Search results for: disease prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5884

Search results for: disease prediction

5044 Prediction of Terrorist Activities in Nigeria using Bayesian Neural Network with Heterogeneous Transfer Functions

Authors: Tayo P. Ogundunmade, Adedayo A. Adepoju

Abstract:

Terrorist attacks in liberal democracies bring about a few pessimistic results, for example, sabotaged public support in the governments they target, disturbing the peace of a protected environment underwritten by the state, and a limitation of individuals from adding to the advancement of the country, among others. Hence, seeking for techniques to understand the different factors involved in terrorism and how to deal with those factors in order to completely stop or reduce terrorist activities is the topmost priority of the government in every country. This research aim is to develop an efficient deep learning-based predictive model for the prediction of future terrorist activities in Nigeria, addressing low-quality prediction accuracy problems associated with the existing solution methods. The proposed predictive AI-based model as a counterterrorism tool will be useful by governments and law enforcement agencies to protect the lives of individuals in society and to improve the quality of life in general. A Heterogeneous Bayesian Neural Network (HETBNN) model was derived with Gaussian error normal distribution. Three primary transfer functions (HOTTFs), as well as two derived transfer functions (HETTFs) arising from the convolution of the HOTTFs, are namely; Symmetric Saturated Linear transfer function (SATLINS ), Hyperbolic Tangent transfer function (TANH), Hyperbolic Tangent sigmoid transfer function (TANSIG), Symmetric Saturated Linear and Hyperbolic Tangent transfer function (SATLINS-TANH) and Symmetric Saturated Linear and Hyperbolic Tangent Sigmoid transfer function (SATLINS-TANSIG). Data on the Terrorist activities in Nigeria gathered through questionnaires for the purpose of this study were used. Mean Square Error (MSE), Mean Absolute Error (MAE) and Test Error are the forecast prediction criteria. The results showed that the HETFs performed better in terms of prediction and factors associated with terrorist activities in Nigeria were determined. The proposed predictive deep learning-based model will be useful to governments and law enforcement agencies as an effective counterterrorism mechanism to understand the parameters of terrorism and to design strategies to deal with terrorism before an incident actually happens and potentially causes the loss of precious lives. The proposed predictive AI-based model will reduce the chances of terrorist activities and is particularly helpful for security agencies to predict future terrorist activities.

Keywords: activation functions, Bayesian neural network, mean square error, test error, terrorism

Procedia PDF Downloads 165
5043 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision

Procedia PDF Downloads 125
5042 The Occurrence of Clavibacter michiganensis subsp. sepedonicus on Potato in South Sulawesi, Indonesia

Authors: Baharuddin Patandjengi, A. Pabborong, T. Kuswinanti

Abstract:

Bacterial ring rot caused by a gram-positive Coryneform bacterium Corynebacterium michiganensis subsp. sepedonicus is an important disease on potato crops in the world. The disease still belongs to an A1 quarantine pathogen in Indonesia, although it was found in West Java since 2013. The objective of this study was to know the presence of bacterial ring rot in four potato district areas in South Sulawesi. Infected samples were collected from potato fields and storage warehouses in Enrekang, Gowa, Jeneponto and Bantaeng districts. Potato tuber samples were cut and observed their vasiculer vessels and the bacterial ooze was used for isolation on Nutrient Agar and Nutrient Broth–Yeast extract medium. Bacterial isolates were then morphologically and physiologically characterized. A patogenicity test on eggplant and molecular characterization using PCR with specific primer for Cms (50F and Cms 50 R) was revealed for further identification. The results showed that Cms has become widespread in four districts of South Sulawesi. The bacterial ringrot disease incidence in these districts was reached above 30 %. All of 14 bacterial isolates that identified before using standard methods of EPPO, showed DNA band in size of 224 bp in PCR test, which indicated positively belong to C. michiganensis subsp. sepedonicus.

Keywords: bacterial ring rot, clavibacter michiganensis pv. sepedonicus, PCR, potato

Procedia PDF Downloads 334
5041 Prevalence of Life Style Diseases and Physical Activities among Older in India

Authors: Vaishali Chaurasia

Abstract:

Ageing is the universal phenomenon that is associated with deteriorating health status. As the human becomes old, certain changes take place in an organism leading to morbidities, disabilities, and event death. Furthermore, older people are more vulnerable for the various kinds of diseases and health problem. Due to the some unhealthy conventions like smoking, drinking and unhealthy foods is the genesis of the lifestyle diseases. These diseases associated with the way a person or group of people lives. The main purpose of the study is to determine the prevalence of lifestyle diseases and its association with physical activity as well as the risk factors associated with it among the adult population in India. Longitudinal Aging Study in India and Study on Global Aging and Adult Health in India were used in the study. We will take population aged 50 and older, began in 1935, and regularly refreshed at younger ages with new birth cohorts. Life style diseases are more prominent in 65+ age group. The study finds an association between prevalence of life style diseases and life style risk factors. The lifestyle disease prevalence is more among higher age group people, female, richest quintile, and doing lesser physical activity. A higher prevalence of lifestyle diseases associated with the multiple risk factors. The occurrence of three and four risk factors was more prevalent in India. The frequency of different type of life style disease is higher among those who hardly or never do any physical activity as compare to those who do physical activity every day. The pattern remains the same in Moderate as well as vigorous physical activity. Those who are regularly doing physical activities have lesser percentage of having any disease and those who hardly ever or never do any physical activities and equally involve with some risk factors have higher percentage of having all type of diseases.

Keywords: lifestyle disease, morbidity, disability, physical activity

Procedia PDF Downloads 345
5040 Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils

Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha

Abstract:

Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.

Keywords: soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil, geotechnical engineering

Procedia PDF Downloads 338
5039 Predicting the Human Impact of Natural Onset Disasters Using Pattern Recognition Techniques and Rule Based Clustering

Authors: Sara Hasani

Abstract:

This research focuses on natural sudden onset disasters characterised as ‘occurring with little or no warning and often cause excessive injuries far surpassing the national response capacities’. Based on the panel analysis of the historic record of 4,252 natural onset disasters between 1980 to 2015, a predictive method was developed to predict the human impact of the disaster (fatality, injured, homeless) with less than 3% of errors. The geographical dispersion of the disasters includes every country where the data were available and cross-examined from various humanitarian sources. The records were then filtered into 4252 records of the disasters where the five predictive variables (disaster type, HDI, DRI, population, and population density) were clearly stated. The procedure was designed based on a combination of pattern recognition techniques and rule-based clustering for prediction and discrimination analysis to validate the results further. The result indicates that there is a relationship between the disaster human impact and the five socio-economic characteristics of the affected country mentioned above. As a result, a framework was put forward, which could predict the disaster’s human impact based on their severity rank in the early hours of disaster strike. The predictions in this model were outlined in two worst and best-case scenarios, which respectively inform the lower range and higher range of the prediction. A necessity to develop the predictive framework can be highlighted by noticing that despite the existing research in literature, a framework for predicting the human impact and estimating the needs at the time of the disaster is yet to be developed. This can further be used to allocate the resources at the response phase of the disaster where the data is scarce.

Keywords: disaster management, natural disaster, pattern recognition, prediction

Procedia PDF Downloads 153
5038 The Impact of Infectious Disease on Densely Populated Urban Area: In Terms of COVID-19

Authors: Samira Ghasempourkazemi

Abstract:

In terms of the COVID-19 pandemic, lots of mutations in the urban system, which have systemic impacts, have clearly appeared. COVID-19 not only had a direct impact on health but also caused significant losses to other departments, including the economy, education, tourism, environment and the construction industry. Therefore, the pandemic caused a disruption in the whole urban system. Particularly, today’s large urban areas are not designed in order to be compatible during a pandemic. Hence, cities are more vulnerable to infectious disease threats according to the population density, built environment and socioeconomic aspects. Considering the direct relationship between population and rate of infection, higher rates are given to those individuals located in areas with high-density populations. Population density can be a factor that seems to have a strong impact on the spread of infectious diseases. Thus, the preliminary hypothesis can be related to a densely populated areas which become hotspots for the rapid spread of the pandemic due to high levels of interaction. In addition, some other indicators can be effective in this condition, such as age range, education and socio-economy. To figure out the measure of infectious disease risk in densely populated areas in Istanbul is an objective of this study. Besides, this study intends to figure out Vulnerability Index in the case of COVID-19. In order to achieve the proper result, the considered method can be Analytic Hierarchy Process (AHP) by involving the mentioned variables. In the end, the study represents the COVID Vulnerability of densely populated areas in a metro city and the gaps that need to be identified and plugged for the pandemic-resilience city of tomorrow.

Keywords: infectious disease, COVID-19, urban system, densely populated area

Procedia PDF Downloads 83
5037 Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database

Authors: Matevž Breška, Iztok Peruš, Vlado Stankovski

Abstract:

Systematic overview of existing Ground Motion Prediction Equations (GMPEs) has been published by Douglas. The number of earthquake recordings that have been used for fitting these equations has increased in the past decades. The current PF-L database contains 3550 recordings. Since the GMPEs frequently model the peak ground acceleration (PGA) the goal of the present study was to refit a selection of 44 of the existing equation models for PGA in light of the latest data. The algorithm Levenberg-Marquardt was used for fitting the coefficients of the equations and the results are evaluated both quantitatively by presenting the root mean squared error (RMSE) and qualitatively by drawing graphs of the five best fitted equations. The RMSE was found to be as low as 0.08 for the best equation models. The newly estimated coefficients vary from the values published in the original works.

Keywords: Ground Motion Prediction Equations, Levenberg-Marquardt algorithm, refitting PF-L database, peak ground acceleration

Procedia PDF Downloads 462
5036 The Role of Psychological Factors in Prediction Academic Performance of Students

Authors: Hadi Molaei, Yasavoli Davoud, Keshavarz, Mozhde Poordana

Abstract:

The present study aimed was to prediction the academic performance based on academic motivation, self-efficacy and Resiliency in the students. The present study was descriptive and correlational. Population of the study consisted of all students in Arak schools in year 1393-94. For this purpose, the number of 304 schools students in Arak was selected using multi-stage cluster sampling. They all questionnaires, self-efficacy, Resiliency and academic motivation Questionnaire completed. Data were analyzed using Pearson correlation and multiple regressions. Pearson correlation showed academic motivation, self-efficacy, and Resiliency with academic performance had a positive and significant relationship. In addition, multiple regression analysis showed that the academic motivation, self-efficacy and Resiliency were predicted academic performance. Based on the findings could be conclude that in order to increase the academic performance and further progress of students must provide the ground to strengthen academic motivation, self-efficacy and Resiliency act on them.

Keywords: academic motivation, self-efficacy, resiliency, academic performance

Procedia PDF Downloads 496
5035 Solving Crimes through DNA Methylation Analysis

Authors: Ajay Kumar Rana

Abstract:

Predicting human behaviour, discerning monozygotic twins or left over remnant tissues/fluids of a single human source remains a big challenge in forensic science. Recent advances in the field of DNA methylations which are broadly chemical hallmarks in response to environmental factors can certainly help to identify and discriminate various single-source DNA samples collected from the crime scenes. In this review, cytosine methylation of DNA has been methodologically discussed with its broad applications in many challenging forensic issues like body fluid identification, race/ethnicity identification, monozygotic twins dilemma, addiction or behavioural prediction, age prediction, or even authenticity of the human DNA. With the advent of next-generation sequencing techniques, blooming of DNA methylation datasets and together with standard molecular protocols, the prospect of investigating and solving the above issues and extracting the exact nature of the truth for reconstructing the crime scene events would be undoubtedly helpful in defending and solving the critical crime cases.

Keywords: DNA methylation, differentially methylated regions, human identification, forensics

Procedia PDF Downloads 320
5034 Virtual Metering and Prediction of Heating, Ventilation, and Air Conditioning Systems Energy Consumption by Using Artificial Intelligence

Authors: Pooria Norouzi, Nicholas Tsang, Adam van der Goes, Joseph Yu, Douglas Zheng, Sirine Maleej

Abstract:

In this study, virtual meters will be designed and used for energy balance measurements of an air handling unit (AHU). The method aims to replace traditional physical sensors in heating, ventilation, and air conditioning (HVAC) systems with simulated virtual meters. Due to the inability to manage and monitor these systems, many HVAC systems have a high level of inefficiency and energy wastage. Virtual meters are implemented and applied in an actual HVAC system, and the result confirms the practicality of mathematical sensors for alternative energy measurement. While most residential buildings and offices are commonly not equipped with advanced sensors, adding, exploiting, and monitoring sensors and measurement devices in the existing systems can cost thousands of dollars. The first purpose of this study is to provide an energy consumption rate based on available sensors and without any physical energy meters. It proves the performance of virtual meters in HVAC systems as reliable measurement devices. To demonstrate this concept, mathematical models are created for AHU-07, located in building NE01 of the British Columbia Institute of Technology (BCIT) Burnaby campus. The models will be created and integrated with the system’s historical data and physical spot measurements. The actual measurements will be investigated to prove the models' accuracy. Based on preliminary analysis, the resulting mathematical models are successful in plotting energy consumption patterns, and it is concluded confidently that the results of the virtual meter will be close to the results that physical meters could achieve. In the second part of this study, the use of virtual meters is further assisted by artificial intelligence (AI) in the HVAC systems of building to improve energy management and efficiency. By the data mining approach, virtual meters’ data is recorded as historical data, and HVAC system energy consumption prediction is also implemented in order to harness great energy savings and manage the demand and supply chain effectively. Energy prediction can lead to energy-saving strategies and considerations that can open a window in predictive control in order to reach lower energy consumption. To solve these challenges, the energy prediction could optimize the HVAC system and automates energy consumption to capture savings. This study also investigates AI solutions possibility for autonomous HVAC efficiency that will allow quick and efficient response to energy consumption and cost spikes in the energy market.

Keywords: virtual meters, HVAC, artificial intelligence, energy consumption prediction

Procedia PDF Downloads 104
5033 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures

Authors: Milad Abbasi

Abstract:

Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.

Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network

Procedia PDF Downloads 153
5032 Diagnosis of Alzheimer Diseases in Early Step Using Support Vector Machine (SVM)

Authors: Amira Ben Rabeh, Faouzi Benzarti, Hamid Amiri, Mouna Bouaziz

Abstract:

Alzheimer is a disease that affects the brain. It causes degeneration of nerve cells (neurons) and in particular cells involved in memory and intellectual functions. Early diagnosis of Alzheimer Diseases (AD) raises ethical questions, since there is, at present, no cure to offer to patients and medicines from therapeutic trials appear to slow the progression of the disease as moderate, accompanying side effects sometimes severe. In this context, analysis of medical images became, for clinical applications, an essential tool because it provides effective assistance both at diagnosis therapeutic follow-up. Computer Assisted Diagnostic systems (CAD) is one of the possible solutions to efficiently manage these images. In our work; we proposed an application to detect Alzheimer’s diseases. For detecting the disease in early stage we used the three sections: frontal to extract the Hippocampus (H), Sagittal to analysis the Corpus Callosum (CC) and axial to work with the variation features of the Cortex(C). Our method of classification is based on Support Vector Machine (SVM). The proposed system yields a 90.66% accuracy in the early diagnosis of the AD.

Keywords: Alzheimer Diseases (AD), Computer Assisted Diagnostic(CAD), hippocampus, Corpus Callosum (CC), cortex, Support Vector Machine (SVM)

Procedia PDF Downloads 384
5031 A Case Study of Deep Learning for Disease Detection in Crops

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.

Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture

Procedia PDF Downloads 259
5030 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 134
5029 Telemedicine and Telemonitoring for Interstitial Lung Disease Patients with Nintedanib

Authors: M. Brockes, S. Beck, A. Sigaroudi, C. Brockes

Abstract:

Over the last years, telemedicine and telemonitoring have become a popular way of treatment, especially in other chronic diseases. Therefore this type of treatment methodology was also implemented in interstitial lung disease (ILD) patients. In January 2024, a new service for patients with interstitial lung disease (ILD) treated with Nintedanib was established, which contains daily telemonitoring (home spirometry, pulse oximetry, and daily level of activity), daily evaluation of parameters as well as a telemedical availability answered by doctors and telemedical specialists throughout 365 days per year. The main motivational points of this service are the early detection of first signs of exacerbations and/or other symptoms/complications as well as easier access to healthcare professionals. The evaluation of the patient’s quality of life and the subjective feeling of safetyness was measured through patient reported experience measurements (PREMs) and patient reported outcome measurements (PROMs). Patients were introduced to the telemedical and telemonitoring service six-months ago. Within this period, every sixty days, the questionnaires were conducted by the scientific employees. Due to the unlimited time frame of the long-term service the evaluation is not completed. The first analysis of patient reported experience measurements (PREMs) and patient reported outcome measurements (PROMs) have shown an increased positive effect on the patients' quality of life as well as an increased positive effect on the subjective feeling of safety at home, plus a reduction and avoidance of secondary damages (e.g., exacerbations, deterioration of typical interstitial lung disease ILD symptoms and pharmaceutical side effects). The first results have shown a tendency that the telemedical treatment combined with telemonitoring at home and the encouragement of patients to actively participate in their healthcare has a positive effect on the patient’s overall well-being and could be implemented as a complementation of the traditional standard of care.

Keywords: avoidance of secondary damages, interstitial lung disease, telemedicine and telemonitoring, subjective feeling of safety

Procedia PDF Downloads 19
5028 Permeability Prediction Based on Hydraulic Flow Unit Identification and Artificial Neural Networks

Authors: Emad A. Mohammed

Abstract:

The concept of hydraulic flow units (HFU) has been used for decades in the petroleum industry to improve the prediction of permeability. This concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir rock quality index (RQI). Both indices are based on reservoir porosity and permeability of core samples. It is assumed that core samples with similar FZI values belong to the same HFU. Thus, after dividing the porosity-permeability data based on the HFU, transformations can be done in order to estimate the permeability from the porosity. The conventional practice is to use the power law transformation using conventional HFU where percentage of error is considerably high. In this paper, neural network technique is employed as a soft computing transformation method to predict permeability instead of power law method to avoid higher percentage of error. This technique is based on HFU identification where Amaefule et al. (1993) method is utilized. In this regard, Kozeny and Carman (K–C) model, and modified K–C model by Hasan and Hossain (2011) are employed. A comparison is made between the two transformation techniques for the two porosity-permeability models. Results show that the modified K-C model helps in getting better results with lower percentage of error in predicting permeability. The results also show that the use of artificial intelligence techniques give more accurate prediction than power law method. This study was conducted on a heterogeneous complex carbonate reservoir in Oman. Data were collected from seven wells to obtain the permeability correlations for the whole field. The findings of this study will help in getting better estimation of permeability of a complex reservoir.

Keywords: permeability, hydraulic flow units, artificial intelligence, correlation

Procedia PDF Downloads 136
5027 Psychological Stress As A Catalyst For Multiple Sclerosis Progression: Clarifying Pathways From Neural Activation to Immune Dysregulation

Authors: Noah Emil Glisik

Abstract:

Multiple sclerosis (MS) is a chronic, immune-mediated disorder characterized by neurodegenerative processes and a highly variable disease course. Recent research highlights a complex interplay between psychological stress and MS progression, with both acute and chronic stressors linked to heightened inflammatory activity, increased relapse risk, and accelerated disability. This review synthesizes findings from systematic analyses, cohort studies, and neuroimaging investigations to examine how stress contributes to disease dynamics in MS. Evidence suggests that psychological stress influences MS progression through neural and physiological pathways, including dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and heightened activity in specific brain regions, such as the insular cortex. Notably, functional MRI studies indicate that stress-induced neural activity may predict future atrophy in gray matter regions implicated in motor and cognitive function, thus supporting a neurobiological link between stress and neurodegeneration in MS. Longitudinal studies further associate chronic stress with reduced quality of life and higher relapse frequency, emphasizing the need for a multifaceted therapeutic approach that addresses both the physical and psychological dimensions of MS. Evidence from intervention studies suggests that stress management strategies, such as cognitive-behavioral therapy and mindfulness-based programs, may reduce relapse rates and mitigate lesion formation in MS patients. These findings underscore the importance of integrating stress-reducing interventions into standard MS care, with potential to improve disease outcomes and patient well-being. Further research is essential to clarify the causal pathways and develop targeted interventions that could modify the stress response in MS, offering an avenue to address disease progression and enhance quality of life.

Keywords: multiple sclerosis, psychological stress, disease progression, neuroimaging, stress management

Procedia PDF Downloads 10
5026 Study on Health Status and Health Promotion Models for Prevention of Cardiovascular Disease in Asylum Seekers at Asylum Seekers Center, Kupang-Indonesia

Authors: Era Dorihi Kale, Sabina Gero, Uly Agustine

Abstract:

Asylum seekers are people who come to other countries to get asylum. In line with that, they also carry the culture and health behavior of their country, which is very different from the new country they currently live in. This situation raises problems, also in the health sector. The approach taken must also be a culturally sensitive approach, where the culture and habits of the refugee's home area are also valued so that the health services provided can be right on target. Some risk factors that already exist in this group are lack of activity, consumption of fast food, smoking, and stress levels that are quite high. Overall this condition will increase the risk of an increased incidence of cardiovascular disease. This research is a descriptive and experimental study. The purpose of this study is to identify health status and develop a culturally sensitive health promotion model, especially related to the risk of cardiovascular disease for asylum seekers in detention homes in the city of Kupang. This research was carried out in 3 stages, stage 1 was conducting a survey of health problems and the risk of asylum seeker cardiovascular disease, Stage 2 developed a health promotion model, and stage 3 conducted a testing model of health promotion carried out. There were 81 respondents involved in this study. The variables measured were: health status, risk of cardiovascular disease and, health promotion models. Method of data collection: Instruments (questionnaires) were distributed to respondents answered for anamnese health status; then, cardiovascular risk measurements were taken. After that, the preparation of information needs and the compilation of booklets on the prevention of cardiovascular disease is carried out. The compiled booklet was then translated into Farsi. After that, the booklet was tested. Respondent characteristics: average lived in Indonesia for 4.38 years, the majority were male (90.1%), and most were aged 15-34 years (90.1%). There are several diseases that are often suffered by asylum seekers, namely: gastritis, headaches, diarrhea, acute respiratory infections, skin allergies, sore throat, cough, and depression. The level of risk for asylum seekers experiencing cardiovascular problems is 4 high risk people, 6 moderate risk people, and 71 low risk people. This condition needs special attention because the number of people at risk is quite high when compared to the age group of refugees. This is very related to the level of stress experienced by the refugees. The health promotion model that can be used is the transactional stress and coping model, using Persian (oral) and English for written information. It is recommended for health practitioners who care for refugees to always pay attention to aspects of culture (especially language) as well as the psychological condition of asylum seekers to make it easier to conduct health care and promotion. As well for further research, it is recommended to conduct research, especially relating to the effect of psychological stress on the risk of cardiovascular disease in asylum seekers.

Keywords: asylum seekers, health status, cardiovascular disease, health promotion

Procedia PDF Downloads 103
5025 A Different Approach to Smart Phone-Based Wheat Disease Detection System Using Deep Learning for Ethiopia

Authors: Nathenal Thomas Lambamo

Abstract:

Based on the fact that more than 85% of the labor force and 90% of the export earnings are taken by agriculture in Ethiopia and it can be said that it is the backbone of the overall socio-economic activities in the country. Among the cereal crops that the agriculture sector provides for the country, wheat is the third-ranking one preceding teff and maize. In the present day, wheat is in higher demand related to the expansion of industries that use them as the main ingredient for their products. The local supply of wheat for these companies covers only 35 to 40% and the rest 60 to 65% percent is imported on behalf of potential customers that exhaust the country’s foreign currency reserves. The above facts show that the need for this crop in the country is too high and in reverse, the productivity of the crop is very less because of these reasons. Wheat disease is the most devastating disease that contributes a lot to this unbalance in the demand and supply status of the crop. It reduces both the yield and quality of the crop by 27% on average and up to 37% when it is severe. This study aims to detect the most frequent and degrading wheat diseases, Septoria and Leaf rust, using the most efficiently used subset of machine learning technology, deep learning. As a state of the art, a deep learning class classification technique called Convolutional Neural Network (CNN) has been used to detect diseases and has an accuracy of 99.01% is achieved.

Keywords: septoria, leaf rust, deep learning, CNN

Procedia PDF Downloads 76
5024 Consumer Experience of 3D Body Scanning Technology and Acceptance of Related E-Commerce Market Applications in Saudi Arabia

Authors: Moudi Almousa

Abstract:

This research paper explores Saudi Arabian female consumers’ experiences using 3D body scanning technology and their level of acceptance of possible market applications of this technology to adopt for apparel online shopping. Data was collected for 82 women after being scanned then viewed a short video explaining three possible scenarios of 3D body scanning applications, which include size prediction, customization, and virtual try-on, before completing the survey questionnaire. Although respondents have strong positive responses towards the scanning experience, the majority were concerned about their privacy during the scanning process. The results indicated that size prediction and virtual try on had greater market application potential and a higher chance of crossing the gap based on consumer interest. The results of the study also indicated a strong positive correlation between respondents’ concern with inability to try on apparel products in online environments and their willingness to use the 3D possible market applications.

Keywords: 3D body scanning, market applications, online, apparel fit

Procedia PDF Downloads 145
5023 Genome-Wide Association Study Identify COL2A1 as a Susceptibility Gene for the Hand Development Failure of Kashin-Beck Disease

Authors: Feng Zhang

Abstract:

Kashin-Beck disease (KBD) is a chronic osteochondropathy. The mechanism of hand growth and development failure of KBD remains elusive now. In this study, we conducted a two-stage genome-wide association study (GWAS) of palmar length-width ratio (LWR) of KBD, totally involving 493 Chinese Han KBD patients. Affymetrix Genome Wide Human SNP Array 6.0 was applied for SNP genotyping. Association analysis was conducted by PLINK software. Imputation analysis was performed by IMPUTE against the reference panel of the 1000 genome project. In the GWAS, the most significant association was observed between palmar LWR and rs2071358 of COL2A1 gene (P value = 4.68×10-8). Imputation analysis identified 3 SNPs surrounding rs2071358 with significant or suggestive association signals. Replication study observed additional significant association signals at both rs2071358 (P value = 0.017) and rs4760608 (P value = 0.002) of COL2A1 gene after Bonferroni correction. Our results suggest that COL2A1 gene was a novel susceptibility gene involved in the growth and development failure of hand of KBD.

Keywords: Kashin-Beck disease, genome-wide association study, COL2A1, hand

Procedia PDF Downloads 219
5022 Factors Predicting Symptom Cluster Functional Status and Quality of Life of Chronic Obstructive Pulmonary Disease Patients

Authors: D. Supaporn, B. Julaluk

Abstract:

The purposes of this study were to study symptom cluster, functional status and quality of life of patients with chronic obstructive pulmonary disease (COPD), and to examine factors related to and predicting symptom cluster, functional status and quality of life of COPD patients. The sample was 180 COPD patients multi-stage random sampling from 4 hospitals in the eastern region, Thailand. The research instruments were 8 questionnaires and recorded forms measuring personal and illness data, co-morbidity, physical and psychological symptom, health status perception, social support, and regimen adherence, functional status and quality of life. Spearman rank and Pearson correlation coefficient, exploratory factors analysis and standard multiple regression were used to analyzed data. The findings revealed that two symptom clusters were generated: physical symptom cluster including dyspnea, fatigue and insomnia; and, psychological symptom cluster including anxiety and depression. Scores of physical symptom cluster was at moderate level while that of psychological symptom cluster was at low level. Scores on functional status, social support and overall regimen adherence were at good level whereas scores on quality of life and health status perception were at moderate level. Disease severity was positively related to physical symptom cluster, psychological symptom cluster and quality of life, and was negatively related to functional status at a moderate level (rs = .512, .509, .588 and -.611, respectively). Co-morbidity was positively related to physical symptom cluster and psychological symptom cluster at a low level (r = .179 and .176, respectively). Regimen adherence was negatively related to quality of life and psychological symptom cluster at a low level (r=-.277 and -.309, respectively), and was positively related to functional status at a moderate level (r=.331). Health status perception was negatively related to physical symptom cluster, psychological symptom cluster and quality of life at a moderate to high level (r = -.567, -.640 and -.721, respectively) and was positively related to functional status at a high level (r = .732). Social support was positively related to functional status (r=.235) and was negatively related to quality of life at a low level (r=-.178). Physical symptom cluster was negatively related to functional status (r= -.490) and was positively related to quality of life at a moderate level (r=.566). Psychological symptom cluster was negatively related to functional status and was positively related to quality of life at a moderate level (r= -.566 and .559, respectively). Disease severity, co-morbidity and health status perception could predict 40.2% of the variance of physical symptom cluster. Disease severity, co-morbidity, regimen adherence and health status perception could predict 49.8% of the variance of psychological symptom cluster. Co-morbidity, regimen adherence and health status perception could predict 65.0% of the variance of functional status. Disease severity, health status perception and physical symptom cluster could predict 60.0% of the variance of quality of life in COPD patients. The results of this study can be used for enhancing quality of life of COPD patients.

Keywords: chronic obstructive pulmonary disease, functional status, quality of life, symptom cluster

Procedia PDF Downloads 558
5021 Clinical Prediction Score for Ruptured Appendicitis In ED

Authors: Thidathit Prachanukool, Chaiyaporn Yuksen, Welawat Tienpratarn, Sorravit Savatmongkorngul, Panvilai Tangkulpanich, Chetsadakon Jenpanitpong, Yuranan Phootothum, Malivan Phontabtim, Promphet Nuanprom

Abstract:

Background: Ruptured appendicitis has a high morbidity and mortality and requires immediate surgery. The Alvarado Score is used as a tool to predict the risk of acute appendicitis, but there is no such score for predicting rupture. This study aimed to developed the prediction score to determine the likelihood of ruptured appendicitis in an Asian population. Methods: This study was diagnostic, retrospectively cross-sectional and exploratory model at the Emergency Medicine Department in Ramathibodi Hospital between March 2016 and March 2018. The inclusion criteria were age >15 years and an available pathology report after appendectomy. Clinical factors included gender, age>60 years, right lower quadrant pain, migratory pain, nausea and/or vomiting, diarrhea, anorexia, fever>37.3°C, rebound tenderness, guarding, white blood cell count, polymorphonuclear white blood cells (PMN)>75%, and the pain duration before presentation. The predictive model and prediction score for ruptured appendicitis was developed by multivariable logistic regression analysis. Result: During the study period, 480 patients met the inclusion criteria; of these, 77 (16%) had ruptured appendicitis. Five independent factors were predictive of rupture, age>60 years, fever>37.3°C, guarding, PMN>75%, and duration of pain>24 hours to presentation. A score > 6 increased the likelihood ratio of ruptured appendicitis by 3.88 times. Conclusion: Using the Ramathibodi Welawat Ruptured Appendicitis Score. (RAMA WeRA Score) developed in this study, a score of > 6 was associated with ruptured appendicitis.

Keywords: predictive model, risk score, ruptured appendicitis, emergency room

Procedia PDF Downloads 165
5020 A Review of Type 2 Diabetes and Diabetes-Related Cardiovascular Disease in Zambia

Authors: Mwenya Mubanga, Sula Mazimba

Abstract:

Background: In Zambia, much of the focus on nutrition and health has been on reducing micronutrient deficiencies, wasting and underweight malnutrition and not on the rising global projections of trends in obesity and type 2 diabetes. The aim of this review was to identify and collate studies on the prevalence of obesity, diabetes and diabetes-related cardiovascular disease conducted in Zambia, to summarize their findings and to identify areas that need further research. Methods: The Medical Literature Analysis and Retrieval System (MEDLINE) database was searched for peer-reviewed articles on the prevalence of, and factors associated with obesity, type 2 diabetes, and diabetes-related cardiovascular disease amongst Zambian residents using a combination of search terms. The period of search was from 1 January 2000 to 31 December 2016. We expanded the search terms to include all possible synonyms and spellings obtained in the search strategy. Additionally, we performed a manual search for other articles and references of peer-reviewed articles. Results: In Zambia, the current prevalence of Obesity and Type 2 diabetes is estimated at 13%-16% and 2.0 – 3.0% respectively. Risk factors such as the adoption of western dietary habits, the social stigmatization associated with rapid weight loss due to Tuberculosis and/ or the human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) and rapid urbanization have all been blamed for fueling the increased risk of obesity and type 2 diabetes. However, unlike traditional Western populations, those with no formal education were less likely to be obese than those who attained secondary or tertiary level education. Approximately 30% of those surveyed were unaware of their diabetes diagnosis and more than 60% were not on treatment despite a known diabetic status. Socio-demographic factors such as older age, female sex, urban dwelling, lack of tobacco use and marital status were associated with an increased risk of obesity, impaired glucose tolerance and type 2 diabetes. We were unable to identify studies that specifically looked at diabetes-related cardiovascular disease. Conclusion: Although the prevalence of Obesity and Type 2 diabetes in Zambia appears low, more representative studies focusing on parts of the country outside of the main industrial zone need to be conducted. There also needs to be research on diabetes-related cardiovascular disease. National surveillance, monitoring and evaluation on all non-communicable diseases need to be prioritized and policies that address underweight, obesity and type 2 diabetes developed.

Keywords: type 2 diabetes, Zambia, obesity, cardiovascular disease

Procedia PDF Downloads 251
5019 Prediction of Mechanical Strength of Multiscale Hybrid Reinforced Cementitious Composite

Authors: Salam Alrekabi, A. B. Cundy, Mohammed Haloob Al-Majidi

Abstract:

Novel multiscale hybrid reinforced cementitious composites based on carbon nanotubes (MHRCC-CNT), and carbon nanofibers (MHRCC-CNF) are new types of cement-based material fabricated with micro steel fibers and nanofilaments, featuring superior strain hardening, ductility, and energy absorption. This study focused on established models to predict the compressive strength, and direct and splitting tensile strengths of the produced cementitious composites. The analysis was carried out based on the experimental data presented by the previous author’s study, regression analysis, and the established models that available in the literature. The obtained models showed small differences in the predictions and target values with experimental verification indicated that the estimation of the mechanical properties could be achieved with good accuracy.

Keywords: multiscale hybrid reinforced cementitious composites, carbon nanotubes, carbon nanofibers, mechanical strength prediction

Procedia PDF Downloads 161
5018 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana

Authors: Ayesha Sanjana Kawser Parsha

Abstract:

S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.

Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score

Procedia PDF Downloads 76
5017 Establishment of a Thermostable Newcastle Disease Vaccine Candidate Strain and Its Adaptation to Vero Cells

Authors: Humayun Kabir, Amirul Hasan, Yu Miyaoka, Makiko Yamaguchi, Chisaki Kadota, Kazuaki Takehara

Abstract:

From field isolates of Newcastle disease virus (NDV) in Japan, one avirulent strain, APMV/northern pintail/Japan/Aomori/2003 (dk-Aomori/03, NDV 261), was selected for its excellent thermostability, and the strain was heat-treated at 56℃ temperatures for 30 min with each passage into Vero cells to maintain thermostability and to adapt Vero cells. After serial 20 passages in Vero cells, it was named NDV Vero20. When growth curves were tested in Vero cells, NDV Vero20 grew well to compare the original NDV261. The HN gene was sequenced, and found motifs that show thermostability. The intracerebral pathogenicity index (ICPI) test score was 0. The thermostability of the virus was confirmed by storing it at different temperatures, including at 37°C. When susceptible chicks were inoculated with NDV Vero20 through eye drops, induced adequate levels of antibody were measured using a serum neutralization test. The results showed that NDV Vero20, a vaccine candidate strain is thermostable, Vero cell adapted, and has immunogenic potential, which would make as an alternative to the traditional embryonated chicken eggs-based vaccine.

Keywords: Newcastle disease virus, thermostability, vaccine, Vero cell adaptability

Procedia PDF Downloads 142
5016 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments

Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz

Abstract:

Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.

Keywords: LSTMs, streamflow, hyperparameters, hydrology

Procedia PDF Downloads 69
5015 Study and Analysis of a Susceptible Infective Susceptible Mathematical Model with Density Dependent Migration

Authors: Jitendra Singh, Vivek Kumar

Abstract:

In this paper, a susceptible infective susceptible mathematical model is proposed and analyzed where the migration of human population is given by migration function. It is assumed that the disease is transmitted by direct contact of susceptible and infective populations with constant contact rate. The equilibria and their stability are studied by using the stability theory of ordinary differential equations and computer simulation. The model analysis shows that the spread of infectious disease increases when human population immigration increases in the habitat but it decreases if emigration increases.

Keywords: SIS (Susceptible Infective Susceptible) model, migration function, susceptible, stability

Procedia PDF Downloads 261