistic Crash Prediction and Prevention of Vehicle Crash

Authors: Lavanya Annadi, Fahimeh Jafari

Abstract:

Transportation brings immense benefits to society, but it also has its costs. Costs include such as the cost of infrastructure, personnel and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion and various indirect costs in terms of air transport. More research has been done to identify the various factors that affect road accidents, such as road infrastructure, traffic, sociodemographic characteristics, land use, and the environment. The aim of this research is to predict the probabilistic crash prediction of vehicles using machine learning due to natural and structural reasons by excluding spontaneous reasons like overspeeding etc., in the United States. These factors range from weather factors, like weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity to human made structures like road structure factors like bump, roundabout, no exit, turning loop, give away, etc. Probabilities are dissected into ten different classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes that happened in all states collected by the US government. To calculate the probability, multinomial expected value was used and assigned a classification label as the crash probability. We applied three different classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-deep insights through exploratory data analysis.

Keywords: road safety, crash prediction, exploratory analysis, machine learning

Procedia PDF Downloads 112
31337 Automatic Classification for the Degree of Disc Narrowing from X-Ray Images Using CNN

Authors: Kwangmin Joo

Abstract:

Automatic detection of lumbar vertebrae and classification method is proposed for evaluating the degree of disc narrowing. Prior to classification, deep learning based segmentation is applied to detect individual lumbar vertebra. M-net is applied to segment five lumbar vertebrae and fine-tuning segmentation is employed to improve the accuracy of segmentation. Using the features extracted from previous step, clustering technique, k-means clustering, is applied to estimate the degree of disc space narrowing under four grade scoring system. As preliminary study, techniques proposed in this research could help building an automatic scoring system to diagnose the severity of disc narrowing from X-ray images.

Keywords: Disc space narrowing, Degenerative disc disorders, Deep learning based segmentation, Clustering technique

Procedia PDF Downloads 125
31336 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie

Abstract:

Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. That is why the need for automation of this task is urgent. A lot of studies have investigated the subject using different standard image processing descriptors and sometimes hand-crafted ones.In this work, we make a comparative study between classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN, Autoencoders, Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approaches

Keywords: pollens identification, features extraction, pollens classification, automated palynology

Procedia PDF Downloads 137
31335 One-Shot Text Classification with Multilingual-BERT

Authors: Hsin-Yang Wang, K. M. A. Salam, Ying-Jia Lin, Daniel Tan, Tzu-Hsuan Chou, Hung-Yu Kao

Abstract:

Detecting user intent from natural language expression has a wide variety of use cases in different natural language processing applications. Recently few-shot training has a spike of usage on commercial domains. Due to the lack of significant sample features, the downstream task performance has been limited or leads to an unstable result across different domains. As a state-of-the-art method, the pre-trained BERT model gathering the sentence-level information from a large text corpus shows improvement on several NLP benchmarks. In this research, we are proposing a method to change multi-class classification tasks into binary classification tasks, then use the confidence score to rank the results. As a language model, BERT performs well on sequence data. In our experiment, we change the objective from predicting labels into finding the relations between words in sequence data. Our proposed method achieved 71.0% accuracy in the internal intent detection dataset and 63.9% accuracy in the HuffPost dataset. Acknowledgment: This work was supported by NCKU-B109-K003, which is the collaboration between National Cheng Kung University, Taiwan, and SoftBank Corp., Tokyo.

Keywords: OSML, BERT, text classification, one shot

Procedia PDF Downloads 101
31334 Polycystic Ovarian Syndrome (PCOS) as an Evolutionary Mismatch Disorder: An Argument for the Significance of Hyperandrogenism on Reproductive Fitness in Ancestral Populations

Authors: Courtney Manthey-Pierce, Anna Warrener

Abstract:

Polycystic ovarian syndrome (PCOS) is the most common endocrine disruptive disorder in females. PCOS is primarily characterized by polycystic ovaries, anovulation, hirsutism, insulin resistance, and hyperandrogenism. Despite negative reproductive consequences for females from anovulation and endocrine dysfunction, genes associated with the pathogenesis of PCOS are highly hereditable (h2 = 0.72). An evolutionary mismatch occurs when a trait that evolved in one environment has become maladaptive in another environment. The idea that PCOS is an evolutionary mismatch disease has been promoted by several researchers. Each trait of the resulting PCOS phenotype should be investigated individually in order to demonstrate an evolutionary mismatch. Hyperandrogenism is often regarded as the main characteristic of PCOS Hyperandrogenism may have aided with conception in older females, increased bone mineral density, and supported prolonged breastfeeding in nutritionally distressed populations. Because of the high prevalence of PCOS in the modern world, approximately 6%, it is often argued that PCOS emerged in an ancestral population prior to the migration out of Africa approximately 200,000 years ago. This environment would be characterized by sporadic periods of nutrition deficit and resource hardships as the climate began changing. Presently, modern society is characterized by obesity and sedentary lifestyles. The prevalence of obesity renders hyperandrogenism PCOS useless as there are no periods of nutritional distress requiring androgens for increased reproductive rates. In an ancestral environment, hyperandrogenism would likely lead to sporadic anovulation and mild secondary symptoms, however high levels of androgens in a modern environment led to prolonged if not permanent infertility and excessive secondary problems. Thus, hyperandrogenism related to PCOS appears to meet evolutionary mismatch criteria. Seen in this light, PCOS may be effectively treated as a probably evolutionary mismatch.

Keywords: evolutionary mismatch, heritability, hyperandrogenism, mismatch disorder

Procedia PDF Downloads 247
31333 The Role of Trust in International Relations– Examining India’s Gujaral Doctrine and South Asian Politics

Authors: Bhavana Mahajan

Abstract:

International Relations is a discipline of paradoxes. The State is the dominant political institution, yet little attention has been accorded to why individual countries behave the way they do with the theoretical analysis dismissing the State as a reactionary monolith – thus States either play to “quest for power” or to “systemic” forces. However, States do behave as and are influenced by agents when interacting with international structures as well as with other states. While questions on “competitive power politics” and “trust” have been examined and developed to a fair extent by International Relations theorists in the post 1990s period, their application to the domain of South Asian politics is limited and little research, if any, examines the conduct of foreign policy beyond rational choice. This paper is an initial attempt to marry these theoretical insights with the foreign policy exercised by India especially the case of the “Gujral Doctrine, as one of “non-reciprocal accommodation”. Ignoring the view that such a policy move can be viewed as political “feinting” or deception, it is noteworthy that India even made the first move in terms of defining its role as one who “trusts” rather than one who “seeks” to trust, given the country’s geo-strategic context and threat perceptions.

Keywords: India’s foreign policy, South Asia, social constructivism, English school, trusting relationships, Gujral Doctrine, rationality

Procedia PDF Downloads 341
31332 Classification of Random Doppler-Radar Targets during the Surveillance Operations

Authors: G. C. Tikkiwal, Mukesh Upadhyay

Abstract:

During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving the army, moving convoys etc. The radar operator selects one of the promising targets into single target tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper, we present a technique using mathematical and statistical methods like fast fourier transformation (FFT) and principal component analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.

Keywords: radar target, FFT, principal component analysis, eigenvector, octave-notes, DSP

Procedia PDF Downloads 394
31331 China and the Criminalization of Aggression. The Juxtaposition of Justice and the Maintenance of International Peace and Security

Authors: Elisabetta Baldassini

Abstract:

Responses to atrocities are always unique and context-dependent. They cannot be foretold nor easily prompted. However, the events of the twentieth century had set the scene for the international community to explore new and more robust systems in response to war atrocities, with the ultimate goal being the restoration and maintenance of peace and security. The outlawry of war and the attribution of individual liability for international crimes were two major landmarks that set the roots for the development of international criminal law. From the London Conference (1945) for the establishment of the first international military tribunal in Nuremberg to Rome at the inauguration of the first permanent international criminal court, the development of international criminal law has shaped in itself a fluctuating degree of tensions between justice and maintenance of international peace and security, the cardinal dichotomy of this article. The adoption of judicial measures to achieve peace indeed set justice as an essential feature at the heart of the new international system. Blackhole of this dichotomy is the crime of aggression. Aggression was at first the key component of a wide body of peace projects prosecuted under the charges of crimes against peace. However, the wide array of controversies around aggression mostly related to its definition, determination and the involvement of the Security Council silenced, partly, a degree of efforts and agreements. Notwithstanding the establishment of the International Criminal Court (ICC), jurisdiction over the crime of aggression was suspended until an agreement over the definition and the conditions for the Court’s exercise of jurisdiction was reached. Compromised over the crime was achieved in Kampala in 2010 and the Court’s jurisdiction over the crime of aggression was eventually activated on 17 July 2018. China has steadily supported the advancement of international criminal justice together with the establishment of a permanent international judicial body to prosecute grave crimes and has proactively participated at the various stages of the codification and development of the crime of aggression. However, China has also expressed systematic reservations and setbacks. With the use of primary and secondary sources, including semi-structured interviews, this research aims at analyzing the role that China has played throughout the substantive historical development of the crime of aggression, demonstrating a sharp inclination in the maintenance of international peace and security. Such state behavior seems to reflect national and international political mechanisms that gravitate around a distinct rationale that involves a share of culture and tradition.

Keywords: maintenance of peace and security, cultural expression of justice, crime of aggression, China

Procedia PDF Downloads 228
31330 An Examination of Criminology and Cyber Crime in Contemporary Society

Authors: Uche A. Nnawulezi

Abstract:

The evolving global environment has as of late seen formative difficulties bordering on cyber crime and its attendant effects. This paper looks at what constitutes an offense of cyber crime under the tenets of International Law as no nation can lay bona-fide claim in managing cyber crime as a criminal phenomenon. Therefore, there has been a plethora of ideological, conceptual and mental propositions of policies aimed at domesticating cyber crimes – an international crime. These policies were as a result of parochial consideration and social foundations which negate the spirit of internationally accepted procedures. The study also noted that the non-domestication of cyber crime laws by most countries has led to an increase in cyber crimes and its attendant effects have remained unabated. The author has pointed out emerging international rules as a panacea for a sustainable cyber crime-free society. The paper relied on documentary evidence and hence scooped much of the data from secondary sources such as text books, journals, articles and periodicals and more so, opinion papers, emanating from international criminal court. It concludes that the necessary recommendations made in this paper, if fully adopted, shall go a long way in maintaining a cyber crime-free society. Ultimately, the domestic and international law mechanisms capable of dealing with cyber crime offenses should be expanded and be made proactive in order to deal with the demands of modern day challenges.

Keywords: criminology, cyber crime, domestic law, international law

Procedia PDF Downloads 194
31329 Interaction with Earth’s Surface in Remote Sensing

Authors: Spoorthi Sripad

Abstract:

Remote sensing is a powerful tool for acquiring information about the Earth's surface without direct contact, relying on the interaction of electromagnetic radiation with various materials and features. This paper explores the fundamental principle of "Interaction with Earth's Surface" in remote sensing, shedding light on the intricate processes that occur when electromagnetic waves encounter different surfaces. The absorption, reflection, and transmission of radiation generate distinct spectral signatures, allowing for the identification and classification of surface materials. The paper delves into the significance of the visible, infrared, and thermal infrared regions of the electromagnetic spectrum, highlighting how their unique interactions contribute to a wealth of applications, from land cover classification to environmental monitoring. The discussion encompasses the types of sensors and platforms used to capture these interactions, including multispectral and hyperspectral imaging systems. By examining real-world applications, such as land cover classification and environmental monitoring, the paper underscores the critical role of understanding the interaction with the Earth's surface for accurate and meaningful interpretation of remote sensing data.

Keywords: remote sensing, earth's surface interaction, electromagnetic radiation, spectral signatures, land cover classification, archeology and cultural heritage preservation

Procedia PDF Downloads 60
31328 A Negotiation Model for Understanding the Role of International Law in Foreign Policy Crises

Authors: William Casto

Abstract:

Studies that consider the actual impact of international law upon foreign affairs crises are flawed by an unrealistic model of decision making. The common, unexamined assumption is that a nation has a unitary executive or ruler who considers a wide variety of considerations, including international law, in attempting to resolve a crisis. To the extent that negotiation theory is considered, the focus is on negotiations between or among nations. The unsettling result is a shallow focus that concentrates on each country’s public posturing about international law. The country-to-country model ignores governments’ internal negotiations that lead to their formal position in a crisis. The model for foreign policy crises needs to be supplemented to include a model of internal negotiations. Important foreign policy decisions come from groups within a government committee, advisers, etc. Within these groups, participants may have differing agendas and resort to international law to bolster their positions. To understand the influence of international law in international crises, these internal negotiations must be considered. These negotiations are crucial to creating a foreign policy agenda or recommendations. External negotiations between the two nations are significant, but the internal negotiations provide a better understanding of the actual influence of international law upon international crises. Discovering the details of specific internal negotiations is quite difficult but not necessarily impossible. The present proposal will use a specific crisis to illustrate the role of international law. In 1861 during the American Civil War, a United States navy captain stopped a British mail ship and removed two ambassadors of the rebelling southern states. The result was what is commonly called the Trent Affair. In the wake of the captain’s unauthorized and rash action, Great Britain seriously considered going to war against the United States. A detailed analysis of the Trent Affair is possible using the available and extensive internal British correspondence and memoranda to reach an understanding of the effect of international law upon decision making. The extensive trove of internal British documents is particularly valuable because in 1861, the only effective means of communication was face-to-face or through letters. Telephones did not exist, and travel by horse and carriage was tedious. The British documents tell us how individual participants viewed the process. We can approach an accurate understanding of what actually happened as the British government strove to resolve the crisis. For example, British law officers initially concluded that the American captain’s rash act was permissible under international law. Later, the law officers revised their opinion. A model of internal negotiation is particularly valuable because it strips away nations’ public posturing about disputed international law principles. In internal decision making, there is room for meaningful debate over the relevant principles. This fluid debate tells how international law is used to develop a hard, public bargaining position. The Trent Affair indicates that international law had an actual influence upon the crisis and that law was not mere window dressing for the government’s public position.

Keywords: foreign affairs crises, negotiation, international law, Trent affair

Procedia PDF Downloads 127
31327 An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique

Authors: Ghada A. Alfattni

Abstract:

Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalanced datasets. Three classification models (Logistic Regression, Support Vector Machine and Nearest Neighbour) were tested with multiple datasets, then the same datasets were oversampled by using SMOTE and applied again to the three models to compare the differences in the performances. Results of experiments show that the highest number of nearest neighbours gives lower values of error rates. 

Keywords: imbalanced datasets, SMOTE, machine learning, logistic regression, support vector machine, nearest neighbour

Procedia PDF Downloads 350
31326 Determining Optimal Number of Trees in Random Forests

Authors: Songul Cinaroglu

Abstract:

Background: Random Forest is an efficient, multi-class machine learning method using for classification, regression and other tasks. This method is operating by constructing each tree using different bootstrap sample of the data. Determining the number of trees in random forests is an open question in the literature for studies about improving classification performance of random forests. Aim: The aim of this study is to analyze whether there is an optimal number of trees in Random Forests and how performance of Random Forests differ according to increase in number of trees using sample health data sets in R programme. Method: In this study we analyzed the performance of Random Forests as the number of trees grows and doubling the number of trees at every iteration using “random forest” package in R programme. For determining minimum and optimal number of trees we performed Mc Nemar test and Area Under ROC Curve respectively. Results: At the end of the analysis it was found that as the number of trees grows, it does not always means that the performance of the forest is better than forests which have fever trees. In other words larger number of trees only increases computational costs but not increases performance results. Conclusion: Despite general practice in using random forests is to generate large number of trees for having high performance results, this study shows that increasing number of trees doesn’t always improves performance. Future studies can compare different kinds of data sets and different performance measures to test whether Random Forest performance results change as number of trees increase or not.

Keywords: classification methods, decision trees, number of trees, random forest

Procedia PDF Downloads 395
31325 Heart Failure Identification and Progression by Classifying Cardiac Patients

Authors: Muhammad Saqlain, Nazar Abbas Saqib, Muazzam A. Khan

Abstract:

Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.

Keywords: decision tree, heart failure, data mining, classification model

Procedia PDF Downloads 402
31324 Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity

Authors: Fumihiro Ima, Shinichi Watanabe, Shingo Maeda, Haruna Imai, Hiroki Niimi

Abstract:

It is important to know growth rate of brain tumors before surgery because it influences treatment planning including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without administration of contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients and WHO grade 4 in 2 patients), meningioma WHO grade1 in 2 patients and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW-signals than that in low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW-signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors.

Keywords: amides, magnetic resonance imaging, brain tumors, cell proliferation

Procedia PDF Downloads 139
31323 Perspectives and Challenges a Functional Bread With Yeast Extract to Improve Human Diet

Authors: Cláudia Patrocínio, Beatriz Fernandes, Ana Filipa Pires

Abstract:

Background: Mirror therapy (MT) is used to improve motor function after stroke. During MT, a mirror is placed between the two upper limbs (UL), thus reflecting movements of the non- affected side as if it were the affected side. Objectives: The aim of this review is to analyze the evidence on the effec.tiveness of MT in the recovery of UL function in population with post chronic stroke. Methods: The literature search was carried out in PubMed, ISI Web of Science, and PEDro database. Inclusion criteria: a) studies that include individuals diagnosed with stroke for at least 6 months; b) intervention with MT in UL or comparing it with other interventions; c) articles published until 2023; d) articles published in English or Portuguese; e) randomized controlled studies. Exclusion criteria: a) animal studies; b) studies that do not provide a detailed description of the intervention; c) Studies using central electrical stimulation. The methodological quality of the included studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. Studies with < 4 on PEDro scale were excluded. Eighteen studies met all the inclusion criteria. Main results and conclusions: The quality of the studies varies between 5 and 8. One article compared muscular strength training (MST) with MT vs without MT and four articles compared the use of MT vs conventional therapy (CT), one study compared extracorporeal shock therapy (EST) with and without MT and another study compared functional electrical stimulation (FES), MT and biofeedback, three studies compared MT with Mesh Glove (MG) or Sham Therapy, five articles compared performing bimanual exercises with and without MT and three studies compared MT with virtual reality (VR) or robot training (RT). The assessment of changes in function and structure (International Classification of Functioning, Disability and Health parameter) was carried out, in each article, mainly using the Fugl Meyer Assessment-Upper Limb scale, activity and participation (International Classification of Functioning, Disability and Health parameter) were evaluated using different scales, in each study. The positive results were seen in these parameters, globally. Results suggest that MT is more effective than other therapies in motor recovery and function of the affected UL, than these techniques alone, although the results have been modest in most of the included studies. There is also a more significant improvement in the distal movements of the affected hand than in the rest of the UL.

Keywords: physical therapy, mirror therapy, chronic stroke, upper limb, hemiplegia

Procedia PDF Downloads 55
31322 Nature of Maritime Dispute Resolution by Arbitration: USA as a Reference Point

Authors: Thusitha B. Abeysekara, M. A. Nihal Chandrathilake

Abstract:

The aim of this research is to examine the legal mechanism of resolving maritime disputes by arbitration, and it would be a reference point on the analysis of USA approaches. In doing so, the research aims to analyse the relevant legal principles in the context of current maritime arbitration practices in selected jurisdictions. The research also aims to analyse the advantages and applicability of arbitration in maritime dispute settlements over the litigation and further approaches the role of specialist maritime arbitration institutes in the USA and the position of international merchant organizations in maritime arbitration. Further, research values the legislative aspects of maritime arbitration. The study would evaluate the contemporary issues in maritime arbitration practices in the USA and further analyses the statistical information on maritime arbitration. Finally, the research made remarks to often parallel consequence in USA legal systems in maritime arbitration and despite the fundamental divergences of the applicable principles and practices of maritime arbitration. The research finally suggests the doctrine should reshape with equitable remedies and international maritime arbitration practices with its institutional impact rather than using as statutory rules related maritime arbitration.

Keywords: arbitration, international shipping, maritime dispute, New York convention

Procedia PDF Downloads 221
31321 Common Orthodontic Indices and Classification in the United Kingdom

Authors: Ashwini Mohan, Haris Batley

Abstract:

An orthodontic index is used to rate or categorise an individual’s occlusion using a numeric or alphanumeric score. Indexing of malocclusions and their correction is important in epidemiology, diagnosis, communication between clinicians as well as their patients and assessing treatment outcomes. Many useful indices have been put forward, but to the author’s best knowledge, no one method to this day appears to be equally suitable for the use of epidemiologists, public health program planners and clinicians. This article describes the common clinical orthodontic indices and classifications used in United Kingdom.

Keywords: classification, indices, orthodontics, validity

Procedia PDF Downloads 151
31320 Detection and Classification of Myocardial Infarction Using New Extracted Features from Standard 12-Lead ECG Signals

Authors: Naser Safdarian, Nader Jafarnia Dabanloo

Abstract:

In this paper we used four features i.e. Q-wave integral, QRS complex integral, T-wave integral and total integral as extracted feature from normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our research we focused on detection and localization of MI in standard ECG. We use the Q-wave integral and T-wave integral because this feature is important impression in detection of MI. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI. Because these methods have good accuracy for classification of normal and abnormal signals. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 80% for accuracy in test data for localization and over 95% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve accuracy of classification by adding more features in this method. A simple method based on using only four features which extracted from standard ECG is presented which has good accuracy in MI localization.

Keywords: ECG signal processing, myocardial infarction, features extraction, pattern recognition

Procedia PDF Downloads 456
31319 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs

Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye

Abstract:

This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.

Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label

Procedia PDF Downloads 129
31318 The Right to Water in the Lancang-Mekong River Basin Disputes

Authors: Heping Dang, Raymond Yu Wang

Abstract:

The Langcang-Mekong River is the most important international watercourse in mainland Southeast Asia. In recent years, the six riparian states, China, Myanmar, Laos, Thailand, Cambodia and Vietnam, have confronted increasing disputes over the use of the trans-boundary water. To settle these disputes and protect the fundamental right to water, quite a few inter-state mechanisms have been established, such as the Mekong River Commission, the economic cooperation program of the Greater Mekong Subregion, the ‘Belt and Road Initiative’ and the ‘Lancang-Mekong Cooperation Mechanism’ and the ‘Lower Mekong Initiative’. Non-Governmental Organizations (NGOs) have also been an important and constructive institutional entrepreneur in trans-boundary water governance. Although the status and extent of the right to water are yet to be clearly defined, this paper aims to 1) unpack how the right to water is interpreted and exercised in the Lancang-Mekong River Basin Dispute; and 2) to evaluate the roles of the right to water in settling international water disputes. To achieve these objectives, Secondary data such as archival documents of international law and relevant stakeholders will be compiled for analysis. First-hand information about the organizational structure, accountability, values and strategies of the international mechanisms and NGOs in question will also be collected through fieldwork in the Mekong river basin. Semi-structural interviews, group discussions and participatory observation will be conducted to collect data. The authors have access to the fieldwork because they have abundant experience of collaborating with Mekong-based international NGOs in previous research projects. This research will display how the concepts and principles of international law and the UN guidelines are interpreted in practice. These principles include the definition and extent of the right to water, the practical use of ‘vital human need’, the indicators of ‘adequacy of water’ including ‘availability, quality and accessibility’, and how the right to water is related to the progressive realization of the right to life. This down-to earth research will enrich the theoretical discussion of international law, particularly international human rights law, within the UN framework. Moreover, the outcomes of this research will provide new insights into the roles that the right to water might play in consensus-building and dispute settlement in a rapidly changing context, where water is pivotal for poverty alleviation, biodiversity conservation and the promotion of sustainable livelihoods.

Keywords: international water dispute, Lancang-Mekong River, right to water, state and non-state actors

Procedia PDF Downloads 285
31317 Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity

Authors: Fumihiro Imai, Shinichi Watanabe, Shingo Maeda, Haruna Imai, Hiroki Niimi

Abstract:

It is important to know the growth rate of brain tumors before surgery because it influences treatment planning, including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without the administration of a contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after a clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients, and WHO grade 4 in 2 patients), meningioma WHO grade 1 in 2 patients, and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW signals than that low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors.

Keywords: amides, magnetic resonance imaging, brain tumors, cell proliferation

Procedia PDF Downloads 87
31316 Investigating the Association between Escherichia Coli Infection and Breast Cancer Incidence: A Retrospective Analysis and Literature Review

Authors: Nadia Obaed, Lexi Frankel, Amalia Ardeljan, Denis Nigel, Anniki Witter, Omar Rashid

Abstract:

Breast cancer is the most common cancer among women, with a lifetime risk of one in eight of all women in the United States. Although breast cancer is prevalent throughout the world, the uneven distribution in incidence and mortality rates is shaped by the variation in population structure, environment, genetics and known lifestyle risk factors. Furthermore, the bacterial profile in healthy and cancerous breast tissue differs with a higher relative abundance of bacteria capable of causing DNA damage in breast cancer patients. Previous bacterial infections may change the composition of the microbiome and partially account for the environmental factors promoting breast cancer. One study found that higher amounts of Staphylococcus, Bacillus, and Enterobacteriaceae, of which Escherichia coli (E. coli) is a part, were present in breast tumor tissue. Based on E. coli’s ability to damage DNA, it is hypothesized that there is an increased risk of breast cancer associated with previous E. coli infection. Therefore, the purpose of this study was to evaluate the correlation between E. coli infection and the incidence of breast cancer. Holy Cross Health, Fort Lauderdale, provided access to the Health Insurance Portability and Accountability (HIPAA) compliant national database for the purpose of academic research. International Classification of Disease 9th and 10th Codes (ICD-9, ICD-10) was then used to conduct a retrospective analysis using data from January 2010 to December 2019. All breast cancer diagnoses and all patients infected versus not infected with E. coli that underwent typical E. coli treatment were investigated. The obtained data were matched for age, Charlson Comorbidity Score (CCI score), and antibiotic treatment. Standard statistical methods were applied to determine statistical significance and an odds ratio was used to estimate the relative risk. A total of 81286 patients were identified and analyzed from the initial query and then reduced to 31894 antibiotic-specific treated patients in both the infected and control group, respectively. The incidence of breast cancer was 2.51% and present in 2043 patients in the E. coli group compared to 5.996% and present in 4874 patients in the control group. The incidence of breast cancer was 3.84% and present in 1223 patients in the treated E. coli group compared to 6.38% and present in 2034 patients in the treated control group. The decreased incidence of breast cancer in the E. coli and treated E. coli groups was statistically significant with a p-value of 2.2x10-16 and 2.264x10-16, respectively. The odds ratio in the E. coli and treated E. coli groups was 0.784 and 0.787 with a 95% confidence interval, respectively (0.756-0.813; 0.743-0.833). The current study shows a statistically significant decrease in breast cancer incidence in association with previous Escherichia coli infection. Researching the relationship between single bacterial species is important as only up to 10% of breast cancer risk is attributable to genetics, while the contribution of environmental factors including previous infections potentially accounts for a majority of the preventable risk. Further evaluation is recommended to assess the potential and mechanism of E. coli in decreasing the risk of breast cancer.

Keywords: breast cancer, escherichia coli, incidence, infection, microbiome, risk

Procedia PDF Downloads 253
31315 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station

Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner

Abstract:

A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.

Keywords: radio base station, maintenance, classification, detection, deep learning, automation

Procedia PDF Downloads 201
31314 A Similarity Measure for Classification and Clustering in Image Based Medical and Text Based Banking Applications

Authors: K. P. Sandesh, M. H. Suman

Abstract:

Text processing plays an important role in information retrieval, data-mining, and web search. Measuring the similarity between the documents is an important operation in the text processing field. In this project, a new similarity measure is proposed. To compute the similarity between two documents with respect to a feature the proposed measure takes the following three cases into account: (1) The feature appears in both documents; (2) The feature appears in only one document and; (3) The feature appears in none of the documents. The proposed measure is extended to gauge the similarity between two sets of documents. The effectiveness of our measure is evaluated on several real-world data sets for text classification and clustering problems, especially in banking and health sectors. The results show that the performance obtained by the proposed measure is better than that achieved by the other measures.

Keywords: document classification, document clustering, entropy, accuracy, classifiers, clustering algorithms

Procedia PDF Downloads 518
31313 The Relationships between Market Orientation and Competitiveness of Companies in Banking Sector

Authors: Patrik Jangl, Milan Mikuláštík

Abstract:

The objective of the paper is to measure and compare market orientation of Swiss and Czech banks, as well as examine statistically the degree of influence it has on competitiveness of the institutions. The analysis of market orientation is based on the collecting, analysis and correct interpretation of the data. Descriptive analysis of market orientation describe current situation. Research of relation of competitiveness and market orientation in the sector of big international banks is suggested with the expectation of existence of a strong relationship. Partially, the work served as reconfirmation of suitability of classic methodologies to measurement of banks’ market orientation. Two types of data were gathered. Firstly, by measuring subjectively perceived market orientation of a company and secondly, by quantifying its competitiveness. All data were collected from a sample of small, mid-sized and large banks. We used numerical secondary character data from the international statistical financial Bureau Van Dijk’s BANKSCOPE database. Statistical analysis led to the following results. Assuming classical market orientation measures to be scientifically justified, Czech banks are statistically less market-oriented than Swiss banks. Secondly, among small Swiss banks, which are not broadly internationally active, small relationship exist between market orientation measures and market share based competitiveness measures. Thirdly, among all Swiss banks, a strong relationship exists between market orientation measures and market share based competitiveness measures. Above results imply existence of a strong relation of this measure in sector of big international banks. A strong statistical relationship has been proven to exist between market orientation measures and equity/total assets ratio in Switzerland.

Keywords: market orientation, competitiveness, marketing strategy, measurement of market orientation, relation between market orientation and competitiveness, banking sector

Procedia PDF Downloads 476
31312 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network

Procedia PDF Downloads 161