Search results for: imbalance dataset
569 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network
Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao
Abstract:
The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations
Procedia PDF Downloads 154568 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach
Authors: Abe Degale D., Cheng Jian
Abstract:
When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.Keywords: violence detection, faster RCNN, transfer learning and, surveillance video
Procedia PDF Downloads 106567 Assessing Social Sustainability for Biofuels Supply Chains: The Case of Jet Biofuel in Brazil
Authors: Z. Wang, F. Pashaei Kamali, J. A. Posada Duque, P. Osseweijer
Abstract:
Globally, the aviation sector is seeking for sustainable solutions to comply with the pressure to reduce greenhouse gas emissions. Jet fuels derived from biomass are generally perceived as a sustainable alternative compared with their fossil counterparts. However, the establishment of jet biofuels supply chains will have impacts on environment, economy, and society. While existing studies predominantly evaluated environmental impacts and techno-economic feasibility of jet biofuels, very few studies took the social / socioeconomic aspect into consideration. Therefore, this study aims to provide a focused evaluation of social sustainability for aviation biofuels with a supply chain perspective. Three potential jet biofuel supply chains based on different feedstocks, i.e. sugarcane, eucalyptus, and macauba were analyzed in the context of Brazil. The assessment of social sustainability is performed with a process-based approach combined with input-output analysis. Over the supply chains, a set of social sustainability issues including employment, working condition (occupational accident and wage level), labour right, education, equity, social development (GDP and trade balance) and food security were evaluated in a (semi)quantitative manner. The selection of these social issues is based on two criteria: (1) the issues are highly relevant and important to jet biofuel production; (2) methodologies are available for assessing these issues. The results show that the three jet biofuel supply chains lead to a differentiated level of social effects. The sugarcane-based supply chain creates the highest number of jobs whereas the biggest contributor of GDP turns out to be the macauba-based supply chain. In comparison, the eucalyptus-based supply chain stands out regarding working condition. It is also worth noting that biojet fuel supply chain with high level of social benefits could result in high level of social concerns (such as occupational accident, violation of labour right and trade imbalance). Further research is suggested to investigate the possible interactions between different social issues. In addition, the exploration of a wider range of social effects is needed to expand the comprehension of social sustainability for biofuel supply chains.Keywords: biobased supply chain, jet biofuel, social assessment, social sustainability, socio-economic impacts
Procedia PDF Downloads 265566 RGB Color Based Real Time Traffic Sign Detection and Feature Extraction System
Authors: Kay Thinzar Phu, Lwin Lwin Oo
Abstract:
In an intelligent transport system and advanced driver assistance system, the developing of real-time traffic sign detection and recognition (TSDR) system plays an important part in recent research field. There are many challenges for developing real-time TSDR system due to motion artifacts, variable lighting and weather conditions and situations of traffic signs. Researchers have already proposed various methods to minimize the challenges problem. The aim of the proposed research is to develop an efficient and effective TSDR in real time. This system proposes an adaptive thresholding method based on RGB color for traffic signs detection and new features for traffic signs recognition. In this system, the RGB color thresholding is used to detect the blue and yellow color traffic signs regions. The system performs the shape identify to decide whether the output candidate region is traffic sign or not. Lastly, new features such as termination points, bifurcation points, and 90’ angles are extracted from validated image. This system uses Myanmar Traffic Sign dataset.Keywords: adaptive thresholding based on RGB color, blue color detection, feature extraction, yellow color detection
Procedia PDF Downloads 313565 Customer Acquisition through Time-Aware Marketing Campaign Analysis in Banking Industry
Authors: Harneet Walia, Morteza Zihayat
Abstract:
Customer acquisition has become one of the critical issues of any business in the 21st century; having a healthy customer base is the essential asset of the bank business. Term deposits act as a major source of cheap funds for the banks to invest and benefit from interest rate arbitrage. To attract customers, the marketing campaigns at most financial institutions consist of multiple outbound telephonic calls with more than one contact to a customer which is a very time-consuming process. Therefore, customized direct marketing has become more critical than ever for attracting new clients. As customer acquisition is becoming more difficult to archive, having an intelligent and redefined list is necessary to sell a product smartly. Our aim of this research is to increase the effectiveness of campaigns by predicting customers who will most likely subscribe to the fixed deposit and suggest the most suitable month to reach out to customers. We design a Time Aware Upsell Prediction Framework (TAUPF) using two different approaches, with an aim to find the best approach and technique to build the prediction model. TAUPF is implemented using Upsell Prediction Approach (UPA) and Clustered Upsell Prediction Approach (CUPA). We also address the data imbalance problem by examining and comparing different methods of sampling (Up-sampling and down-sampling). Our results have shown building such a model is quite feasible and profitable for the financial institutions. The Time Aware Upsell Prediction Framework (TAUPF) can be easily used in any industry such as telecom, automobile, tourism, etc. where the TAUPF (Clustered Upsell Prediction Approach (CUPA) or Upsell Prediction Approach (UPA)) holds valid. In our case, CUPA books more reliable. As proven in our research, one of the most important challenges is to define measures which have enough predictive power as the subscription to a fixed deposit depends on highly ambiguous situations and cannot be easily isolated. While we have shown the practicality of time-aware upsell prediction model where financial institutions can benefit from contacting the customers at the specified month, further research needs to be done to understand the specific time of the day. In addition, a further empirical/pilot study on real live customer needs to be conducted to prove the effectiveness of the model in the real world.Keywords: customer acquisition, predictive analysis, targeted marketing, time-aware analysis
Procedia PDF Downloads 124564 Effect of Feeding Broilers on Diets Enriching With Omega-3 Fatty Acids Sources
Authors: Khalid Mahmoud Gaafar
Abstract:
In human diets , ω-6 and ω-3 are important essential fatty acids for immunity and health. However, considerable alteration in dietary patterns and contents has resulted in change of the consumption of such fatty acids ,with subsequent increase in the consumption of ω-6 fatty acids and a marked decrease in the consumption of ω-3 fatty acids. This dietary alteration has led to an imbalance in the ratio for ω-6/ω-3, which at 20:1 now differs considerably from the original ratio (1:1). Therefore, dietary supplements such as eggs and meat enriched with omega 3 are necessary to increase the consumption of ω-3 to meet the recommended need for ω-3. Foods that supply ω-6 fatty acids include soybean, palm , sunflower, and rapeseed oils, whereas foods that supply ω-3 fatty acids such as linseed and fish oils. Lin seed oils contain Alpha – linolenic acid (ALA), which can be converted to DHA and EPA in the birds body, with linseed oil containing more than 50% ALA. On the other hand, high doses of omega 6 sources in the diet may have deleterious effects on humans. Maintaining an optimum ratio of ω-3 and ω-6fatty acids not only improves performance but also prevents these health risks. The ratio of n-6:ω-3 fatty acids also plays an important role in the immune response, production performance of broilers and designing meat enriched with ω-3 polyunsaturated fatty acids (PUFAs). Birds of three experimental groups fed on basal starter (0-2nd weeks), grower (3rd -4th weeks) and finisher (5th week) rations. The first is control group fed during the grower-finisher periods on basic diet with two replicate (one fed on basic diet contain vegetable oil and the other don’t) without any additives. The three experimental groups (T1 – T2 –T3) fed during the grower- finisher periods on diets free from vegetable oils and contain of 5% of extruded mixture of soybean and linseed (60%:40%). The second (T2) and third (T3) experimental groups supplemented with vitamin B12 and enzyme mixture. The first experimental groups don’t receive vitamins or enzymes. The obtained results showed a significant increased growth performance, immune response, highest antioxidant activity and serum HDL with lowest serum LDL and triglycerides levels in all experimental groups compared with control group, which was highly significant in group fed on vitamin B6.Keywords: omega fatty acids, broiler, feeding, human health, growth performance, immunity
Procedia PDF Downloads 113563 An Exploratory Study of Women in Political Leadership in Nigeria
Authors: Fayomi Oluyemi, Ajayi Lady
Abstract:
This article raises the question of political leadership in the context of womens' roles and responsibilities in Nigeria. The leadership question in Nigeria is disquieting to both academics and policy actors. In a democratic society like Nigeria, the parameters for a well-deserved leadership position is characterised by variables of equity, competence, transparency, accountability, selflessness, and commitment to the tenets of democracy, but the failure of leadership is pervasive in all spheres of socio-political sectors in Nigeria. The paper appraises the activities of Nigerian women in the socio-political arena in Nigeria. It traces their leadership roles from pre-colonial through post-colonial eras with emphasis on 1914 till date. It is argued in the paper that gender imbalance in leadership is a bane to peaceful co-existence and development in Nigeria. It is a truism that gender-blind and gender biased political agendas can distort leadership activities. The extent of their contributions of the few outstanding women’s relative tranquility is highlighted in the theoretical discourse. The methodology adopted for this study is an exploratory study employing the extended case method (ECM). The study was carried out among some selected Nigerian women politicians and academics. Because of ECM's robustness as a qualitative research design, it has helped this study in identifying the challenges of these women thematically and also in constructing valid and reliable measures of the constructs. The study made use of ethnography and triangulation, the latter of which is used by qualitative researchers to check and establish validity in their studies by analyzing a research question from multiple perspectives, specifically Investigator triangulation which involves using several different investigators in the analysis process. Typically, this manifests as the evaluation team consisting of colleagues within a field of study wherein each investigator examines the question of political leadership with the same qualitative method (interview, observation, case study, or focus groups). In addition, data was collated through documentary sources like journals, books, magazines, newspapers, and internet materials. The arguments of this paper center on gender equity of both sexes in socio-political representation and effective participation. The paper concludes with the need to effectively maintain gender balance in leadership in order to enhance lasting peace and unity in Nigeria.Keywords: gender, politics, leadership, women
Procedia PDF Downloads 448562 Sea-Land Segmentation Method Based on the Transformer with Enhanced Edge Supervision
Authors: Lianzhong Zhang, Chao Huang
Abstract:
Sea-land segmentation is a basic step in many tasks such as sea surface monitoring and ship detection. The existing sea-land segmentation algorithms have poor segmentation accuracy, and the parameter adjustments are cumbersome and difficult to meet actual needs. Also, the current sea-land segmentation adopts traditional deep learning models that use Convolutional Neural Networks (CNN). At present, the transformer architecture has achieved great success in the field of natural images, but its application in the field of radar images is less studied. Therefore, this paper proposes a sea-land segmentation method based on the transformer architecture to strengthen edge supervision. It uses a self-attention mechanism with a gating strategy to better learn relative position bias. Meanwhile, an additional edge supervision branch is introduced. The decoder stage allows the feature information of the two branches to interact, thereby improving the edge precision of the sea-land segmentation. Based on the Gaofen-3 satellite image dataset, the experimental results show that the method proposed in this paper can effectively improve the accuracy of sea-land segmentation, especially the accuracy of sea-land edges. The mean IoU (Intersection over Union), edge precision, overall precision, and F1 scores respectively reach 96.36%, 84.54%, 99.74%, and 98.05%, which are superior to those of the mainstream segmentation models and have high practical application values.Keywords: SAR, sea-land segmentation, deep learning, transformer
Procedia PDF Downloads 181561 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset
Procedia PDF Downloads 353560 Investigating the Relationship between Bioethics and Sports
Authors: Franco Bruno Castaldo
Abstract:
Aim: The term bioethics is a term coined by VanPotter R ., who in 1970 thought of a discipline, capable of contributing to a better quality of human life and the cosmos. At first he intended bioethics as a wisdom capable of creating a bridge between bios and ethos and between bio-experimental science and ethical-anthropological sciences.Similarly, the modern sport is presented as a polysemic phenomenon, multidisciplinary, pluris value. From the beginning, the sport is included in the discussion of bioethical problems with doping. Today, the ethical problems of the sport are not only ascribable to doping, the medicalization of society, Techniques for enhancement, violence, Fraud, corruption, even the acceptance of anthropological transhumanist theories. Our purpose is to shed light on these issues so that there is a discernment, a fine-tuning also in educational programs, for the protection of all the sport from a scientist adrift, which would lead to an imbalance of values. Method: Reading, textual and documentary analysis, evaluation of critical examples. Results: Harold VanderZwaag, (1929-2011) in ancient times, asked: how many athletic directors have read works of sport philosophy or humanities? Along with E.A. Zeigler (North American Society for Sport Management) are recognized as pioneers of educational Sport Management. Comes the need to leave the confines of a scientific field, In order to deal with other than itself. Conclusion: The quantitative sciences attracts more funds than qualitative ones, the philosopher M. Nussbaum, has relaunched the idea that the training of students will have to be more disinterested than utilitarian, Offering arguments against the choice of anti-classical, analyzing and comparing different educational systems. schools, universities must assign a prominent place in the program of study to the humanistic, literary and artistic subjects, cultivating a participation that can activate and improve the ability to see the world through the eyes of another person. In order to form citizens who play their role in society, science and technology alone are not enough, we need disciplines that are able to cultivate critical thinking, respect for diversity, solidarity, the judgment, the freedom of expression. According to A. Camelli, the humanities faculties prepare for that life-long learning, which will characterize tomorrow's jobs.Keywords: bioethics, management, sport, transhumanist, medicalization
Procedia PDF Downloads 513559 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition
Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang
Abstract:
Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor
Procedia PDF Downloads 150558 Understanding Magnetic Properties of Cd1-xSnxCr2Se4 Using Local Structure Probes
Authors: P. Suchismita Behera, V. G. Sathe, A. K. Nigam, P. A. Bhobe
Abstract:
Co-existence of long-range ferromagnetism and semi-conductivity with correlated behavior of structural, magnetic, optical and electrical properties in various sites doping at CdCr2Se4 makes it a most promising candidate for spin-based electronic applications and magnetic devices. It orders ferromagnetically below TC = 130 K with a direct band gap of ~ 1.5 eV. The magnetic ordering is believed to result from strong competition between the direct antiferromagnetic Cr-Cr spin couplings and the ferromagnetic Cr-Se-Cr exchange interactions. With an aim of understanding the influence of crystal structure on its magnetic properties without disturbing the magnetic site, we investigated four compositions with 3%, 5%, 7% and 10% of Sn-substitution at Cd-site. Partial substitution of Cd2+ (0.78Å) by small sized nonmagnetic ion, Sn4+ (0.55Å), is expected to bring about local lattice distortion as well as a change in electronic charge distribution. The structural disorder would affect the Cd/Sn – Se bonds thus affecting the Cr-Cr and Cr-Se-Cr bonds. Whereas, the charge imbalance created due to Sn4+ substitution at Cd2+ leads to the possibility of Cr mixed valence state. Our investigation of the local crystal structure using the EXAFS, Raman spectroscopy and magnetic properties using SQUID magnetometry of the Cd1-xSnxCr2Se4 series reflects this premise. All compositions maintain the Fd3m cubic symmetry with tetrahedral distribution of Sn at Cd-site, as confirmed by XRD analysis. Lattice parameters were determined from the Rietveld refinement technique of the XRD data and further confirmed from the EXAFS spectra recorded at Cr K-edge. Presence of five Raman-active phonon vibrational modes viz. (T2g (1), T2g (2), T2g (3), Eg, A1g) in the Raman spectra further confirms the crystal symmetry. Temperature dependence of the Raman data provides interesting insight to the spin– phonon coupling, known to dominate the magneto-capacitive properties in the parent compound. Below the magnetic ordering temperature, the longitudinal damping of Eg mode associated with Se-Cd/Sn-Se bending and T2g (2) mode associated to Cr-Se-Cr interaction, show interesting deviations with respect to increase in Sn substitution. Besides providing the estimate of TC, the magnetic measurements recorded as a function of field provide the values of total magnetic moment for all the studied compositions indicative of formation of multiple Cr valences.Keywords: exchange interactions, EXAFS, ferromagnetism, Raman spectroscopy, spinel chalcogenides
Procedia PDF Downloads 276557 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks
Authors: Yong Zhao, Jian He, Cheng Zhang
Abstract:
Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.Keywords: feature extraction, heart rate variability, hypertension, residual networks
Procedia PDF Downloads 105556 Clique and Clan Analysis of Patient-Sharing Physician Collaborations
Authors: Shahadat Uddin, Md Ekramul Hossain, Arif Khan
Abstract:
The collaboration among physicians during episodes of care for a hospitalised patient has a significant contribution towards effective health outcome. This research aims at improving this health outcome by analysing the attributes of patient-sharing physician collaboration network (PCN) on hospital data. To accomplish this goal, we present a research framework that explores the impact of several types of attributes (such as clique and clan) of PCN on hospitalisation cost and hospital length of stay. We use electronic health insurance claim dataset to construct and explore PCNs. Each PCN is categorised as ‘low’ and ‘high’ in terms of hospitalisation cost and length of stay. The results from the proposed model show that the clique and clan of PCNs affect the hospitalisation cost and length of stay. The clique and clan of PCNs show the difference between ‘low’ and ‘high’ PCNs in terms of hospitalisation cost and length of stay. The findings and insights from this research can potentially help the healthcare stakeholders to better formulate the policy in order to improve quality of care while reducing cost.Keywords: clique, clan, electronic health records, physician collaboration
Procedia PDF Downloads 140555 Developing a Secure Iris Recognition System by Using Advance Convolutional Neural Network
Authors: Kamyar Fakhr, Roozbeh Salmani
Abstract:
Alphonse Bertillon developed the first biometric security system in the 1800s. Today, many governments and giant companies are considering or have procured biometrically enabled security schemes. Iris is a kaleidoscope of patterns and colors. Each individual holds a set of irises more unique than their thumbprint. Every single day, giant companies like Google and Apple are experimenting with reliable biometric systems. Now, after almost 200 years of improvements, face ID does not work with masks, it gives access to fake 3D images, and there is no global usage of biometric recognition systems as national identity (ID) card. The goal of this paper is to demonstrate the advantages of iris recognition overall biometric recognition systems. It make two extensions: first, we illustrate how a very large amount of internet fraud and cyber abuse is happening due to bugs in face recognition systems and in a very large dataset of 3.4M people; second, we discuss how establishing a secure global network of iris recognition devices connected to authoritative convolutional neural networks could be the safest solution to this dilemma. Another aim of this study is to provide a system that will prevent system infiltration caused by cyber-attacks and will block all wireframes to the data until the main user ceases the procedure.Keywords: biometric system, convolutional neural network, cyber-attack, secure
Procedia PDF Downloads 218554 Maturity Transformation Risk Factors in Islamic Banking: An Implication of Basel III Liquidity Regulations
Authors: Haroon Mahmood, Christopher Gan, Cuong Nguyen
Abstract:
Maturity transformation risk is highlighted as one of the major causes of recent global financial crisis. Basel III has proposed new liquidity regulations for transformation function of banks and hence to monitor this risk. Specifically, net stable funding ratio (NSFR) is introduced to enhance medium- and long-term resilience against liquidity shocks. Islamic banking is widely accepted in many parts of the world and contributes to a significant portion of the financial sector in many countries. Using a dataset of 68 fully fledged Islamic banks from 11 different countries, over a period from 2005 – 2014, this study has attempted to analyze various factors that may significantly affect the maturity transformation risk in these banks. We utilize 2-step system GMM estimation technique on unbalanced panel and find bank capital, credit risk, financing, size and market power are most significant among the bank specific factors. Also, gross domestic product and inflation are the significant macro-economic factors influencing this risk. However, bank profitability, asset efficiency, and income diversity are found insignificant in determining the maturity transformation risk in Islamic banking model.Keywords: Basel III, Islamic banking, maturity transformation risk, net stable funding ratio
Procedia PDF Downloads 415553 Men Act, Women Are Acted Upon: Morphosyntactic Framing of the Sexual Intercourse in Online Pornography Titles
Authors: Aleksandra Tomic
Abstract:
According to reliable sources, 4% of all websites is devoted to pornographic material, yet these estimates are often reported to be much higher. The largest internet pornography streaming website reports 21.2 billion visits in 2015 only. Considering the ubiquity of online pornography and the frequency of use, it is necessary to examine its potential influence on the construal of the sexual act and the roles of participants. Apart from the verbal and physical interactions in the pornographic movies themselves, the language in the titles of movies has the power to frame the sexual intercourse. In this study, Critical Discourse Analysis and corpus linguistics approaches will be used to examine the way the sexual intercourse and the roles of the participants are ideologically construed and perpetuated in the Internet pornography discourse. To this end, the study will explore the association between the specific morphosyntactic aspects of the references to performers of both genders, the person and the thematic role, and the gender of referred performer in the corpus of online pornographic movie titles. Distinctive collexeme analysis will be conducted to uncover possible associations between for gender of the performer denoted by the linguistic expression, and the person and thematic role assigned to it in the titles of online pornography movies. Initial results of the chi-square procedure performed on a sample of 295 online pornography movie titles on the largest pornography streaming website ‘Pornhub’ yielded significant results. The use of the three person categories was not equally distributed between genders, X2 (2, N = 106) = 32.52, p < 0.001, with female performers being referred to in the third person in 71.7% of the instances, and speaking in the first person 20.8% of the time, whereas male performers spoke in the first person 68% of the time, and were referred to in the third person in 17% of the instances. Moreover, there was a gender disparity in the assignment of thematic roles, with linguistic expressions for women being assigned the Patient role and men the Agent role in 58.8% of the cases, whereas the roles were reversed in 41.2% of the instances, X2 (1, N = 262) = 8.07633, p < 0.005. The results are discussed in terms of the ideologies surrounding female and male sexuality in the pornography discourse. Potential patterns of power imbalance, objectification, and discrimination are highlighted. Finally, the evidence from psycholinguistic studies on the influence of the language structure on event construal is related to the results of the study.Keywords: corpus linguistics, gender studies, pornography, thematic roles
Procedia PDF Downloads 190552 Offline Signature Verification Using Minutiae and Curvature Orientation
Authors: Khaled Nagaty, Heba Nagaty, Gerard McKee
Abstract:
A signature is a behavioral biometric that is used for authenticating users in most financial and legal transactions. Signatures can be easily forged by skilled forgers. Therefore, it is essential to verify whether a signature is genuine or forged. The aim of any signature verification algorithm is to accommodate the differences between signatures of the same person and increase the ability to discriminate between signatures of different persons. This work presented in this paper proposes an automatic signature verification system to indicate whether a signature is genuine or not. The system comprises four phases: (1) The pre-processing phase in which image scaling, binarization, image rotation, dilation, thinning, and connecting ridge breaks are applied. (2) The feature extraction phase in which global and local features are extracted. The local features are minutiae points, curvature orientation, and curve plateau. The global features are signature area, signature aspect ratio, and Hu moments. (3) The post-processing phase, in which false minutiae are removed. (4) The classification phase in which features are enhanced before feeding it into the classifier. k-nearest neighbors and support vector machines are used. The classifier was trained on a benchmark dataset to compare the performance of the proposed offline signature verification system against the state-of-the-art. The accuracy of the proposed system is 92.3%.Keywords: signature, ridge breaks, minutiae, orientation
Procedia PDF Downloads 146551 Understanding the Cultural Landscape of Kuttanad: Life within the Constraints of Nature
Authors: K. Nikilsha, Lakshmi Manohar, Debayan Chatterjee
Abstract:
Landscape is a setting that informs the way of life of a set of people, and the repository of intangible values and human meanings that nurture our very existence. Along with the linkage that it forms with our lives, it can be argued that landscape and memory cannot be separated, as landscape is the nucleus of our memories. In this context, this paper studies landscape evolution of a region with unique geographic setting, where the dependency of the inhabitants on its resources, led to the formation of certain peculiar beliefs and taboos that formed the basis of a set of unwritten rules and guidelines which they still follow as a part of their lifestyle. One such example is Kuttanad, a low lying region in Kerala which is a complex mosaic of fragmented agricultural landscape incorporating coastal backwaters, rivers, marshes, paddy fields and water channels. The more the physical involvement with the resources, the more was the inhabitants attachment towards it. This attachment of the inhabitants to the place is very strong because the creation of this land was the result of the toil of the low caste labourers who strived day and night to create Kuttanad, which was reclaimed from water with the help of the finance supplied by their landlords. However, the greatest challenge faced by them is posed by the forces of water in the form of floods. As this land is fed by five rivers, even the slight variation in rainfall in its watershed area can cause a large imbalance in the water level causing the reclaimed land to be inundated. The effects of climate change including increase in rainfall, rise in sea level and change of seasons can act as a catalyst to this damage. Hasty urbanization has led to the conversion of paddy fields to housing plots and coconut/plantain fields giving no regard to the traditional systems which had once respected nature and combated floods and draughts through the various cultural practices and taboos practiced by the people. Thus it is essential to look back at the landscape evolution of Kuttanad and to recognise methods used traditionally in the region to establish a cultural landscape, and to understand how climate change and urbanisation shall pose a challenge to the existing landscape and lifestyle. This research also explores the possibilities of alternative and sustainable approaches for resilient urban development learned from Kuttanad as a case study.Keywords: ecological conservation, landscape and ecological engineering, landscape evolution, man-made landscapes
Procedia PDF Downloads 266550 A Method for Rapid Evaluation of Ore Breakage Parameters from Core Images
Authors: A. Nguyen, K. Nguyen, J. Jackson, E. Manlapig
Abstract:
With the recent advancement in core imaging systems, a large volume of high resolution drill core images can now be collected rapidly. This paper presents a method for rapid prediction of ore-specific breakage parameters from high resolution mineral classified core images. The aim is to allow for a rapid assessment of the variability in ore hardness within a mineral deposit with reduced amount of physical breakage tests. This method sees its application primarily in project evaluation phase, where proper evaluation of the variability in ore hardness of the orebody normally requires prolong and costly metallurgical test work program. Applying this image-based texture analysis method on mineral classified core images, the ores are classified according to their textural characteristics. A small number of physical tests are performed to produce a dataset used for developing the relationship between texture classes and measured ore hardness. The paper also presents a case study in which this method has been applied on core samples from a copper porphyry deposit to predict the ore-specific breakage A*b parameter, obtained from JKRBT tests.Keywords: geometallurgy, hyperspectral drill core imaging, process simulation, texture analysis
Procedia PDF Downloads 361549 The Use of Boosted Multivariate Trees in Medical Decision-Making for Repeated Measurements
Authors: Ebru Turgal, Beyza Doganay Erdogan
Abstract:
Machine learning aims to model the relationship between the response and features. Medical decision-making researchers would like to make decisions about patients’ course and treatment, by examining the repeated measurements over time. Boosting approach is now being used in machine learning area for these aims as an influential tool. The aim of this study is to show the usage of multivariate tree boosting in this field. The main reason for utilizing this approach in the field of decision-making is the ease solutions of complex relationships. To show how multivariate tree boosting method can be used to identify important features and feature-time interaction, we used the data, which was collected retrospectively from Ankara University Chest Diseases Department records. Dataset includes repeated PF ratio measurements. The follow-up time is planned for 120 hours. A set of different models is tested. In conclusion, main idea of classification with weighed combination of classifiers is a reliable method which was shown with simulations several times. Furthermore, time varying variables will be taken into consideration within this concept and it could be possible to make accurate decisions about regression and survival problems.Keywords: boosted multivariate trees, longitudinal data, multivariate regression tree, panel data
Procedia PDF Downloads 203548 Analysis and Prediction of COVID-19 by Using Recurrent LSTM Neural Network Model in Machine Learning
Authors: Grienggrai Rajchakit
Abstract:
As we all know that coronavirus is announced as a pandemic in the world by WHO. It is speeded all over the world with few days of time. To control this spreading, every citizen maintains social distance and self-preventive measures are the best strategies. As of now, many researchers and scientists are continuing their research in finding out the exact vaccine. The machine learning model finds that the coronavirus disease behaves in an exponential manner. To abolish the consequence of this pandemic, an efficient step should be taken to analyze this disease. In this paper, a recurrent neural network model is chosen to predict the number of active cases in a particular state. To make this prediction of active cases, we need a database. The database of COVID-19 is downloaded from the KAGGLE website and is analyzed by applying a recurrent LSTM neural network with univariant features to predict the number of active cases of patients suffering from the corona virus. The downloaded database is divided into training and testing the chosen neural network model. The model is trained with the training data set and tested with a testing dataset to predict the number of active cases in a particular state; here, we have concentrated on Andhra Pradesh state.Keywords: COVID-19, coronavirus, KAGGLE, LSTM neural network, machine learning
Procedia PDF Downloads 160547 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach
Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan
Abstract:
Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence
Procedia PDF Downloads 111546 Statistical Discrimination of Blue Ballpoint Pen Inks by Diamond Attenuated Total Reflectance (ATR) FTIR
Authors: Mohamed Izzharif Abdul Halim, Niamh Nic Daeid
Abstract:
Determining the source of pen inks used on a variety of documents is impartial for forensic document examiners. The examination of inks is often performed to differentiate between inks in order to evaluate the authenticity of a document. A ballpoint pen ink consists of synthetic dyes in (acidic and/or basic), pigments (organic and/or inorganic) and a range of additives. Inks of similar color may consist of different composition and are frequently the subjects of forensic examinations. This study emphasizes on blue ballpoint pen inks available in the market because it is reported that approximately 80% of questioned documents analysis involving ballpoint pen ink. Analytical techniques such as thin layer chromatography, high-performance liquid chromatography, UV-vis spectroscopy, luminescence spectroscopy and infrared spectroscopy have been used in the analysis of ink samples. In this study, application of Diamond Attenuated Total Reflectance (ATR) FTIR is straightforward but preferable in forensic science as it offers no sample preparation and minimal analysis time. The data obtained from these techniques were further analyzed using multivariate chemometric methods which enable extraction of more information based on the similarities and differences among samples in a dataset. It was indicated that some pens from the same manufactures can be similar in composition, however, discrete types can be significantly different.Keywords: ATR FTIR, ballpoint, multivariate chemometric, PCA
Procedia PDF Downloads 457545 Automated Classification of Hypoxia from Fetal Heart Rate Using Advanced Data Models of Intrapartum Cardiotocography
Authors: Malarvizhi Selvaraj, Paul Fergus, Andy Shaw
Abstract:
Uterine contractions produced during labour have the potential to damage the foetus by diminishing the maternal blood flow to the placenta. In order to observe this phenomenon labour and delivery are routinely monitored using cardiotocography monitors. An obstetrician usually makes the diagnosis of foetus hypoxia by interpreting cardiotocography recordings. However, cardiotocography capture and interpretation is time-consuming and subjective, often lead to misclassification that causes damage to the foetus and unnecessary caesarean section. Both of these have a high impact on the foetus and the cost to the national healthcare services. Automatic detection of foetal heart rate may be an objective solution to help to reduce unnecessary medical interventions, as reported in several studies. This paper aim is to provide a system for better identification and interpretation of abnormalities of the fetal heart rate using RStudio. An open dataset of 552 Intrapartum recordings has been filtered with 0.034 Hz filters in an attempt to remove noise while keeping as much of the discriminative data as possible. Features were chosen following an extensive literature review, which concluded with FIGO features such as acceleration, deceleration, mean, variance and standard derivation. The five features were extracted from 552 recordings. Using these features, recordings will be classified either normal or abnormal. If the recording is abnormal, it has got more chances of hypoxia.Keywords: cardiotocography, foetus, intrapartum, hypoxia
Procedia PDF Downloads 216544 Self-Attention Mechanism for Target Hiding Based on Satellite Images
Authors: Hao Yuan, Yongjian Shen, Xiangjun He, Yuheng Li, Zhouzhou Zhang, Pengyu Zhang, Minkang Cai
Abstract:
Remote sensing data can provide support for decision-making in disaster assessment or disaster relief. The traditional processing methods of sensitive targets in remote sensing mapping are mainly based on manual retrieval and image editing tools, which are inefficient. Methods based on deep learning for sensitive target hiding are faster and more flexible. But these methods have disadvantages in training time and cost of calculation. This paper proposed a target hiding model Self Attention (SA) Deepfill, which used self-attention modules to replace part of gated convolution layers in image inpainting. By this operation, the calculation amount of the model becomes smaller, and the performance is improved. And this paper adds free-form masks to the model’s training to enhance the model’s universal. The experiment on an open remote sensing dataset proved the efficiency of our method. Moreover, through experimental comparison, the proposed method can train for a longer time without over-fitting. Finally, compared with the existing methods, the proposed model has lower computational weight and better performance.Keywords: remote sensing mapping, image inpainting, self-attention mechanism, target hiding
Procedia PDF Downloads 136543 Blood Glucose Level Measurement from Breath Analysis
Authors: Tayyab Hassan, Talha Rehman, Qasim Abdul Aziz, Ahmad Salman
Abstract:
The constant monitoring of blood glucose level is necessary for maintaining health of patients and to alert medical specialists to take preemptive measures before the onset of any complication as a result of diabetes. The current clinical monitoring of blood glucose uses invasive methods repeatedly which are uncomfortable and may result in infections in diabetic patients. Several attempts have been made to develop non-invasive techniques for blood glucose measurement. In this regard, the existing methods are not reliable and are less accurate. Other approaches claiming high accuracy have not been tested on extended dataset, and thus, results are not statistically significant. It is a well-known fact that acetone concentration in breath has a direct relation with blood glucose level. In this paper, we have developed the first of its kind, reliable and high accuracy breath analyzer for non-invasive blood glucose measurement. The acetone concentration in breath was measured using MQ 138 sensor in the samples collected from local hospitals in Pakistan involving one hundred patients. The blood glucose levels of these patients are determined using conventional invasive clinical method. We propose a linear regression classifier that is trained to map breath acetone level to the collected blood glucose level achieving high accuracy.Keywords: blood glucose level, breath acetone concentration, diabetes, linear regression
Procedia PDF Downloads 171542 Qsar Studies of Certain Novel Heterocycles Derived From bis-1, 2, 4 Triazoles as Anti-Tumor Agents
Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi
Abstract:
In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.Keywords: 3D QSAR, CoMSIA, triazoles, novel heterocycles
Procedia PDF Downloads 444541 Feminine Gender Identity in Nigerian Music Education: Trends, Challenges and Prospects
Authors: Julius Oluwayomi Oluwadamilare, Michael Olutayo Olatunji
Abstract:
In the African traditional societies, women have always played the role of a teacher, albeit informally. This is evident in the upbringing of their babies. As mothers, they also serve as the first teachers to teach their wards lessons through day-to-day activities. Furthermore, women always play the role of a musician during naming ceremonies, in the singing of lullabies, during initiation rites of adolescent boys and girls into adulthood, and in preparing their children especially daughters (and sons) for marriage. They also perform this role during religious and cultural activities, chieftaincy title/coronation ceremonies, singing of dirges during funeral ceremonies, and so forth. This traditional role of the African/Nigerian women puts them at a vantage point to contribute maximally to the teaching and learning of music at every level of education. The need for more women in the field of music education in Nigeria cannot be overemphasized. Today, gender equality is a major discourse in most countries of the world, Nigeria inclusive. Statistical data in the field of education and music education reveal the high ratio of male teachers/lecturers over their female counterparts in Nigerian tertiary institutions. The percentage is put at 80% Male and a distant 20% Female! This paper, therefore, examines feminine gender in Nigerian music education by tracing the involvement of women in musical practice from the pre-colonial to the post-colonial periods. The study employed both primary and secondary sources of data collection. The primary source included interviews conducted with 19 music lecturers from 8 purposively selected tertiary institutions from 4 geo-political zones of Nigeria. In addition, observation method was employed in the selected institutions. The results show, inter alia, that though there is a remarkable improvement in the rate of admission of female students into the music programme of Nigerian tertiary institutions, there is still an imbalance in the job placement in these institutions especially in the Colleges of Education which is the main focus of this research. Religious and socio-cultural factors are highly traceable to this development. This paper recommends the need for more female music teachers to be employed in the Nigerian tertiary institutions in line with the provisions stated in the Millennium Development Goals (MDGs) of the Federal Republic of Nigeria.Keywords: gender, education, music, women
Procedia PDF Downloads 205540 MhAGCN: Multi-Head Attention Graph Convolutional Network for Web Services Classification
Authors: Bing Li, Zhi Li, Yilong Yang
Abstract:
Web classification can promote the quality of service discovery and management in the service repository. It is widely used to locate developers desired services. Although traditional classification methods based on supervised learning models can achieve classification tasks, developers need to manually mark web services, and the quality of these tags may not be enough to establish an accurate classifier for service classification. With the doubling of the number of web services, the manual tagging method has become unrealistic. In recent years, the attention mechanism has made remarkable progress in the field of deep learning, and its huge potential has been fully demonstrated in various fields. This paper designs a multi-head attention graph convolutional network (MHAGCN) service classification method, which can assign different weights to the neighborhood nodes without complicated matrix operations or relying on understanding the entire graph structure. The framework combines the advantages of the attention mechanism and graph convolutional neural network. It can classify web services through automatic feature extraction. The comprehensive experimental results on a real dataset not only show the superior performance of the proposed model over the existing models but also demonstrate its potentially good interpretability for graph analysis.Keywords: attention mechanism, graph convolutional network, interpretability, service classification, service discovery
Procedia PDF Downloads 135