Search results for: cutting constants
5 Sustainable Antimicrobial Biopolymeric Food & Biomedical Film Engineering Using Bioactive AMP-Ag+ Formulations
Authors: Eduardo Lanzagorta Garcia, Chaitra Venkatesh, Romina Pezzoli, Laura Gabriela Rodriguez Barroso, Declan Devine, Margaret E. Brennan Fournet
Abstract:
New antimicrobial interventions are urgently required to combat rising global health and medical infection challenges. Here, an innovative antimicrobial technology, providing price competitive alternatives to antibiotics and readily integratable with currently technological systems is presented. Two cutting edge antimicrobial materials, antimicrobial peptides (AMPs) and uncompromised sustained Ag+ action from triangular silver nanoplates (TSNPs) reservoirs, are merged for versatile effective antimicrobial action where current approaches fail. Antimicrobial peptides (AMPs) exist widely in nature and have recently been demonstrated for broad spectrum of activity against bacteria, viruses, and fungi. TSNP’s are highly discrete, homogenous and readily functionisable Ag+ nanoreseviors that have a proven amenability for operation within in a wide range of bio-based settings. In a design for advanced antimicrobial sustainable plastics, antimicrobial TSNPs are formulated for processing within biodegradable biopolymers. Histone H5 AMP was selected for its reported strong antimicrobial action and functionalized with the TSNP (AMP-TSNP) in a similar fashion to previously reported TSNP biofunctionalisation methods. A synergy between the propensity of biopolymers for degradation and Ag+ release combined with AMP activity provides a novel mechanism for the sustained antimicrobial action of biopolymeric thin films. Nanoplates are transferred from aqueous phase to an organic solvent in order to facilitate integration within hydrophobic polymers. Extrusion is used in combination with calendering rolls to create thin polymerc film where the nanoplates are embedded onto the surface. The resultant antibacterial functional films are suitable to be adapted for food packing and biomedical applications. TSNP synthesis were synthesized by adapting a previously reported seed mediated approach. TSNP synthesis was scaled up for litre scale batch production and subsequently concentrated to 43 ppm using thermally controlled H2O removal. Nanoplates were transferred from aqueous phase to an organic solvent in order to facilitate integration within hydrophobic polymers. This was acomplised by functionalizing the TSNP with thiol terminated polyethylene glycol and using centrifugal force to transfer them to chloroform. Polycaprolactone (PCL) and Polylactic acid (PLA) were individually processed through extrusion, TSNP and AMP-TSNP solutions were sprayed onto the polymer immediately after exiting the dye. Calendering rolls were used to disperse and incorporate TSNP and TSNP-AMP onto the surface of the extruded films. Observation of the characteristic blue colour confirms the integrity of the TSNP within the films. Antimicrobial tests were performed by incubating Gram + and Gram – strains with treated and non-treated films, to evaluate if bacterial growth was reduced due to the presence of the TSNP. The resulting films successfully incorporated TSNP and AMP-TSNP. Reduced bacterial growth was observed for both Gram + and Gram – strains for both TSNP and AMP-TSNP compared with untreated films indicating antimicrobial action. The largest growth reduction was observed for AMP-TSNP treated films demonstrating the additional antimicrobial activity due to the presence of the AMPs. The potential of this technology to impede bacterial activity in food industry and medical surfaces will forge new confidence in the battle against antibiotic resistant bacteria, serving to greatly inhibit infections and facilitate patient recovery.Keywords: antimicrobial, biodegradable, peptide, polymer, nanoparticle
Procedia PDF Downloads 1164 Geomechanics Properties of Tuzluca (Eastern. Turkey) Bedded Rock Salt and Geotechnical Safety
Authors: Mehmet Salih Bayraktutan
Abstract:
Geomechanical properties of Rock Salt Deposits in Tuzluca Salt Mine Area (Eastern Turkey) are studied for modeling the operation- excavation strategy. The purpose of this research focused on calculating the critical value of span height- which will meet the safety requirements. The Mine Site Tuzluca Hills consist of alternating parallel bedding of Salt ( NaCl ) and Gypsum ( CaS04 + 2 H20) rocks. Rock Salt beds are more resistant than narrow Gypsum interlayers. Rock Salt beds formed almost 97 percent of the total height of the Hill. Therefore, the geotechnical safety of Galleries depends on the mechanical criteria of Rock Salt Cores. General deposition of Tuzluca Basin was finally completed by Tuzluca Evaporites, as for the uppermost stratigraphic unit. They are currently running mining operations performed by classic mechanical excavation, room and pillar method. Rooms and Pillars are currently experiencing an initial stage of fracturing in places. Geotechnical safety of the whole mining area evaluated by Rock Mass Rating (RMR), Rock Quality Designation (RQD) spacing of joints, and the interaction of groundwater and fracture system. In general, bedded rock salt Show large lateral deformation capacity (while deformation modulus stays in relative small values, here E= 9.86 GPa). In such litho-stratigraphic environments, creep is a critical mechanism in failure. Rock Salt creep rate in steady-state is greater than interbedding layers. Under long-lasted compressive stresses, creep may cause shear displacements, partly using bedding planes. Eventually, steady-state creep in time returns to accelerated stages. Uniaxial compression creep tests on specimens were performed to have an idea of rock salt strength. To give an idea, on Rock Salt cores, average axial strength and strain are found as 18 - 24 MPa and 0.43-0.45 %, respectively. Uniaxial Compressive strength of 26- 32 MPa, from bedded rock salt cores. Elastic modulus is comparatively low, but lateral deformation of the rock salt is high under the uniaxial compression stress state. Poisson ratio = 0.44, break load = 156 kN, cohesion c= 12.8 kg/cm2, specific gravity SG=2.17 gr/cm3. Fracture System; spacing of fractures, joints, faults, offsets are evaluated under acting geodynamic mechanism. Two sand beds, each 4-6 m thick, exist near to upper level and at the top of the evaporating sequence. They act as aquifers and keep infiltrated water on top for a long duration, which may result in the failure of roofs or pillars. Two major active seismic ( N30W and N70E ) striking Fault Planes and parallel fracture strands have seismically triggered moderate risk of structural deformation of rock salt bedding sequence. Earthquakes and Floods are two prevailing sources of geohazards in this region—the seismotectonic activity of the Mine Site based on the crossing framework of Kagizman Faults and Igdir Faults. Dominant Hazard Risk sources include; a) Weak mechanical properties of rock salt, gypsum, anhydrite beds-creep. b) Physical discontinuities cutting across the thick parallel layers of Evaporite Mass, c) Intercalated beds of weak cemented or loose sand, clayey sandy sediments. On the other hand, absorbing the effects of salt-gyps parallel bedded deposits on seismic wave amplitudes has a reducing effect on the Rock Mass.Keywords: bedded rock salt, creep, failure mechanism, geotechnical safety
Procedia PDF Downloads 1913 Location3: A Location Scouting Platform for the Support of Film and Multimedia Industries
Authors: Dimitrios Tzilopoulos, Panagiotis Symeonidis, Michael Loufakis, Dimosthenis Ioannidis, Dimitrios Tzovaras
Abstract:
The domestic film industry in Greece has traditionally relied heavily on state support. While film productions are crucial for the country's economy, it has not fully capitalized on attracting and promoting foreign productions. The lack of motivation, organized state support for attraction and licensing, and the absence of location scouting have hindered its potential. Although recent legislative changes have addressed the first two of these issues, the development of a comprehensive location database and a search engine that would effectively support location scouting at the pre-production location scouting is still in its early stages. In addition to the expected benefits of the film, television, marketing, and multimedia industries, a location-scouting service platform has the potential to yield significant financial gains locally and nationally. By promoting featured places like cultural and archaeological sites, natural monuments, and attraction points for visitors, it plays a vital role in both cultural promotion and facilitating tourism development. This study introduces LOCATION3, an internet platform revolutionizing film production location management. It interconnects location providers, film crews, and multimedia stakeholders, offering a comprehensive environment for seamless collaboration. The platform's central geodatabase (PostgreSQL) stores each location’s attributes, while web technologies like HTML, JavaScript, CSS, React.js, and Redux power the user-friendly interface. Advanced functionalities, utilizing deep learning models, developed in Python, are integrated via Node.js. Visual data presentation is achieved using the JS Leaflet library, delivering an interactive map experience. LOCATION3 sets a new standard, offering a range of essential features to enhance the management of film production locations. Firstly, it empowers users to effortlessly upload audiovisual material enriched with geospatial and temporal data, such as location coordinates, photographs, videos, 360-degree panoramas, and 3D location models. With the help of cutting-edge deep learning algorithms, the application automatically tags these materials, while users can also manually tag them. Moreover, the application allows users to record locations directly through its user-friendly mobile application. Users can then embark on seamless location searches, employing spatial or descriptive criteria. This intelligent search functionality considers a combination of relevant tags, dominant colors, architectural characteristics, emotional associations, and unique location traits. One of the application's standout features is the ability to explore locations by their visual similarity to other materials, facilitated by a reverse image search. Also, the interactive map serves as both a dynamic display for locations and a versatile filter, adapting to the user's preferences and effortlessly enhancing location searches. To further streamline the process, the application facilitates the creation of location lightboxes, enabling users to efficiently organize and share their content via email. Going above and beyond location management, the platform also provides invaluable liaison, matchmaking, and online marketplace services. This powerful functionality bridges the gap between visual and three-dimensional geospatial material providers, local agencies, film companies, production companies, etc. so that those interested in a specific location can access additional material beyond what is stored on the platform, as well as access production services supporting the functioning and completion of productions in a location (equipment provision, transportation, catering, accommodation, etc.).Keywords: deep learning models, film industry, geospatial data management, location scouting
Procedia PDF Downloads 712 Blue Economy and Marine Mining
Authors: Fani Sakellariadou
Abstract:
The Blue Economy includes all marine-based and marine-related activities. They correspond to established, emerging as well as unborn ocean-based industries. Seabed mining is an emerging marine-based activity; its operations depend particularly on cutting-edge science and technology. The 21st century will face a crisis in resources as a consequence of the world’s population growth and the rising standard of living. The natural capital stored in the global ocean is decisive for it to provide a wide range of sustainable ecosystem services. Seabed mineral deposits were identified as having a high potential for critical elements and base metals. They have a crucial role in the fast evolution of green technologies. The major categories of marine mineral deposits are deep-sea deposits, including cobalt-rich ferromanganese crusts, polymetallic nodules, phosphorites, and deep-sea muds, as well as shallow-water deposits including marine placers. Seabed mining operations may take place within continental shelf areas of nation-states. In international waters, the International Seabed Authority (ISA) has entered into 15-year contracts for deep-seabed exploration with 21 contractors. These contracts are for polymetallic nodules (18 contracts), polymetallic sulfides (7 contracts), and cobalt-rich ferromanganese crusts (5 contracts). Exploration areas are located in the Clarion-Clipperton Zone, the Indian Ocean, the Mid Atlantic Ridge, the South Atlantic Ocean, and the Pacific Ocean. Potential environmental impacts of deep-sea mining include habitat alteration, sediment disturbance, plume discharge, toxic compounds release, light and noise generation, and air emissions. They could cause burial and smothering of benthic species, health problems for marine species, biodiversity loss, reduced photosynthetic mechanism, behavior change and masking acoustic communication for mammals and fish, heavy metals bioaccumulation up the food web, decrease of the content of dissolved oxygen, and climate change. An important concern related to deep-sea mining is our knowledge gap regarding deep-sea bio-communities. The ecological consequences that will be caused in the remote, unique, fragile, and little-understood deep-sea ecosystems and inhabitants are still largely unknown. The blue economy conceptualizes oceans as developing spaces supplying socio-economic benefits for current and future generations but also protecting, supporting, and restoring biodiversity and ecological productivity. In that sense, people should apply holistic management and make an assessment of marine mining impacts on ecosystem services, including the categories of provisioning, regulating, supporting, and cultural services. The variety in environmental parameters, the range in sea depth, the diversity in the characteristics of marine species, and the possible proximity to other existing maritime industries cause a span of marine mining impact the ability of ecosystems to support people and nature. In conclusion, the use of the untapped potential of the global ocean demands a liable and sustainable attitude. Moreover, there is a need to change our lifestyle and move beyond the philosophy of single-use. Living in a throw-away society based on a linear approach to resource consumption, humans are putting too much pressure on the natural environment. Applying modern, sustainable and eco-friendly approaches according to the principle of circular economy, a substantial amount of natural resource savings will be achieved. Acknowledgement: This work is part of the MAREE project, financially supported by the Division VI of IUPAC. This work has been partly supported by the University of Piraeus Research Center.Keywords: blue economy, deep-sea mining, ecosystem services, environmental impacts
Procedia PDF Downloads 851 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion
Authors: Ali Kazemi
Abstract:
Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting
Procedia PDF Downloads 68