Search results for: grey waste water
9783 Recovery of Polyphenolic Phytochemicals From Greek Grape Pomace (Vitis Vinifera L.)
Authors: Christina Drosou, Konstantina E. Kyriakopoulou, Andreas Bimpilas, Dimitrios Tsimogiannis, Magdalini C. Krokida
Abstract:
Rationale: Agiorgitiko is one of the most widely-grown and commercially well-established red wine varieties in Greece. Each year viticulture industry produces a large amount of waste consisting of grape skins and seeds (pomace) during a short period. Grapes contain polyphenolic compounds which are partially transferred to wine during winemaking. Therefore, winery wastes could be an alternative cheap source for obtaining such compounds with important antioxidant activity. Specifically, red grape waste contains anthocyanins and flavonols which are characterized by multiple biological activities, including cardioprotective, anti-inflammatory, anti-carcinogenic, antiviral and antibacterial properties attributed mainly to their antioxidant activity. Ultrasound assisted extraction (UAE) is considered an effective way to recover phenolic compounds, since it combines the advantage of mechanical effect with low temperature. Moreover, green solvents can be used in order to recover extracts intended for used in the food and nutraceutical industry. Apart from the extraction, pre-treatment process like drying can play an important role on the preservation of the grape pomace and the enhancement of its antioxidant capacity. Objective: The aim of this study is to recover natural extracts from winery waste with high antioxidant capacity using green solvents so they can be exploited and utilized as enhancers in food or nutraceuticals. Methods: Agiorgitiko grape pomace was dehydrated by air drying (AD) and accelerated solar drying (ASD) in order to explore the effect of the pre-treatment on the recovery of bioactive compounds. UAE was applied in untreated and dried samples using water and water: ethanol (1:1) as solvents. The total antioxidant potential and phenolic content of the extracts was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and Folin-Ciocalteu method, respectively. Finally, the profile of anthocyanins and flavonols was specified using HPLC-DAD analysis. The efficiency of processes was determined in terms of extraction yield, antioxidant activity, phenolic content and the anthocyanins and flavovols profile. Results & Discussion: The experiments indicated that the pre-treatment was essential for the recovery of highly nutritious compounds from the pomace as long as the extracts samples showed higher phenolic content and antioxidant capacity. Water: ethanol (1:1) was considered a more effective solvent on the recovery of phenolic compounds. Moreover, ASD grape pomace extracted with the solvent system exhibited the highest antioxidant activity (IC50=0.36±0.01mg/mL) and phenolic content (TPC=172.68±0.01mgGAE/g dry extract), followed by AD and untreated pomace. The major compounds recovered were malvidin3-O-glucoside and quercetin3-O-glucoside according to the HPLC analysis. Conclusions: Winery waste can be exploited for the recovery of nutritious compounds using green solvents such as water or ethanol. The pretreatment of the pomace can significantly affect the concentration of phenolic compounds, while UAE is considered a highly effective extraction process.Keywords: agiorgitico grape pomace, antioxidants, phenolic compounds, ultrasound assisted extraction
Procedia PDF Downloads 3939782 Impact of Climate Change on Water Level and Properties of Gorgan Bay in the Southern Caspian Sea
Authors: Siamak Jamshidi
Abstract:
The Caspian Sea is the Earth's largest inland body of water. One of the most important issues related to the sea is water level changes. For measuring and recording Caspian Sea water level, there are at least three gauges and radar equipment in Anzali, Nowshahr and Amirabad Ports along the southern boundary of the Caspian Sea. It seems that evaporation, hotter surface air temperature, and in general climate change is the main reasons for its water level fluctuations. Gorgan Bay in the eastern part of the southern boundary of the Caspian Sea is one of the areas under the effect of water level fluctuation. Based on the results of field measurements near the Gorgan Bay mouth temperature ranged between 24°C–28°C and salinity was about 13.5 PSU in midsummer while temperature changed between 10-11.5°C and salinity mostly was 15-16.5 PSU in mid-winter. The decrease of Caspian Sea water level and rivers outflow are the two most important factors for the increase in water salinity of the Gorgan Bay. Results of field observations showed that, due to atmospheric factors, climate changes and decreasing of precipitation over the southern basin of the Caspian Sea during last decades, the water level of bay was reduced around 0.5 m.Keywords: Caspian Sea, Gorgan Bay, water level fluctuation, climate changes
Procedia PDF Downloads 1709781 Development and Analysis of Waste Human Hair Fiber Reinforced Composite
Authors: Tesfaye Worku
Abstract:
Human hair, chicken feathers, and hairs of other birds and animals are commonly described as waste products, and the currently available disposal methods, such as burying and burning these waste products, are contributing to environmental pollution. However, those waste products are used to develop fiber-reinforced textile composite material. In this research work, the composite was developed using human hair fiber and analysis of the mechanical and physical properties of the developed composite sample. A composite sample was made with different ratios of human hair and unsaturated polyester resin, and an analysis of the mechanical and physical properties of the developed composite sample was tested according to standards. The fabricated human hair fibers reinforced polymer matrix composite sample has given encouraging results in terms of high strength and rigidity for lightweight house ceiling board material.Keywords: composite, human hair fiber, matrix, unsaturated polyester
Procedia PDF Downloads 689780 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network
Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang
Abstract:
‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.Keywords: deep learning network, smart metering, water end use, water-energy data
Procedia PDF Downloads 3069779 Zamzam Water as Corrosion Inhibitor for Steel Rebar in Rainwater and Simulated Acid Rain
Authors: Ahmed A. Elshami, Stephanie Bonnet, Abdelhafid Khelidj
Abstract:
Corrosion inhibitors are widely used in concrete industry to reduce the corrosion rate of steel rebar which is present in contact with aggressive environments. The present work aims to using Zamzam water from well located within the Masjid al-Haram in Mecca, Saudi Arabia 20 m (66 ft) east of the Kaaba, the holiest place in Islam as corrosion inhibitor for steel in rain water and simulated acid rain. The effect of Zamzam water was investigated by electrochemical impedance spectroscopy (EIS) and Potentiodynamic polarization techniques in Department of Civil Engineering - IUT Saint-Nazaire, Nantes University, France. Zamzam water is considered to be one of the most important steel corrosion inhibitor which is frequently used in different industrial applications. Results showed that zamzam water gave a very good inhibition for steel corrosion in rain water and simulated acid rain.Keywords: Zamzam water, corrosion inhibitor, rain water, simulated acid rain
Procedia PDF Downloads 3949778 Investigating the Thermal Characteristics of Reclaimed Solid Waste from a Landfill Site Using Thermogravimetry
Authors: S. M. Al-Salem, G.A. Leeke, H. J. Karam, R. Al-Enzi, A. T. Al-Dhafeeri, J. Wang
Abstract:
Thermogravimetry has been popularized as a thermal characterization technique since the 1950s. It aims at investigating the weight loss against both reaction time and temperature, whilst being able to characterize the evolved gases from the volatile components of the organic material being tested using an appropriate hyphenated analytical technique. In an effort to characterize and identify the reclaimed waste from an unsanitary landfill site, this approach was initiated. Solid waste (SW) reclaimed from an active landfill site in the State of Kuwait was collected and prepared for characterization in accordance with international protocols. The SW was segregated and its major components were identified after washing and air drying. Shredding and cryomilling was conducted on the plastic solid waste (PSW) component to yield a material that is representative for further testing and characterization. The material was subjected to five heating rates (b) with minimal repeatable weight for high accuracy thermogravimetric analysis (TGA) following the recommendation of the International Confederation for Thermal Analysis and Calorimetry (ICTAC). The TGA yielded thermograms that showed an off-set from typical behavior of commercial grade resin which was attributed to contact of material with soil and thermal/photo-degradation.Keywords: polymer, TGA, pollution, landfill, waste, plastic
Procedia PDF Downloads 1299777 Characterization of Plunging Water Jets in Crossflows: Experimental and Numerical Studies
Authors: Mina Esmi Jahromi, Mehdi Khiadani
Abstract:
Plunging water jets discharging into turbulent crossflows are capable of providing efficient air water interfacial area, which is desirable for the process of mass transfer. Although several studies have been dedicated to the air entrainment by water jets impinging into stagnant water, very few studies have focused on the water jets in crossflows. This study investigates development of the two-phase flow as a result of the jet impingements into crossflows by means of image processing technique and CFD simulations. Investigations are also conducted on the oxygen transfer and a correlation is established between the aeration properties and the oxygenation capacity of water jets in crossflows. This study helps the optimal design and the effective operation of the industrial and the environmental equipment incorporating water jets in crossflows.Keywords: air entrainment, CFD simulation, image processing, jet in crossflow, oxygen transfer, two-phase flow
Procedia PDF Downloads 2389776 Ecosystem Approach in Aquaculture: From Experimental Recirculating Multi-Trophic Aquaculture to Operational System in Marsh Ponds
Abstract:
Integrated multi-trophic aquaculture (IMTA) is used to reduce waste from aquaculture and increase productivity by co-cultured species. In this study, we designed a recirculating multi-trophic aquaculture system which requires low energy consumption, low water renewal and easy-care. European seabass (Dicentrarchus labrax) were raised with co-cultured sea urchin (Paracentrotus lividus), deteritivorous polychaete fed on settled particulate matter, mussels (Mytilus galloprovincialis) used to extract suspended matters, macroalgae (Ulva sp.) used to uptake dissolved nutrients and gastropod (Phorcus turbinatus) used to clean the series of 4 tanks from fouling. Experiment was performed in triplicate during one month in autumn under an experimental greenhouse at the Institute Océanographique Paul Ricard (IOPR). Thanks to the absence of a physical filter, any pomp was needed to pressure water and the water flow was carried out by a single air-lift followed by gravity flow.Total suspended solids (TSS), biochemical oxygen demand (BOD5), turbidity, phytoplankton estimation and dissolved nutrients (ammonium NH₄, nitrite NO₂⁻, nitrate NO₃⁻ and phosphorus PO₄³⁻) were measured weekly while dissolved oxygen and pH were continuously recorded. Dissolved nutrients stay under the detectable threshold during the experiment. BOD5 decreased between fish and macroalgae tanks. TSS highly increased after 2 weeks and then decreased at the end of the experiment. Those results show that bioremediation can be well used for aquaculture system to keep optimum growing conditions. Fish were the only feeding species by an external product (commercial fish pellet) in the system. The others species (extractive species) were fed from waste streams from the tank above or from Ulva produced by the system for the sea urchin. In this way, between the fish aquaculture only and the addition of the extractive species, the biomass productivity increase by 5.7. In other words, the food conversion ratio dropped from 1.08 with fish only to 0.189 including all species. This experimental recirculating multi-trophic aquaculture system was efficient enough to reduce waste and increase productivity. In a second time, this technology has been reproduced at a commercial scale. The IOPR in collaboration with Les 4 Marais company run for 6 month a recirculating IMTA in 8000 m² of water allocate between 4 marsh ponds. A similar air-lift and gravity recirculating system was design and only one feeding species of shrimp (Palaemon sp.) was growth for 3 extractive species. Thanks to this joint work at the laboratory and commercial scales we will be able to challenge IMTA system and discuss about this sustainable aquaculture technology.Keywords: bioremediation, integrated multi-trophic aquaculture (IMTA), laboratory and commercial scales, recirculating aquaculture, sustainable
Procedia PDF Downloads 1529775 The Composting Process from a Waste Management Method to a Remediation Procedure
Authors: G. Petruzzelli, F. Pedron, M. Grifoni, F. Gorini, I. Rosellini, B. Pezzarossa
Abstract:
Composting is a controlled technology to enhance the natural aerobic process of organic wastes degradation. The resulting product is a humified material that is principally recyclable for agricultural purpose. The composting process is one of the most important tools for waste management, by the European Community legislation. In recent years composting has been increasingly used as a remediation technology to remove biodegradable contaminants from soil, and to modulate heavy metals bioavailability in phytoremediation strategies. An optimization in the recovery of resources from wastes through composting could enhance soil fertility and promote its use in the remediation biotechnologies of contaminated soils.Keywords: agriculture, biopile, compost, soil clean-up, waste recycling
Procedia PDF Downloads 3099774 Theoretical Framework and Empirical Simulation of Policy Design on Trans-Dimensional Resource Recycling
Authors: Yufeng Wu, Yifan Gu, Bin Li, Wei Wang
Abstract:
Resource recycling process contains a subsystem with interactions of three dimensions including coupling allocation of primary and secondary resources, responsibility coordination of stakeholders in forward and reverse supply chains, and trans-boundary transfer of hidden resource and environmental responsibilities between regions. Overlap or lack of responsibilities is easy to appear at the intersection of the three management dimensions. It is urgent to make an overall design of the policy system for recycling resources. From theoretical perspective, this paper analyzes the unique external differences of resource and environment in various dimensions and explores the reason why the effects of trans-dimensional policies are strongly correlated. Taking the example of the copper resources contained in the waste electrical and electronic equipment, this paper constructs reduction effect accounting model of resources recycling and set four trans-dimensional policy scenarios including resources tax and environmental tax reform of the raw and secondary resources, application of extended producer responsibility system, promotion of clean development mechanism, and strict entry barriers of imported wastes. In these ways, the paper simulates the impact effect of resources recycling process on resource deduction and emission reduction of waste water and gas, and constructs trans-dimensional policy mix scenario through integrating dominant strategy. The results show that combined application of various dimensional policies can achieve incentive compatibility and the trans-dimensional policy mix scenario can reach a better effect. Compared with baseline scenario, this scenario will increase 91.06% copper resources reduction effect and improve emission reduction of waste water and gas by eight times from 2010 to 2030. This paper further analyzes the development orientation of policies in various dimension. In resource dimension, the combined application of compulsory, market and authentication methods should be promoted to improve the use ratio of secondary resources. In supply chain dimension, resource value, residual functional value and potential information value contained in waste products should be fully excavated to construct a circular business system. In regional dimension, it should give full play to the comparative advantages of manufacturing power to improve China’s voice in resource recycling in the world.Keywords: resource recycling, trans-dimension, policy design, incentive compatibility, life cycle
Procedia PDF Downloads 1269773 Green Economy and Environmental Protection Economic Policy Challenges in Georgia
Authors: Gulnaz Erkomaishvili
Abstract:
Introduction. One of the most important issues of state economic policy in the 21st century is the problem of environmental protection. The Georgian government considers the green economy as one of the most important means of sustainable economic development and takes the initiative to implement voluntary measures to promote sustainable development. In this context, it is important to promote the development of ecosystem services, clean production, environmental education and green jobs.The development of the green economy significantly reduces the inefficient use of natural resources, waste generation, emissions into the atmosphere and the discharge of untreated water into bodies of water.It is, therefore, an important instrument in the environmental orientation of sustainable development. Objectives.The aim of the paper is to analyze the current status of the green economy in Georgia and identify effective ways to improve the environmental, economic policy of sustainable development. Methodologies: This paper uses general and specific methods, in particular, analysis, synthesis, induction, deduction, scientific abstraction, comparative and statistical methods, as well as experts’ evaluation. bibliographic research of scientific works and reports of organizations was conducted; Publications of the National Statistics Office of Georgia are used to determine the regularity between analytical and statistical estimations. Also, theoretical and applied research of international organizations and scientist-economists are used. Contributions: The country should implement such an economic policy that ensures the transition to a green economy, in particular, revising water, air and waste laws, strengthening existing environmental management tools and introcing new tools (including economic tools). Perfecting the regulatory legal framework of the environmental impact assessment system, which includes the harmonization of Georgian legislation with the requirements of the European Union. To ensure the protection and rational use of Georgia's forests, emphasis should be placed on sustainable forestry, protection and restoration of forests.Keywords: green economy, environmental protection, environmental protection economic policy, environmental protection policy challanges
Procedia PDF Downloads 659772 Water Depth and Optical Attenuation Characteristics of Natural Water Reservoirs nearby Kolkata City Assessed from Hyperion Hyperspectral and LISS-3 Multispectral Images
Authors: Barun Raychaudhuri
Abstract:
A methodology is proposed for estimating the optical attenuation and proportional depth variation of shallow inland water. The process is demonstrated with EO-1 Hyperion hyperspectral and IRS-P6 LISS-3 multispectral images of Kolkata city nearby area centered around 22º33′ N 88º26′ E. The attenuation coefficient of water was found to change with fine resolution of wavebands and in presence of suspended organic matter in water.Keywords: hyperion, hyperspectral, Kolkata, water depth
Procedia PDF Downloads 2469771 Sustainable Recycling Practices to Reduce Health Hazards of Municipal Solid Waste in Patna, India
Authors: Anupama Singh, Papia Raj
Abstract:
Though Municipal Solid Waste (MSW) is a worldwide problem, yet its implications are enormous in developing countries, as they are unable to provide proper Municipal Solid Waste Management (MSWM) for the large volume of MSW. As a result, the collected wastes are dumped in open dumping at landfilling sites while the uncollected wastes remain strewn on the roadside, many-a-time clogging drainage. Such unsafe and inadequate management of MSW causes various public health hazards. For example, MSW directly on contact or by leachate contaminate the soil, surface water, and ground water; open burning causes air pollution; anaerobic digestion between the piles of MSW enhance the greenhouse gases i.e., carbon dioxide and methane (CO2 and CH4) into the atmosphere. Moreover, open dumping can cause spread of vector borne disease like cholera, typhoid, dysentery, and so on. Patna, the capital city of Bihar, one of the most underdeveloped provinces in India, is a unique representation of this situation. Patna has been identified as the ‘garbage city’. Over the last decade there has been an exponential increase in the quantity of MSW generation in Patna. Though a large proportion of such MSW is recyclable in nature, only a negligible portion is recycled. Plastic constitutes the major chunk of the recyclable waste. The chemical composition of plastic is versatile consisting of toxic compounds, such as, plasticizers, like adipates and phthalates. Pigmented plastic is highly toxic and it contains harmful metals such as copper, lead, chromium, cobalt, selenium, and cadmium. Human population becomes vulnerable to an array of health problems as they are exposed to these toxic chemicals multiple times a day through air, water, dust, and food. Based on analysis of health data it can be emphasized that in Patna there has been an increase in the incidence of specific diseases, such as, diarrhoea, dysentry, acute respiratory infection (ARI), asthma, and other chronic respiratory diseases (CRD). This trend can be attributed to improper MSWM. The results were reiterated through a survey (N=127) conducted during 2014-15 in selected areas of Patna. Random sampling method of data collection was used to better understand the relationship between different variables affecting public health due to exposure to MSW and lack of MSWM. The results derived through bivariate and logistic regression analysis of the survey data indicate that segregation of wastes at source, segregation behavior, collection bins in the area, distance of collection bins from residential area, and transportation of MSW are the major determinants of public health issues. Sustainable recycling is a robust method for MSWM with its pioneer concerns being environment, society, and economy. It thus ensures minimal threat to environment and ecology consequently improving public health conditions. Hence, this paper concludes that sustainable recycling would be the most viable approach to manage MSW in Patna and would eventually reduce public health hazards.Keywords: municipal solid waste, Patna, public health, sustainable recycling
Procedia PDF Downloads 3239770 Generating Biogas from Municipal Kitchen Waste: An Experience from Gaibandha, Bangladesh
Authors: Taif Rocky, Uttam Saha, Mahobul Islam
Abstract:
With a rapid urbanisation in Bangladesh, waste management remains one of the core challenges. Turning municipal waste into biogas for mass usage is a solution that Bangladesh needs to adopt urgently. Practical Action with its commitment to challenging poverty with technological justice has piloted such idea in Gaibandha. The initiative received immense success and drew the attention of policy makers and practitioners. We believe, biogas from waste can highly contribute to meet the growing demand for energy in the country at present and in the future. Practical Action has field based experience in promoting small scale and innovative technologies. We have proven track record in integrated solid waste management. We further utilized this experience to promote waste to biogas at end users’ level. In 2011, we have piloted a project on waste to biogas in Gaibandha, a northern secondary town of Bangladesh. With resource and support from UNICEF and with our own innovative funds we have established a complete chain of utilizing waste to the renewable energy source and organic fertilizer. Biogas is produced from municipal solid waste, which is properly collected, transported and segregated by private entrepreneurs. The project has two major focuses, diversification of biogas end use and establishing a public-private partnership business model. The project benefits include Recycling of Wastes, Improved institutional (municipal) capacity, Livelihood from improved services and Direct Income from the project. Project risks include Change of municipal leadership, Traditional mindset, Access to decision making, Land availability. We have observed several outcomes from the initiative. Up scaling such an initiative will certainly contribute for sustainable cleaner and healthier urban environment and urban poverty reduction. - It reduces the unsafe disposal of wastes which improve the cleanliness and environment of the town. -Make drainage system effective reducing the adverse impact of water logging or flooding. -Improve public health from better management of wastes. -Promotes usage of biogas replacing the use of firewood/coal which creates smoke and indoor air pollution in kitchens which have long term impact on health of women and children. -Reduce the greenhouse gas emission from the anaerobic recycling of wastes and contributes to sustainable urban environment. -Promote the concept of agroecology from the uses of bio slurry/compost which contributes to food security. -Creates green jobs from waste value chain which impacts on poverty alleviation of urban extreme poor. -Improve municipal governance from inclusive waste services and functional partnership with private sectors. -Contribute to the implementation of 3R (Reduce, Reuse, Recycle) Strategy and Employment Creation of extreme poor to achieve the target set in Vision 2021 by Government of Bangladesh.Keywords: kitchen waste, secondary town, biogas, segregation
Procedia PDF Downloads 2229769 Molecular Comparison of HEV Isolates from Sewage & Humans at Western India
Authors: Nidhi S. Chandra, Veena Agrawal, Debprasad Chattopadhyay
Abstract:
Background: Hepatitis E virus (HEV) is a major cause of acute viral hepatitis in developing countries. It spreads feco orally mainly due to contamination of drinking water by sewage. There is limited data on the genotypic comparison of HEV isolates from sewage water and humans. The aim of this study was to identify genotype and conduct phylogenetic analysis of HEV isolates from sewage water and humans. Materials and Methods: 14 sewage water and 60 serum samples from acute sporadic hepatitis E cases (negative for hepatitis A, B, C) were tested for HEV-RNA by nested polymerase chain reaction (RTnPCR) using primers designed with in RdRp (RNA dependent RNA polymerase) region of open reading frame-1 (ORF-1). Sequencing was done by ABI prism 310. The sequences (343 nucleotides) were compared with each other and were aligned with previously reported HEV sequences obtained from GeneBank, using Clustal W software. A Phylogenetic tree was constructed by using PHYLIP version 3.67 software. Results: HEV-RNA was detected in 49/ 60 (81.67%) serum and 5/14 (35.71%) sewage samples. The sequences obtained from 17 serums and 2 sewage specimens belonged to genotype I with 85% similarity and clustering with previously reported human HEV sequences from India. HEV isolates from human and sewage in North West India are genetically closely related to each other. Conclusion: These finding suggest that sewage acts as reservoir of HEV. Therefore it is important that measures are taken for proper waste disposal and treatment of drinking water to prevent outbreaks and epidemics due to HEV.Keywords: hepatitis E virus, nested polymerase chain reaction, open reading frame-1, nucleotidies
Procedia PDF Downloads 3779768 Determination of Optimum Water Consumptive Using Deficit Irrigation Model for Barely: A Case Study in Arak, Iran
Authors: Mohsen Najarchi
Abstract:
This research was carried out in five fields (5-15 hectares) in Arak located in center of Iran, to determine optimum level of water consumed for Barely in four stages growth (vegetative, yield formation, flowering, and ripening). Actual evapotranspiration was calculated using measured water requirement in the fields. Five levels of water requirement equal to 50, 60, 70, 80, and 90 percents formed the treatments. To determine the optimum level of water requirement linear programming was used. The study showed 60 percent water requirement (40 percent deficit irrigation) has been the optimum level of irrigation for winter wheat in four stages of growth. Comparison between all of the treatments indicated above with normal condition (100% water requirement) shows increasing in water use efficiency. Although 40% deficit irrigation treatment lead to decrease of 38% in yield, net benefit was increasing in 11.37%. Furthermore, in comparison with normal condition, 70% of water requirement increased water use efficiency as 30%.Keywords: optimum, deficit irrigation, water use efficiency, evapotranspiration
Procedia PDF Downloads 3969767 Seepage Modelling of Jatigede Dam Towards Cisampih Village Based on Analysis Soil Characteristic Using Method Soil Reaction to Water, West Java Indonesia
Authors: Diemas Purnama Muhammad Firman Pratama, Denny Maulana Malik
Abstract:
Development of Jatigede Dam that was the mega project in Indonesia, since 1963. Area of around Jatigede Dam is complex, it has structural geology active fault, and as possible can occur landslide. This research focus on soil test. The purpose of this research to know soil quality Jatigede Dam which caused by water seepage of Jatigede Dam, then can be made seepage modelling around Jatigede Dam including Cisampih Village. Method of this research is SRW (Soil Reaction to Water). There are three samples are taken nearby Jatigede Dam. Four paramaters to determine water seepage such as : V ( velocity of soil to release water), Dl (Ability of soil to release water), Ds (Ability of soil to absorb water), Dt (Ability of soil to hold water). meanwhile, another proscess of interaction beetween water and soil are produced angle, which is made of water flow and vertikal line. Called name SIAT. SIAT has two type is na1 and na2. Each samples has a value from the first sample is 280,333(degree), the second 270 (degree) and the third 270 (degree). The difference na1 is, water interaction towards Dt value angle, while na2 is water interaction towards Dl and Ds value angle. Result of calculating SRW method, first till third sample has a value 7, 11,5 and 9. Based on data, interpreted in around teritory of Jatigede Dam, will get easier impact from water seepage because, condition soil reaction too bad so, it can not hold water.Keywords: Jatigede Dam, Cisampih village, water seepage, soil quality
Procedia PDF Downloads 3749766 The Effect of Magnetic Water on the Growth of Radish Cherry
Authors: Elisha Didam Markus, Thapelo Maqame
Abstract:
This paper focuses on studying the effects of magnetism on water and their impact to plant growth. Magnetic fields are known to induce higher rate of biochemical reaction and therefore can be used for growth related reactions in plants. For the purpose of this study, two 2 litres bottles were taken, one with two opposite poles magnets (500 mT) one on top and one at the bottom of the bottle. Another bottle was not altered in any way (used as control). Each bottle contained tap water stored up for 24 hours. Plants planted into different pots were watered using water from these bottles. Four pots with soil and manure equally mixed were used and equal volume of radish berry seeds were planted. Two pots were watered with magnetised water and the other two with normal tap water. The developments of plants were monitored in terms of their lengths for a period of 21 days. After 21 days, the lengths of plants watered with magnetised water were found to be 5.6% longer than those watered with tap water.Keywords: magnetised water, radish berry, growth percentage, magnetic fields
Procedia PDF Downloads 2489765 Environmental Contamination of Water Bodies by Waste Produced by Slaughterhouses and the Prevalence of Waterborne Diseases in Kumba Municipality
Authors: Maturin Désiré Sop Sop, Didien Njumba Besende, Samuel Fosso Wamba
Abstract:
This study seeks to examine the nexus between drinking water sources in the Kumba municipality and its related health implications vis-à-vis the recurrent incidences of waterborne diseases such as Typhoid, Cholera, Diarrhea, Dysentery, Hepatitis A and malaria. The study adopted a purposive sampling technique in which surveys were conducted between the months of June to December 2022. 150 questionnaires were retrieved from the 210 administered to the affected population of Kosala, Buea Road and Mambanda. Information for the study was collected using surveys, questionnaires, key informant interviews, the laboratory analysis of collected drinking water samples, the researcher’s direct observation as well and hospital reports on the prevalence of waterborne diseases. Water samples from the nearby streams and wells, which were communally used by the local population for drinking, and five slaughterhouses within the affected areas were laboratory tested to determine alterations in their chemical, physical and microbiological characteristics. The collected water samples from all the streams and wells used for drinking were tested for changes in properties such as temperature, turbidity, EC, pH, TDS, TSS, Cl, SO42-, PO43-, NO3-, Fe, Na, BOD, COD, DO, E.coli and total coliform concentration. These results were then compared with the WHO regulations for water quality. The results from the laboratory analysis of drinking water sources, which were at the same time used by the surrounding abattoirs revealed significant alterations in the water quality parameters such as temperature, turbidity, EC, pH, TDS, TSS, Cl, SO42-, PO43-, NO3-, Fe, Na, BOD, COD, DO, E.coli and total coliform concentration. This is due to the channeling of untreated wastes into the different drinking water points as well as the inter-use of dirty utensils such as buckets from slaughterhouses to fetch water from the streams and wells that serve as drinking water sources for the local population. On the human health aspect, the results were later compared with hospital data, and they revealed that the consumption of such contaminated water in the localities of Kosala, Mambanda, and Buea road negatively affected the local population because of the high incidences of Typhoid Cholera, Diarrhea, Dysentery, Hepatitis A and malaria. The poor management of drinking water sources pollutes streams and significantly exposes the local population to lots of waterborne diseases. Efforts should be made to provide clean pipe-borne water to the affected localities of Kumba as well as to ensure the proper management of wastes.Keywords: drinking water, diseases, Kumba, municipality
Procedia PDF Downloads 779764 The Relation of Water Intake with Level of Knowledge Related to Water Intake in Workers of Food Production Unit, Nutrition Installation at Puspa Hospital, Jakarta
Authors: Siti Rahmah Fitrianti, Mela Milani
Abstract:
Inadequate of water intake has negative effects on the health of the body, which can cause kidney failure and death. One of the factors that can affect someone intake of water is level of knowledge about the importance of water intake itself. A good knowledge of the daily water intake can increase the awareness of daily needed of water intake. Therefore, researchers initiated a study on the relationship of water intake to the level of knowledge related with water intake in food workers, at “Puspa” Hospital. Type of this research is quantitative research with cross-sectional approach. The research data was collected by measuring the independent and dependent variable at a time. This study took place in the food production unit of Nutrition Installation in "Puspa" Hospital, Jakarta in October 2016. The population target in this study were workers in food production unit aged 30-64 years. The instrument was a questionnaire question regarding water intake and 24 hours food recall. The result is 78.6% of respondents have less knowledge about the importance of water intake. Meanwhile, as many as 85.7% of respondents have adequate water intake. Tested by Chi-Square test, showed that no significant relationship between water intake with the level of knowledge related to water intake in workers of food production unit. Adequate intake of water in food workers commonly may be not caused by the level of knowledge related to water intake, but it may be cause of work environment factor which has a high temperature.Keywords: food production unit, food workers, level of knowledge, water intake
Procedia PDF Downloads 3479763 A Study on Energy Efficiency of Vertical Water Treatment System with DC Power Supply
Authors: Young-Kwan Choi, Gang-Wook Shin, Sung-Taek Hong
Abstract:
Water supply system consumes large amount of power load during water treatment and transportation of purified water. Many energy conserving high efficiency materials such as DC motor and LED light have recently been introduced to water supply system for energy conservation. This paper performed empirical analysis on BLDC, AC motors, and comparatively analyzed the change in power according to DC power supply ratio in order to conserve energy of a next-generation water treatment system called vertical water treatment system. In addition, a DC distribution system linked with photovoltaic generation was simulated to analyze the energy conserving effect of DC load.Keywords: vertical water treatment system, DC power supply, energy efficiency, BLDC
Procedia PDF Downloads 5039762 Infection Risk of Fecal Coliform Contamination in Drinking Water Sources of Urban Slum Dwellers: Application of Quantitative Microbiological Risk Assessment
Authors: Sri Yusnita Irda Sari, Deni Kurniadi Sunjaya, Ardini Saptaningsih Raksanagara
Abstract:
Water is one of the fundamental basic needs for human life, particularly drinking water sources. Although water quality is getting better, fecal-contamination of water is still found around the world, especially in the slum area of mid-low income countries. Drinking water source contamination in urban slum dwellers increases the risk of water borne diseases. Low level of sanitation and poor drinking water supply known as risk factors for diarrhea, moreover bacteria-contaminated drinking water source is the main cause of diarrhea in developing countries. This study aimed to assess risk infection due to Fecal Coliform contamination in various drinking water sources in urban area by applying Quantitative Microbiological Risk Assessment (QMRA). A Cross-sectional survey was conducted in a period of August to October 2015. Water samples were taken by simple random sampling from households in Cikapundung river basin which was one of urban slum area in the center of Bandung city, Indonesia. About 379 water samples from 199 households and 15 common wells were tested. Half of the households used treated drinking water from water gallon mostly refill water gallon which was produced in drinking water refill station. Others used raw water sources which need treatment before consume as drinking water such as tap water, borehole, dug well and spring water source. Annual risk to get infection due to Fecal Coliform contamination from highest to lowest risk was dug well (1127.9 x 10-5), spring water (49.7 x 10-5), borehole (1.383 x 10-5) and tap water (1.121 x 10-5). Annual risk infection of refill drinking water was 1.577 x 10-5 which is comparable to borehole and tap water. Household water treatment and storage to make raw water sources drinkable is essential to prevent risk of water borne diseases. Strong regulation and intense monitoring of refill water gallon quality should be prioritized by the government; moreover, distribution of tap water should be more accessible and affordable especially in urban slum area.Keywords: drinking water, quantitative microbiological risk assessment, slum, urban
Procedia PDF Downloads 2819761 Modelling of Organic Rankine Cycle for Waste Heat Recovery Process in Supercritical Condition
Authors: Jahedul Islam Chowdhury, Bao Kha Nguyen, David Thornhill, Roy Douglas, Stephen Glover
Abstract:
Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.Keywords: Organic Rankine cycle, supercritical condition, steady state model, waste heat recovery
Procedia PDF Downloads 4059760 GeoWeb at the Service of Household Waste Collection in Urban Areas
Authors: Abdessalam Hijab, Eric Henry, Hafida Boulekbache
Abstract:
The complexity of the city makes sustainable management of the urban environment more difficult. Managers are required to make significant human and technical investments, particularly in household waste collection (focus of our research). The aim of this communication is to propose a collaborative geographic multi-actor device (MGCD) based on the link between information and communication technologies (ICT) and geo-web tools in order to involve urban residents in household waste collection processes. Our method is based on a collaborative/motivational concept between the city and its residents. It is a geographic collaboration dedicated to the general public (citizens, residents, and any other participant), based on real-time allocation and geographic location of topological, geographic, and multimedia data in the form of local geo-alerts (location-specific problems) related to household waste in an urban environment. This contribution allows us to understand the extent to which residents can assist and contribute to the development of household waste collection processes for a better protected urban environment. This suggestion provides a good idea of how residents can contribute to the data bank for future uses. Moreover, it will contribute to the transformation of the population into a smart inhabitant as an essential component of a smart city. The proposed model will be tested in the Lamkansa sampling district in Casablanca, Morocco.Keywords: information and communication technologies, ICTs, GeoWeb, geo-collaboration, city, inhabitant, waste, collection, environment
Procedia PDF Downloads 1289759 Using the Combination of Food Waste and Animal Waste as a Reliable Energy Source in Rural Guatemala
Authors: Jina Lee
Abstract:
Methane gas is a common byproduct in any process of rot and degradation of organic matter. This gas, when decomposition occurs, is emitted directly into the atmosphere. Methane is the simplest alkane hydrocarbon that exists. Its chemical formula is CH₄. This means that there are four atoms of hydrogen and one of carbon, which is linked by covalent bonds. Methane is found in nature in the form of gas at normal temperatures and pressures. In addition, it is colorless and odorless, despite being produced by the rot of plants. It is a non-toxic gas, and the only real danger is that of burns if it were to ignite. There are several ways to generate methane gas in homes, and the amount of methane gas generated by the decomposition of organic matter varies depending on the type of matter in question. An experiment was designed to measure the efficiency, such as a relationship between the amount of raw material and the amount of gas generated, of three different mixtures of organic matter: 1. food remains of home; 2. animal waste (excrement) 3. equal parts mixing of food debris and animal waste. The results allowed us to conclude which of the three mixtures is the one that grants the highest efficiency in methane gas generation and which would be the most suitable for methane gas generation systems for homes in order to occupy less space generating an equal amount of gas.Keywords: alternative energy source, energy conversion, methane gas conversion system, waste management
Procedia PDF Downloads 1659758 Quantification of E-Waste: A Case Study in Federal University of Espírito Santo, Brazil
Authors: Andressa S. T. Gomes, Luiza A. Souza, Luciana H. Yamane, Renato R. Siman
Abstract:
The segregation of waste of electrical and electronic equipment (WEEE) in the generating source, its characterization (quali-quantitative) and identification of origin, besides being integral parts of classification reports, are crucial steps to the success of its integrated management. The aim of this paper was to count WEEE generation at the Federal University of Espírito Santo (UFES), Brazil, as well as to define sources, temporary storage sites, main transportations routes and destinations, the most generated WEEE and its recycling potential. Quantification of WEEE generated at the University in the years between 2010 and 2015 was performed using data analysis provided by UFES’s sector of assets management. EEE and WEEE flow in the campuses information were obtained through questionnaires applied to the University workers. It was recorded 6028 WEEEs units of data processing equipment disposed by the university between 2010 and 2015. Among these waste, the most generated were CRT screens, desktops, keyboards and printers. Furthermore, it was observed that these WEEEs are temporarily stored in inappropriate places at the University campuses. In general, these WEEE units are donated to NGOs of the city, or sold through auctions (2010 and 2013). As for recycling potential, from the primary processing and further sale of printed circuit boards (PCB) from the computers, the amount collected could reach U$ 27,839.23. The results highlight the importance of a WEEE management policy at the University.Keywords: solid waste, waste of electrical and electronic equipment, waste management, institutional solid waste generation
Procedia PDF Downloads 2609757 Approach to Study the Workability of Concrete with the Fractal Model
Authors: Achouri Fatima, Chouicha Kaddour
Abstract:
The main parameters affecting the workability are the water content, particle size, and the total surface of the grains, as long as the mixing water begins by wetting the surface of the grains and then fills the voids between the grains to form entrapped water, the quantity of water remaining is called free water. The aim is to undertake a fractal approach through the relationship between the concrete formulation parameters and workability, to develop this approach a series of concrete taken from the literature was investigated by varying formulation parameters such as G / S, the quantity of cement C and the quantity of mixing water E. We also call on other model as the model for the thickness of the water layer and model of the thickness of the paste layer to judge their relevance, hence the following results : the relevance of the model of the thickness of the water layer is considered relevant when there is a variation in the water quantity, the model of the thickness of the layer of the paste is only applicable if we consider that the paste is made with the grain value Dmax = 2.85: value from which we see a stable model.Keywords: concrete, fractal method, paste thickness, water thickness, workability
Procedia PDF Downloads 3799756 Characterization of Alloyed Grey Cast Iron Quenched and Tempered for a Smooth Roll Application
Authors: Mohamed Habireche, Nacer E. Bacha, Mohamed Djeghdjough
Abstract:
In the brick industry, smooth double roll crusher is used for medium and fine crushing of soft to medium hard material. Due to opposite inward rotation of the rolls, the feed material is nipped between the rolls and crushed by compression. They are subject to intense wear, known as three-body abrasion, due to the action of abrasive products. The production downtime affecting productivity stems from two sources: the bi-monthly rectification of the roll crushers and their replacement when they are completely worn out. Choosing the right material for the roll crushers should result in longer machine cycles, and reduced repair and maintenance costs. All roll crushers are imported from outside Algeria. This results in sometimes very long delivery times which handicap the brickyards, in particular in respecting delivery times and honored the orders made by customers. The aim of this work is to investigate the effect of alloying additions on microstructure and wear behavior of grey lamellar cast iron for smooth roll crushers in brick industry. The base gray iron was melted in an induction furnace with low frequency at a temperature of 1500 °C, in which return cast iron scrap, new cast iron ingot, and steel scrap were added to the melt to generate the desired composition. The chemical analysis of the bar samples was carried out using Emission Spectrometer Systems PV 8050 Series (Philips) except for the carbon, for which a carbon/sulphur analyser Elementrac CS-i was used. Unetched microstructure was used to evaluate the graphite flake morphology using the image comparison measurement method. At least five different fields were selected for quantitative estimation of phase constituents. The samples were observed under X100 magnification with a Zeiss Axiover T40 MAT optical microscope equipped with a digital camera. SEM microscope equipped with EDS was used to characterize the phases present in the microstructure. The hardness (750 kg load, 5mm diameter ball) was measured with a Brinell testing machine for both treated and as-solidified condition test pieces. The test bars were used for tensile strength and metallographic evaluations. Mechanical properties were evaluated using tensile specimens made as per ASTM E8 standards. Two specimens were tested for each alloy. From each rod, a test piece was made for the tensile test. The results showed that the quenched and tempered alloys had best wear resistance at 400 °C for alloyed grey cast iron (containing 0.62%Mn, 0.68%Cr, and 1.09% Cu) due to fine carbides in the tempered matrix. In quenched and tempered condition, increasing Cu content in cast irons improved its wear resistance moderately. Combined addition of Cu and Cr increases hardness and wear resistance for a quenched and tempered hypoeutectic grey cast iron.Keywords: casting, cast iron, microstructure, heat treating
Procedia PDF Downloads 1059755 Advancing Spatial Mapping and Monitoring of Illegal Landfills for Deprived Urban Areas in Romania
Authors: ȘercăIanu Mihai, Aldea Mihaela, Iacoboaea Cristina, Luca Oana, Nenciu Ioana
Abstract:
The emergence and neutralization of illegal waste dumps represent a global concern for waste management ecosystems with a particularly pronounced impact on disadvantaged communities. All over the world, and in this particular case in Romania, a relevant number of people resided in houses lacking any legal forms such as land ownership documents or building permits. These areas are referred to as “informal settlements”. An increasing number of regions and cities in Romania are struggling to manage their waste dumps, especially in the context of increasing poverty and lack of regulation related to informal settlements. An example of such informal settlement can be found at the terminus of Bistra Street in Câlnic, which falls under the jurisdiction of the Municipality of Reșița in Caras Severin County. The article presents a case study that focuses on employing remote sensing techniques and spatial data to monitor and map illegal waste practices, with subsequent integration into a geographic information system tailored for the Reșița community. In addition, the paper outlines the steps involved in devising strategies aimed at enhancing waste management practices in disadvantaged areas, aligning with the shift toward a circular economy. Results presented in the paper contain a spatial mapping and visualization methodology calibrated with in situ data collection applicable for identifying illegal landfills. The emergence and neutralization of illegal dumps pose a challenge in the field of waste management. These approaches, which prove effective where conventional solutions have failed, need to be replicated and adopted more wisely.Keywords: waste dumps, waste management, monitoring, GIS, informal settlements
Procedia PDF Downloads 869754 Preliminary Study on Using of Thermal Energy from Effluent Water for the SBR Process of RO
Authors: Gyeong-Sung Kim, In-soo Ahn, Yong Cho
Abstract:
SBR (Sequencing Batch Reactor) process is usually applied to membrane water treatment plants to treat its concentrated wastewater. The role of SBR process is to remove COD (Chemical Oxygen Demand) and NH3 from wastewater before discharging it outside of the water treatment plant using microorganism. Microorganism’s nitrification capability is influenced by water temperature because the nitrification rate of the concentrated wastewater becomes ‘zero’ as water temperature approach 0℃. Heating system is necessary to operate SBR in winter season even though the operating cost increase sharply. The operating cost of SBR at ‘D’ RO water treatment plant in Korea was 51.8 times higher in winter (October to March) compare to summer (April to September) season in 2014. Otherwise the effluent water temperature maintained around 8℃ constantly in winter. This study focuses on application heat pump system to recover the thermal energy from the effluent water of ‘D’ RO plant so that the operating cost will be reduced.Keywords: water treatment, water thermal energy, energy saving, RO, SBR
Procedia PDF Downloads 516