Search results for: 1.5 degree Celsius temperature goal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12204

Search results for: 1.5 degree Celsius temperature goal

3624 Synthesis and Two-Photon Polymerization of a Cytocompatibility Tyramine Functionalized Hyaluronic Acid Hydrogel That Mimics the Chemical, Mechanical, and Structural Characteristics of Spinal Cord Tissue

Authors: James Britton, Vijaya Krishna, Manus Biggs, Abhay Pandit

Abstract:

Regeneration of the spinal cord after injury remains a great challenge due to the complexity of this organ. Inflammation and gliosis at the injury site hinder the outgrowth of axons and hence prevent synaptic reconnection and reinnervation. Hyaluronic acid (HA) is the main component of the spinal cord extracellular matrix and plays a vital role in cell proliferation and axonal guidance. In this study, we have synthesized and characterized a photo-cross-linkable HA-tyramine (tyr) hydrogel from a chemical, mechanical, electrical, biological and structural perspective. From our experimentation, we have found that HA-tyr can be synthesized with controllable degrees of tyramine substitution using click chemistry. The complex modulus (G*) of HA-tyr can be tuned to mimic the mechanical properties of the native spinal cord via optimization of the photo-initiator concentration and UV exposure. We have examined the degree of tyramine-tyramine covalent bonding (polymerization) as a function of UV exposure and photo-initiator use via Photo and Nuclear magnetic resonance spectroscopy. Both swelling and enzymatic degradation assays were conducted to examine the resilience of our 3D printed hydrogel constructs in-vitro. Using a femtosecond 780nm laser, the two-photon polymerization of HA-tyr hydrogel in the presence of riboflavin photoinitiator was optimized. A laser power of 50mW and scan speed of 30,000 μm/s produced high-resolution spatial patterning within the hydrogel with sustained mechanical integrity. Using dorsal root ganglion explants, the cytocompatibility of photo-crosslinked HA-tyr was assessed. Using potentiometry, the electrical conductivity of photo-crosslinked HA-tyr was assessed and compared to that of native spinal cord tissue as a function of frequency. In conclusion, we have developed a biocompatible hydrogel that can be used for photolithographic 3D printing to fabricate tissue engineered constructs for neural tissue regeneration applications.

Keywords: 3D printing, hyaluronic acid, photolithography, spinal cord injury

Procedia PDF Downloads 150
3623 Thermal Performance Investigation on Cross V-Shape Solar Air Collectors

Authors: Xi Luo, Xu Ji, Yunfeng Wang, Guoliang Li, Chongqiang Yan, Ming Li

Abstract:

Two different kinds of cross V-shape solar air collectors are designed and constructed. In the transverse cross V-shape collector, the V-shape bottom plate is along the air flow direction and the absorbing plate is perpendicular to the air flow direction. In the lengthway cross V-shape collector, the V-shape absorbing plate is along the air flow direction and the bottom plate is perpendicular to the air flow direction. Based on heat balance, the mathematical model is built to evaluate their performances. These thermal performances of the two cross V-shape solar air collectors and an extra traditional flat-plate solar air collector are characterized under various operating conditions by experiments. The experimental results agree well with the calculation values. The experimental results prove that the thermal efficiency of transverse cross V-shape collector precedes that of others. The air temperature at any point along the flow direction of the transverse cross V-shape collector is higher than that of the lengthway cross V-shape collector. For the transverse cross V-shape collector, the most effective length of flow channel is 0.9m. For the lengthway cross V-shape collector, a longer flow channel is necessary to achieve a good thermal performance.

Keywords: cross v-shape, performance, solar air collector, thermal efficiency

Procedia PDF Downloads 305
3622 Business Model Innovation and Firm Performance: Exploring Moderation Effects

Authors: Mohammad-Ali Latifi, Harry Bouwman

Abstract:

Changes in the business environment accelerated dramatically over the last decades as a result of changes in technology, regulation, market, and competitors’ behavior. Firms need to change the way they do business in order to survive or maintain their growth. Innovating business model (BM) can create competitive advantages and enhance firm performance. However, many companies fail to achieve expected outcomes in practice, mostly due to irreversible fundamental changes in key components of the company’s BM. This leads to more ambiguity, uncertainty, and risks associated with business performance. However, the relationship among BM Innovation, moderating factors, and the firm’s overall performance is by and large ignored in the current literature. In this study, we identified twenty moderating factors from our comprehensive literature review. We categorized these factors based on two criteria regarding the extent to which: the moderating factors can be controlled and managed by firms, and they are generic or specific changes to the firms. This leads to four moderation groups. The first group is BM implementation, which includes management support, employees’ commitment, employees’ skills, communication, detailed plan. The second group is called BM practices, which consists of BM tooling, BM experimentation, the scope of change, speed of change, degree of novelty. The third group is Firm characteristics, including firm size, age, and ownership. The last group is called Industry characteristics, which considers the industry sector, competitive intensity, industry life cycle, environmental dynamism, high-tech vs. low-tech industry. Through collecting data from 508 European small and medium-sized enterprises (SMEs) and using the structural equation modeling technique, the developed moderation model was examined. Results revealed that all factors highlighted through these four groups moderate the relation between BMI and firm performance significantly. Particularly, factors related to BM-Implementation and BM-Practices are more manageable and would potentially improve firm overall performance. We believe that this result is more important for researchers and practitioners since the possibility of working on factors in Firm characteristics and Industry characteristics groups are limited, and the firm can hardly control and manage them to improve the performance of BMI efforts.

Keywords: business model innovation, firm performance, implementation, moderation

Procedia PDF Downloads 117
3621 Enhancing Healthcare Data Protection and Security

Authors: Joseph Udofia, Isaac Olufadewa

Abstract:

Everyday, the size of Electronic Health Records data keeps increasing as new patients visit health practitioner and returning patients fulfil their appointments. As these data grow, so is their susceptibility to cyber-attacks from criminals waiting to exploit this data. In the US, the damages for cyberattacks were estimated at $8 billion (2018), $11.5 billion (2019) and $20 billion (2021). These attacks usually involve the exposure of PII. Health data is considered PII, and its exposure carry significant impact. To this end, an enhancement of Health Policy and Standards in relation to data security, especially among patients and their clinical providers, is critical to ensure ethical practices, confidentiality, and trust in the healthcare system. As Clinical accelerators and applications that contain user data are used, it is expedient to have a review and revamp of policies like the Payment Card Industry Data Security Standard (PCI DSS), the Health Insurance Portability and Accountability Act (HIPAA), the Fast Healthcare Interoperability Resources (FHIR), all aimed to ensure data protection and security in healthcare. FHIR caters for healthcare data interoperability, FHIR caters to healthcare data interoperability, as data is being shared across different systems from customers to health insurance and care providers. The astronomical cost of implementation has deterred players in the space from ensuring compliance, leading to susceptibility to data exfiltration and data loss on the security accuracy of protected health information (PHI). Though HIPAA hones in on the security accuracy of protected health information (PHI) and PCI DSS on the security of payment card data, they intersect with the shared goal of protecting sensitive information in line with industry standards. With advancements in tech and the emergence of new technology, it is necessary to revamp these policies to address the complexity and ambiguity, cost barrier, and ever-increasing threats in cyberspace. Healthcare data in the wrong hands is a recipe for disaster, and we must enhance its protection and security to protect the mental health of the current and future generations.

Keywords: cloud security, healthcare, cybersecurity, policy and standard

Procedia PDF Downloads 79
3620 Morphological and Molecular Characterization of Accessions of Black Fonio Millet (Digitaria Iburua Stapf) Grown in Selected Regions in Nigeria

Authors: Nwogiji Cletus Olando, Oselebe Happiness Ogba, Enoch Achigan-Dako

Abstract:

Digitaria iburua, commonly known as black fonio, is a cereal crop native to Africa and extensively cultivated by smallholder farmers in Northern Benin, Togo, and Nigeria. This crop holds immense nutritional and socio-cultural value. Unfortunately, limited knowledge about its genetic diversity exists due to a lack of scientific attention. As a result, its potential for improvement in food and agriculture remains largely untapped. To address this gap, a study was conducted using 41 accessions of D. iburua stored in the genebank of the Laboratory of Genetics, Biotechnology, and Seed Science at Abomey-Calavi University, Benin. The study employed both morphological and simple sequence repeat (SSR) markers to evaluate the genetic variability of the accessions. Agro-morphological assessments were carried out during the 2020 cropping season, utilizing an alpha lattice design with three replications. The collected data encompassed qualitative and quantitative traits. Additionally, molecular variability was assessed using eleven SSR markers. The results revealed significant phenotypic variability among the evaluated accessions, leading to their classification into three main clusters. Furthermore, the eleven SSR markers identified a total of 50 alleles, averaging 4.55 alleles per locus. The primers exhibited an average polymorphic information content value of 0.43, with the DE-ARC019 primer displaying the highest value (0.59). These findings suggest a substantial degree of genetic heterogeneity within the evaluated accessions, and the SSR markers employed in the study proved highly effective in detecting and characterizing this genetic variability. In conclusion, this study highlights the presence of significant genetic diversity in black fonio and provides valuable insights for future efforts aimed at its genetic improvement and conservation.

Keywords: genetic diversity, digitaria iburua, genetic improvement, simple sequence repeat markers, Nigeria, conservation

Procedia PDF Downloads 81
3619 Carbon-Doped TiO2 Nanofibers Prepared by Electrospinning

Authors: ChoLiang Chung, YuMin Chen

Abstract:

C-doped TiO2 nanofibers were prepared by electrospinning successfully. Different amounts of carbon were added into the nanofibers by using chitosan, aiming to shift the wave length that is required to excite the photocatalyst from ultraviolet light to visible light. Different amounts of carbon and different atmosphere fibers were calcined at 500oC, and the optical characteristic of C-doped TiO2 nanofibers had been changed. characterizes of nanofibers were identified by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), UV-vis, Atomic Force Microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). The XRD is used to identify the phase composition of nanofibers. The morphology of nanofibers were explored by FE-SEM and AFM. Optical characteristics of absorption were measured by UV-Vis. Three dimension surface images of C-doped TiO2 nanofibers revealed different effects of processing. The results of XRD showed that the phase of C-doped TiO2 nanofibers transformed to rutile phase and anatase phase successfully. The results of AFM showed that the surface morphology of nanofibers became smooth after high temperature treatment. Images from FE-SEM revealed the average size of nanofibers. UV-vis results showed that the band-gap of TiO2 were reduced. Finally, we found out C-doped TiO2 nanofibers can change countenance of nanofiber and make it smoother.

Keywords: carbon, TiO2, chitosan, electrospinning

Procedia PDF Downloads 254
3618 Development and Validation of the Circular Economy Scale

Authors: Yu Fang Chen, Jeng Fung Hung

Abstract:

This study aimed to develop a circular economy scale to assess the level of recognition among high-level executives in businesses regarding the circular economy. The circular economy is crucial for global ESG sustainable development and poses a challenge for corporate social responsibility. The aim of promoting the circular economy is to reduce resource consumption, move towards sustainable development, reduce environmental impact, maintain ecological balance, increase economic value, and promote employment. This study developed a 23-item Circular Economy Scale, which includes three subscales: "Understanding of Circular Economy by Enterprises" (8 items), "Attitudes" (9 items), and "Behaviors" (6 items). The Likert 5-point scale was used to measure responses, with higher scores indicating higher levels of agreement among senior executives with regard to the circular economy. The study tested 105 senior executives and used a structural equation model (SEM) as a measurement indicator to determine the extent to which potential variables were measured. The standard factor loading of the measurement indicator needs to be higher than 0.7, and the average variance explained (AVE) represents the index of convergent validity, which should be greater than 0.5 or at least 0.45 to be acceptable. Out of the 23 items, 12 did not meet the standard, so they were removed, leaving 5 items, 3 items, and 3 items for each of the three subscales, respectively, all with a factor loading greater than 0.7. The AVE for all three subscales was greater than 0.45, indicating good construct validity. The Cronbach's α reliability values for the three subscales were 0.887, 0.787, and 0.734, respectively, and the total scale was 0.860, all of which were higher than 0.7, indicating good reliability. The Circular Economy Scale developed in this study measures three conceptual components that align with the theoretical framework of the literature review and demonstrate good reliability and validity. It can serve as a measurement tool for evaluating the degree of acceptance of the circular economy among senior executives in enterprises. In the future, this scale can be used by senior executives in enterprises as an evaluation tool to further explore its impact on sustainable development and to promote circular economy and sustainable development based on the reference provided.

Keywords: circular economy, corporate social responsibility, scale development, structural equation model

Procedia PDF Downloads 78
3617 Impact of Gd³⁺ Substitution on Structural, Optical and Magnetic Properties of ZnFe₂O₄ Nanoparticles

Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Pavel Urbanek, Michal Machovsky, David Skoda

Abstract:

In this report, the impact of Gd³⁺ substitution in ZnFe₂O₄ spinel ferrite nanoparticles on structural, optical and magnetic properties was investigated. ZnFe₂₋ₓGdₓO₄ (x=0.00, 0.05, 0.10, 0.15, 0.20) nanoparticles were synthesized by honey-mediated sol-gel combustion method. X-ray diffraction, Raman Spectroscopy and Fourier Transform Infrared Spectroscopy confirmed the formation of cubic spinel ferrite crystal structure. The morphology and elemental analysis were studied using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy, respectively. UV-Visible reflectance spectroscopy revealed band gap variation with concentration of Gd³⁺ substitution in ZnFe₂O₄ nanoparticles. Magnetic property was studied using vibrating sample magnetometer at room temperature. The synthesized spinel ferrite nanoparticles showed ferromagnetic behaviour. The evaluated magnetic parameters such as saturation magnetization, coercivity and remanence showed variation with Gd³⁺ substitution in spinel ferrite nanoparticles. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords: sol-gel combustion method, nanoparticles, magnetic property, optical property

Procedia PDF Downloads 289
3616 Studying Perceived Stigma, Economic System Justification and Social Mobility Beliefs of Socially Vulnerable (Poor) People: The Case of Georgia

Authors: Nazi Pharsadanishvili, Anastasia Kitiashvili

Abstract:

The importance of studying the social-psychological features of people living in poverty is often emphasized in international research. Building a multidimensional economic framework for reducing poverty grounded in people’s experiences and values is the main goal of famous Poverty Research Centers (such as Oxford Poverty and Human Development Initiative, Abdul Latif Jameel Poverty Action Lab). The aims of the proposed research are to investigate the following characteristics of socially vulnerable people living in Georgia: 1) The features of the perceived stigma of poverty; 2) economic system justification and social justice beliefs; 3) Perceived social mobility and actual attempts at upward social mobility. Qualitative research was conducted to address the indicated research goals and descriptive research questions. Conducting in-depth interviews was considered to be the most appropriate method to capture the vivid feelings and experiences of people living in poverty. 17 respondents (registered in the unified database of socially vulnerable families) participated in in-depth interviews. According to the research results, socially vulnerable people living in Georgia perceive stigma targeted toward them. Two sub-dimensions were identified in perceived stigma: experienced stigma and internalized stigma. Experienced stigma reflects the instances of being discriminated and perceptions of negative treatment from other members of society. Internalized stigma covers negative personal emotions, the feelings of shame, the fear of future stigmatization, and self-isolation. The attitudes and justifications of the existing economic system affect people’s attempts to cope with poverty. Complex analysis of those results is important during the planning and implementing of social welfare reforms. Particularly, it is important to implement poverty stigma reduction mechanisms and help socially vulnerable people to see real perspectives on upward social mobility.

Keywords: coping with poverty, economic system justification, perceived stigma of poverty, upward social mobility

Procedia PDF Downloads 184
3615 Regulation of Differentiating Intramuscular Stromal Vascular Cells Isolated from Hanwoo Beef Cattle by Retinoic Acid and Calcium

Authors: Seong Gu Hwang, Young Kyoon Oh, Joseph F. dela Cruz

Abstract:

Marbling, or intramuscular fat, has been consistently identified as one of the top beef quality problems. Intramuscular adipocytes distribute throughout the perimysial connective tissue of skeletal muscle and are the major site for the deposition of intramuscular fat, which is essential for the eating quality of meat. The stromal vascular fraction of the skeletal muscle contains progenitor cells that can be enhanced to differentiate to adipocytes and increase intramuscular fat. Primary cultures of bovine intramuscular stromal vascular cells were used in this study to elucidate the effects of extracellular calcium and retinoic acid concentration on adipocyte differentiation. Cell viability assay revealed that even at different concentrations of calcium and retinoic acid, there was no significant difference on cell viability. Monitoring of the adipocyte differentiation showed that bovine intramuscular stromal vascular cells cultured in a low concentration of extracellular calcium and retinoic acid had a better degree of fat accumulation. The mRNA and protein expressions of PPARγ, C/EBPα, SREBP-1c and aP2 were analyzed and showed a significant upregulation upon the reduction in the level of extracellular calcium and retinoic acid. The upregulation of these adipogenic related genes means that the decreasing concentration of calcium and retinoic acid is able to stimulate the adipogenic differentiation of bovine intramuscular stromal vascular cells. To further elucidate the effect of calcium, the expression level of calreticulin was measured. Calreticulin which is known to be an inhibitor of PPARγ was down regulated by the decreased level of calcium and retinoic acid in the culture media. The same tendency was observed on retinoic acid receptors RARα and CRABP-II. These receptors are recognized as adipogenic inhibitors, and the downregulation of their expression allowed a better level of differentiation in bovine intramuscular stromal vascular cells. In conclusion, data show that decreasing the level of extracellular calcium and retinoic acid can significantly promote adipogenesis in intramuscular stromal vascular cells of Hanwoo beef cattle. These findings may provide new insights in enhancing intramuscular adipogenesis and marbling in beef cattle.

Keywords: calcium, calreticulin, hanwoo beef, retinoic acid

Procedia PDF Downloads 297
3614 Changing Emphases in Mental Health Research Methodology: Opportunities for Occupational Therapy

Authors: Jeffrey Chase

Abstract:

Historically the profession of Occupational Therapy was closely tied to the treatment of those suffering from mental illness; more recently, and especially in the U.S., the percentage of OTs identifying as working in the mental health area has declined significantly despite the estimate that by 2020 behavioral health disorders will surpass physical illnesses as the major cause of disability worldwide. In the U.S. less than 10% of OTs identify themselves as working with the mentally ill and/or practicing in mental health settings. Such a decline has implications for both those suffering from mental illness and the profession of Occupational Therapy. One reason cited for the decline of OT in mental health has been the limited research in the discipline addressing mental health practice. Despite significant advances in technology and growth in the field of neuroscience, major institutions and funding sources such as the National Institute of Mental Health (NIMH) have noted that research into the etiology and treatment of mental illness have met with limited success over the past 25 years. One major reason posited by NIMH is that research has been limited by how we classify individuals, that being mostly on what is observable. A new classification system being developed by NIMH, the Research Domain Criteria (RDoc), has the goal to look beyond just descriptors of disorders for common neural, genetic, and physiological characteristics that cut across multiple supposedly separate disorders. The hope is that by classifying individuals along RDoC measures that both reliability and validity will improve resulting in greater advances in the field. As a result of this change NIH and NIMH will prioritize research funding to those projects using the RDoC model. Multiple disciplines across many different setting will be required for RDoC or similar classification systems to be developed. During this shift in research methodology OT has an opportunity to reassert itself into the research and treatment of mental illness, both in developing new ways to more validly classify individuals, and to document the legitimacy of previously ill-defined and validated disorders such as sensory integration.

Keywords: global mental health and neuroscience, research opportunities for ot, greater integration of ot in mental health research, research and funding opportunities, research domain criteria (rdoc)

Procedia PDF Downloads 268
3613 Introduction of an Approach of Complex Virtual Devices to Achieve Device Interoperability in Smart Building Systems

Authors: Thomas Meier

Abstract:

One of the major challenges for sustainable smart building systems is to support device interoperability, i.e. connecting sensor or actuator devices from different vendors, and present their functionality to the external applications. Furthermore, smart building systems are supposed to connect with devices that are not available yet, i.e. devices that become available on the market sometime later. It is of vital importance that a sustainable smart building platform provides an appropriate external interface that can be leveraged by external applications and smart services. An external platform interface must be stable and independent of specific devices and should support flexible and scalable usage scenarios. A typical approach applied in smart home systems is based on a generic device interface used within the smart building platform. Device functions, even of rather complex devices, are mapped to that generic base type interface by means of specific device drivers. Our new approach, presented in this work, extends that approach by using the smart building system’s rule engine to create complex virtual devices that can represent the most diverse properties of real devices. We examined and evaluated both approaches by means of a practical case study using a smart building system that we have developed. We show that the solution we present allows the highest degree of flexibility without affecting external application interface stability and scalability. In contrast to other systems our approach supports complex virtual device configuration on application layer (e.g. by administration users) instead of device configuration at platform layer (e.g. platform operators). Based on our work, we can show that our approach supports almost arbitrarily flexible use case scenarios without affecting the external application interface stability. However, the cost of this approach is additional appropriate configuration overhead and additional resource consumption at the IoT platform level that must be considered by platform operators. We conclude that the concept of complex virtual devices presented in this work can be applied to improve the usability and device interoperability of sustainable intelligent building systems significantly.

Keywords: Internet of Things, smart building, device interoperability, device integration, smart home

Procedia PDF Downloads 267
3612 FTIR and AFM Properties of Doubly Doped Tin Oxide Thin Films Prepared by Spin Coating Technique

Authors: Bahattin Duzgun, Adem Kocyigit, Demet Tatar, Ahmet Battal

Abstract:

Tin oxide thin films are semiconductor materials highly transparent and with high mechanical and chemical stability, except for their interactions with oxygen atoms at high temperature. Many dopants, such as antimony (Sb), arsenic (As), fluorine (F), indium (In), molybdenum and (Mo) etc. have been used to improve the electrical properties of tin oxide films. Among these, Sb and F are found to be the most commonly used dopants for solar cell layers. Also Tin oxide tin films investigated and characterized by researchers different film deposition and analysis method. In this study, tin oxide thin films are deposited on glass substrate by spin coating technique and characterized by FTIR and AFM. FTIR spectroscopy revealed that all films have O-Sn-O and Sn-OH vibration bonds not changing with layer effect. AFM analysis indicates that all films are homogeneity and uniform. It can be seen that all films have needle shape structure in their surfaces. Uniformity and homogeneity of the films generally increased for increasing layers. The results found in present study showed that doubly doped SnO2 thin films is a good candidate for solar cells and other optoelectronic and technological applications.

Keywords: doubly doped, spin coating, FTIR analysis, AFM analysis

Procedia PDF Downloads 444
3611 Modeling Studies on the Elevated Temperatures Formability of Tube Ends Using RSM

Authors: M. J. Davidson, N. Selvaraj, L. Venugopal

Abstract:

The elevated temperature forming studies on the expansion of thin walled tubes have been studied in the present work. The influence of process parameters namely the die angle, the die ratio and the operating temperatures on the expansion of tube ends at elevated temperatures is carried out. The range of operating parameters have been identified by perfoming extensive simulation studies. The hot forming parameters have been evaluated for AA2014 alloy for performing the simulation studies. Experimental matrix has been developed from the feasible range got from the simulation results. The design of experiments is used for the optimization of process parameters. Response Surface Method’s (RSM) and Box-Behenken design (BBD) is used for developing the mathematical model for expansion. Analysis of variance (ANOVA) is used to analyze the influence of process parameters on the expansion of tube ends. The effect of various process combinations of expansion are analyzed through graphical representations. The developed model is found to be appropriate as the coefficient of determination value is very high and is equal to 0.9726. The predicted values are found to coincide well with the experimental results, within acceptable error limits.

Keywords: expansion, optimization, Response Surface Method (RSM), ANOVA, bbd, residuals, regression, tube

Procedia PDF Downloads 506
3610 Asymmetric Price Transmission in Rice: A Regional Analysis in Peru

Authors: Renzo Munoz-Najar, Cristina Wong, Daniel De La Torre Ugarte

Abstract:

The literature on price transmission usually deals with asymmetries related to different commodities and/or the short and long term. The role of domestic regional differences and the relationship with asymmetries within a country are usually left out. This paper looks at the asymmetry in the transmission of rice prices from the international price to the farm gate prices in four northern regions of Peru for the last period 2001-2016. These regions are San Martín, Piura, Lambayeque and La Libertad. The relevance of the study lies in its ability to assess the need for policies aimed at improving the competitiveness of the market and ensuring the benefit of producers. There are differences in planting and harvesting dates, as well as in geographic location that justify the hypothesis of the existence of differences in the price transition asymmetries between these regions. Those differences are due to at least three factors geography, infrastructure development, and distribution systems. For this, the Threshold Vector Error Correction Model and the Autoregressive Vector Model with Threshold are used. Both models, collect asymmetric effects in the price adjustments. In this way, it is sought to verify that farm prices react more to falls than increases in international prices due to the high bargaining power of intermediaries. The results of the investigation suggest that the transmission of prices is significant only for Lambayeque and La Libertad. Likewise, the asymmetry in the transmission of prices for these regions is checked. However, these results are not met for San Martin and Piura, the main rice producers nationwide. A significant price transmission is verified only in the Lambayeque and La Libertad regions. San Martin and Piura, in spite of being the main rice producing regions of Peru, do not present a significant transmission of international prices; a high degree of self-sufficient supply might be at the center of the logic for this result. An additional finding is the short-term adjustment with respect to international prices, it is higher in La Libertad compared to Lambayeque, which could be explained by the greater bargaining power of intermediaries in the last-mentioned region due to the greater technological development in the mills.

Keywords: asymmetric price transmission, rice prices, price transmission, regional economics

Procedia PDF Downloads 214
3609 Wireless Sensor Network to Help Low Incomes Farmers to Face Drought Impacts

Authors: Fantazi Walid, Ezzedine Tahar, Bargaoui Zoubeida

Abstract:

This research presents the main ideas to implement an intelligent system composed by communicating wireless sensors measuring environmental data linked to drought indicators (such as air temperature, soil moisture , etc...). On the other hand, the setting up of a spatio temporal database communicating with a Web mapping application for a monitoring in real time in activity 24:00 /day, 7 days/week is proposed to allow the screening of the drought parameters time evolution and their extraction. Thus this system helps detecting surfaces touched by the phenomenon of drought. Spatio-temporal conceptual models seek to answer the users who need to manage soil water content for irrigating or fertilizing or other activities pursuing crop yield augmentation. Effectively, spatio-temporal conceptual models enable users to obtain a diagram of readable and easy data to apprehend. Based on socio-economic information, it helps identifying people impacted by the phenomena with the corresponding severity especially that this information is accessible by farmers and stakeholders themselves. The study will be applied in Siliana watershed Northern Tunisia.

Keywords: WSN, database spatio-temporal, GIS, web mapping, indicator of drought

Procedia PDF Downloads 491
3608 Evaluation of Cyclic Thermo-Mechanical Responses of an Industrial Gas Turbine Rotor

Authors: Y. Rae, A. Benaarbia, J. Hughes, Wei Sun

Abstract:

This paper describes an elasto-visco-plastic computational modelling method which can be used to assess the cyclic plasticity responses of high temperature structures operating under thermo-mechanical loadings. The material constitutive equation used is an improved unified multi-axial Chaboche-Lemaitre model, which takes into account non-linear kinematic and isotropic hardening. The computational methodology is a three-dimensional framework following an implicit formulation and based on a radial return mapping algorithm. The associated user material (UMAT) code is developed and calibrated across isothermal hold-time low cycle fatigue tests for a typical turbine rotor steel for use in finite element (FE) implementation. The model is applied to a realistic industrial gas turbine rotor, where the study focuses its attention on the deformation heterogeneities and critical high stress areas within the rotor structure. The potential improvements of such FE visco-plastic approach are discussed. An integrated life assessment procedure based on R5 and visco-plasticity modelling, is also briefly addressed.

Keywords: unified visco-plasticity, thermo-mechanical, turbine rotor, finite element modelling

Procedia PDF Downloads 128
3607 Genetic Improvement of Centella asiatica (Linn.) Urban. For Therapeutically Active Compounds

Authors: Dalave S. C., S. G. Auti, B. J. Apparao

Abstract:

Centella asiatica (L) Urban, commonly known as Brahmi and Mandookaparni is a valuable medicinal plant highly valued for its asiaticoside and madecassoside. It is widely used in Ayurveda and Unani systems of medicine. Attempts are made in the present investigation to improve the genotype of Centella plant that can yield higher amount of the therapeutically active compounds viz., asiaticosides and madecassosides, employing techniques of polyploidy breeding. Young developing shoots of Centella were treated with different concentrations of colchicine for varying time intervals. 0.4 % colchicine for 6 hours duration at room temperature was effective in inducing autopolyploidy in this plant. The colchicine treated plants were allowed to reproduce vegetatively for several generations in a polyhouse. The colchicine treated plants showed significant increase in plant size, fresh & dry weights, vigorous growth, broad leaves and double the number of chromosomes. HPTLC analysis of dried leaves of control and polyploid plants, even after 9th generations, revealed that the tetraploids synthesized at two times more asiaticoside and madecassoside, as compared to control, untreated diploid plants.

Keywords: Centella asiatica, polyploidy, asiaticosides, madecassoside, HPTLC

Procedia PDF Downloads 242
3606 Research on the Impact of Spatial Layout Design on College Students’ Learning and Mental Health: Analysis Based on a Smart Classroom Renovation Project in Shanghai, China

Authors: Zhang Dongqing

Abstract:

Concern for students' mental health and the application of intelligent advanced technologies are driving changes in teaching models. The traditional teacher-centered classroom is beginning to transform into a student-centered smart interactive learning environment. Nowadays, smart classrooms are compatible with constructivist learning. This theory emphasizes the role of teachers in the teaching process as helpers and facilitators of knowledge construction, and students learn by interacting with them. The spatial design of classrooms is closely related to the teaching model and should also be developed in the direction of smart classroom design. The goal is to explore the impact of smart classroom layout on student-centered teaching environment and teacher-student interaction under the guidance of constructivist learning theory, by combining the design process and feedback analysis of the smart transformation project on the campus of Tongji University in Shanghai. During the research process, the theoretical basis of constructivist learning was consolidated through literature research and case analysis. The integration and visual field analysis of the traditional and transformed indoor floor plans were conducted using space syntax tools. Finally, questionnaire surveys and interviews were used to collect data. The main conclusions are as followed: flexible spatial layouts can promote students' learning effects and mental health; the interactivity of smart classroom layouts is different and needs to be combined with different teaching models; the public areas of teaching buildings can also improve the interactive learning atmosphere by adding discussion space. This article provides a data-based research basis for improving students' learning effects and mental health, and provides a reference for future smart classroom design.

Keywords: spatial layout, smart classroom, space syntax, renovation, educational environment

Procedia PDF Downloads 66
3605 Charcoal Traditional Production in Portugal: Contribution to the Quantification of Air Pollutant Emissions

Authors: Cátia Gonçalves, Teresa Nunes, Inês Pina, Ana Vicente, C. Alves, Felix Charvet, Daniel Neves, A. Matos

Abstract:

The production of charcoal relies on rudimentary technologies using traditional brick kilns. Charcoal is produced under pyrolysis conditions: breaking down the chemical structure of biomass under high temperature in the absence of air. The amount of the pyrolysis products (charcoal, pyroligneous extract, and flue gas) depends on various parameters, including temperature, time, pressure, kiln design, and wood characteristics like the moisture content. This activity is recognized for its inefficiency and high pollution levels, but it is poorly characterized. This activity is widely distributed and is a vital economic activity in certain regions of Portugal, playing a relevant role in the management of woody residues. The location of the units establishes the biomass used for charcoal production. The Portalegre district, in the Alto Alentejo region (Portugal), is a good example, essentially with rural characteristics, with a predominant farming, agricultural, and forestry profile, and with a significant charcoal production activity. In this district, a recent inventory identifies almost 50 charcoal production units, equivalent to more than 450 kilns, of which 80% appear to be in operation. A field campaign was designed with the objective of determining the composition of the emissions released during a charcoal production cycle. A total of 30 samples of particulate matter and 20 gas samples in Tedlar bags were collected. Particulate and gas samplings were performed in parallel, 2 in the morning and 2 in the afternoon, alternating the inlet heads (PM₁₀ and PM₂.₅), in the particulate sampler. The gas and particulate samples were collected in the plume as close as the emission chimney point. The biomass (dry basis) used in the carbonization process was a mixture of cork oak (77 wt.%), holm oak (7 wt.%), stumps (11 wt.%), and charred wood (5 wt.%) from previous carbonization processes. A cylindrical batch kiln (80 m³) with 4.5 m diameter and 5 m of height was used in this study. The composition of the gases was determined by gas chromatography, while the particulate samples (PM₁₀, PM₂.₅) were subjected to different analytical techniques (thermo-optical transmission technique, ion chromatography, HPAE-PAD, and GC-MS after solvent extraction) after prior gravimetric determination, to study their organic and inorganic constituents. The charcoal production cycle presents widely varying operating conditions, which will be reflected in the composition of gases and particles produced and emitted throughout the process. The concentration of PM₁₀ and PM₂.₅ in the plume was calculated, ranging between 0.003 and 0.293 g m⁻³, and 0.004 and 0.292 g m⁻³, respectively. Total carbon, inorganic ions, and sugars account, in average, for PM10 and PM₂.₅, 65 % and 56 %, 2.8 % and 2.3 %, 1.27 %, and 1.21 %, respectively. The organic fraction studied until now includes more than 30 aliphatic compounds and 20 PAHs. The emission factors of particulate matter to produce charcoal in the traditional kiln were 33 g/kg (wooddb) and 27 g/kg (wooddb) for PM₁₀ and PM₂.₅, respectively. With the data obtained in this study, it is possible to fill the lack of information about the environmental impact of the traditional charcoal production in Portugal. Acknowledgment: Authors thanks to FCT – Portuguese Science Foundation, I.P. and to Ministry of Science, Technology and Higher Education of Portugal for financial support within the scope of the project CHARCLEAN (PCIF/GVB/0179/2017) and CESAM (UIDP/50017/2020 + UIDB/50017/2020).

Keywords: brick kilns, charcoal, emission factors, PAHs, total carbon

Procedia PDF Downloads 136
3604 Numerical Design and Characterization of MOVPE Grown Nitride Based Semiconductors

Authors: J. Skibinski, P. Caban, T. Wejrzanowski, K. J. Kurzydlowski

Abstract:

In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S are addressed. The aim of this study was to design the optimal fluid flow and thermal conditions for obtaining the most homogeneous product. Since there are many agents influencing reactions on the crystal growth area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. Variations of process pressure and hydrogen mass flow rates have been considered. According to the fact that it’s impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, detailed 3D modeling has been used to get an insight of the process conditions. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in the numerical model allows to calculate the growth rate of the substrate. The present approach has been applied to enhance the performance of AIX-200/4RF-S reactor.

Keywords: computational fluid dynamics, finite volume method, epitaxial growth, gallium nitride

Procedia PDF Downloads 450
3603 Hard Carbon Derived From Dextrose as High-Performance Anode Material for Sodium-Ion Batteries

Authors: Rupan Das Chakraborty, Surendra K. Martha

Abstract:

Hard carbons (HCs) are extensively used as anode materials for sodium-ion batteries due to their availability, low cost, and ease of synthesis. It possesses the ability to store Na ion between stacked sp2 carbon layers and micropores. In this work, hard carbons are synthesized from different concentrations (0.5M to 5M) of dextrose solutions by hydrothermal synthesis followed by high-temperature calcination at 1100 ⁰C in an inert atmosphere. Dextrose has been chosen as a precursor material as it is a eco-friendly and renewable source. Among all hard carbon derived from different concentrations of dextrose solutions, hard carbon derived from 3M dextrose solution delivers superior electrochemical performance compared to other hard carbons. Hard carbon derived from 3M dextrose solution (Dextrose derived Hard Carbon-3M) provides an initial reversible capacity of 257 mAh g-1 with a capacity retention of 83 % at the end of 100 cycles at 30 mA g-1). The carbons obtained from different dextrose concentration show very similar Cyclic Voltammetry and chargedischarging behavior at a scan rate of 0.05 mV s-1 the Cyclic Voltammetry curve indicate that solvent reduction and the solid electrolyte interface (SEI) formation start at E < 1.2 V (vs Na/Na+). Among all 3M dextrose derived electrode indicate as a promising anode material for Sodium-ion batteries (SIBs).

Keywords: dextrose derived hard carbon, anode, sodium-ion battery, electrochemical performance

Procedia PDF Downloads 105
3602 Application of Rapid Prototyping to Create Additive Prototype Using Computer System

Authors: Meftah O. Bashir, Fatma A. Karkory

Abstract:

Rapid prototyping is a new group of manufacturing processes, which allows fabrication of physical of any complexity using a layer by layer deposition technique directly from a computer system. The rapid prototyping process greatly reduces the time and cost necessary to bring a new product to market. The prototypes made by these systems are used in a range of industrial application including design evaluation, verification, testing, and as patterns for casting processes. These processes employ a variety of materials and mechanisms to build up the layers to build the part. The present work was to build a FDM prototyping machine that could control the X-Y motion and material deposition, to generate two-dimensional and three-dimensional complex shapes. This study focused on the deposition of wax material. This work was to find out the properties of the wax materials used in this work in order to enable better control of the FDM process. This study will look at the integration of a computer controlled electro-mechanical system with the traditional FDM additive prototyping process. The characteristics of the wax were also analysed in order to optimize the model production process. These included wax phase change temperature, wax viscosity and wax droplet shape during processing.

Keywords: rapid prototyping, wax, manufacturing processes, shape

Procedia PDF Downloads 461
3601 N Doped Multiwall Carbon Nanotubes Growth over a Ni Catalyst Substrate

Authors: Angie Quevedo, Juan Bussi, Nestor Tancredi, Juan Fajardo-Díaz, Florentino López-Urías, Emilio Muñóz-Sandoval

Abstract:

In this work, we study the carbon nanotubes (CNTs) formation by catalytic chemical vapor deposition (CCVD) over a catalyst with 20 % of Ni supported over La₂Zr₂O₇ (Ni20LZO). The high C solubility of Ni made it one of the most used in CNTs synthesis. Nevertheless, Ni presents also sintering and coalescence at high temperature. These troubles can be reduced by choosing a suitable support. We propose La₂Zr₂O₇ as for this matter since the incorporation of Ni by co-precipitation and calcination at 900 °C allows a good dispersion and interaction of the active metal (in the oxidized form, NiO) with this support. The CCVD was performed using 1 g of Ni20LZO at 950 °C during 30 min in Ar:H₂ atmosphere (2.5 L/min). The precursor, benzylamine, was added by a nebulizer-sprayer. X ray diffraction study shows the phase separation of NiO and La₂Zr₂O₇ after the calcination and the reduction to Ni after the synthesis. Raman spectra show D and G bands with a ID/IG ratio of 0.75. Elemental study verifies the incorporation of 1% of N. Thermogravimetric analysis shows the oxidation process start at around 450 °C. Future studies will determine the application potential of the samples.

Keywords: N doped carbon nanotubes, catalytic chemical vapor deposition, nickel catalyst, bimetallic oxide

Procedia PDF Downloads 154
3600 Linear Parameter-Varying Control for Selective Catalytic Reduction Systems

Authors: Jihoon Lim, Patrick Kirchen, Ryozo Nagamune

Abstract:

This paper proposes a linear parameter-varying (LPV) controller capable of reducing nitrogen oxide (NOx) emissions with low ammonia (NH3) slip downstream of selective catalytic reduction (SCR) systems. SCR systems are widely adopted in diesel engines due to high NOx conversion efficiency. However, the nonlinearity of the SCR system and sensor uncertainty result in a challenging control problem. In order to overcome the control challenges, an LPV controller is proposed based on gain-scheduling parameters, that is, exhaust gas temperature and exhaust gas flow rate. Based on experimentally obtained data under the non-road transient driving cycle (NRTC), the simulations firstly show that the proposed controller yields high NOx conversion efficiency with a desired low NH3 slip. The performance of the proposed LPV controller is then compared with other controllers, including a gain-scheduling PID controller and a sliding mode controller. Additionally, the robustness is also demonstrated using the uncertainties ranging from 10 to 30%. The results show that the proposed controller is robustly stable under uncertainties.

Keywords: diesel engine, gain-scheduling control, linear parameter-varying, selective catalytic reduction

Procedia PDF Downloads 142
3599 IoT Based Approach to Healthcare System for a Quadriplegic Patient Using EEG

Authors: R. Gautam, P. Sastha Kanagasabai, G. N. Rathna

Abstract:

The proposed healthcare system enables quadriplegic patients, people with severe motor disabilities to send commands to electronic devices and monitor their vitals. The growth of Brain-Computer-Interface (BCI) has led to rapid development in 'assistive systems' for the disabled called 'assistive domotics'. Brain-Computer-Interface is capable of reading the brainwaves of an individual and analyse it to obtain some meaningful data. This processed data can be used to assist people having speech disorders and sometimes people with limited locomotion to communicate. In this Project, Emotiv EPOC Headset is used to obtain the electroencephalogram (EEG). The obtained data is processed to communicate pre-defined commands over the internet to the desired mobile phone user. Other Vital Information like the heartbeat, blood pressure, ECG and body temperature are monitored and uploaded to the server. Data analytics enables physicians to scan databases for a specific illness. The Data is processed in Intel Edison, system on chip (SoC). Patient metrics are displayed via Intel IoT Analytics cloud service.

Keywords: brain computer interface, Intel Edison, Emotiv EPOC, IoT analytics, electroencephalogram

Procedia PDF Downloads 182
3598 Optimization of Tundish Geometry for Minimizing Dead Volume Using OpenFOAM

Authors: Prateek Singh, Dilshad Ahmad

Abstract:

Growing demand for high-quality steel products has inspired researchers to investigate the unit operations involved in the manufacturing of these products (slabs, rods, sheets, etc.). One such operation is tundish operation, in which a vessel (tundish) acts as a buffer of molten steel for the solidification operation in mold. It is observed that tundish also plays a crucial role in the quality and cleanliness of the steel produced, besides merely acting as a reservoir for the mold. It facilitates removal of dissolved oxygen (inclusions) from the molten steel thus improving its cleanliness. Inclusion removal can be enhanced by increasing the residence time of molten steel in the tundish by incorporation of flow modifiers like dams, weirs, turbo-pad, etc. These flow modifiers also help in reducing the dead or short circuit zones within the tundish which is significant for maintaining thermal and chemical homogeneity of molten steel. Thus, it becomes important to analyze the flow of molten steel in the tundish for different configuration of flow modifiers. In the present work, effect of varying positions and heights/depths of dam and weir on the dead volume in tundish is studied. Steady state thermal and flow profiles of molten steel within the tundish are obtained using OpenFOAM. Subsequently, Residence Time Distribution analysis is performed to obtain the percentage of dead volume in the tundish. Design of Experiment method is then used to configure different tundish geometries for varying positions and heights/depths of dam and weir, and dead volume for each tundish design is obtained. A second-degree polynomial with two-term interactions of independent variables to predict the dead volume in the tundish with positions and heights/depths of dam and weir as variables are computed using Multiple Linear Regression model. This polynomial is then used in an optimization framework to obtain the optimal tundish geometry for minimizing dead volume using Sequential Quadratic Programming optimization.

Keywords: design of experiments, multiple linear regression, OpenFOAM, residence time distribution, sequential quadratic programming optimization, steel, tundish

Procedia PDF Downloads 202
3597 Climbing up to Safety and Security: The Facilitation of an NGO Awareness Culture

Authors: Mirad Böhm, Diede De Kok

Abstract:

It goes without saying that for many NGOs a high level of safety and security are crucial issues, which often necessitates the support of military personnel to varying degrees. The relationship between military and NGO personnel is usually a difficult one and while there has been progress, clashes naturally still occur owing to different interpretations of mission objectives amongst many other challenges. NGOs tend to view safety and security as necessary steps towards their goal instead of fundamental pillars of their core ‘business’. The military perspective, however, considers them primary objectives; thus, frequently creating a different vision of how joint operations should be conducted. This paper will argue that internalizing safety and security into the NGO organizational culture is compelling in order to ensure a more effective cooperation with military partners and, ultimately, to achieve their goals. This can be accomplished through a change in perception of safety and security concepts as a fixed and major point on the everyday agenda. Nowadays, there are several training programmes on offer addressing such issues but they primarily focus on the individual level. True internalization of these concepts should reach further by encompassing a wide range of NGO activities, beginning with daily proceedings in office facilities far from conflict zones including logistical and administrative tasks such as budgeting, and leading all the way to actual and potentially hazardous missions in the field. In order to effectuate this change, a tool is required to help NGOs realize, firstly, how they perceive and define safety and security, and secondly, how they can adjust this perception to their benefit. The ‘safety culture ladder’ is a concept that suggests what organizations can and should do to advance their safety. While usually applied to private industrial scenarios, this work will present the concept as a useful instrument to visualize and facilitate the internalization process NGOs ought to go through. The ‘ladder’ allows them to become more aware of the level of their safety and security measures, and moreover, cautions them to take these measures proactively rather than reactively. This in turn will contribute to a rapprochement between military and NGO priority setting in regard to what constitutes a safe working environment.

Keywords: NGO-military cooperation, organisational culture, safety and security awareness, safety culture ladder

Procedia PDF Downloads 327
3596 Characteristics of Children Heart Rhythm Regulation with Acute Respiratory Diseases

Authors: D. F. Zeynalov, T. V. Kartseva, O. V. Sorokin

Abstract:

Currently, approaches to assess cardiointervalography are based on the calculation of data variance intervals RR. However, they do not allow the evaluation of features related to a period of the cardiac cycle, so how electromechanical phenomena during cardiac subphase are characterized by differently directed changes. Therefore, we have proposed a method of subphase analysis of the cardiac cycle, developed in the department of hominal physiology Novosibirsk State Medical University to identify the features of the dispersion subphase of the cardiac cycle. In the present paper we have examined the 5-minute intervals cardiointervalography (CIG) to isolate RR-, QT-, ST-ranges in healthy children and children with acute respiratory diseases (ARD) in comparison. It is known that primary school-aged children suffer at ARD 5-7 times per year. Consequently, it is one of the most relevant problems in pediatrics. It is known that the spectral indices and indices of temporal analysis of heart rate variability are highly sensitive to the degree of intoxication during immunological process. We believe that the use of subphase analysis of heart rate will allow more thoroughly evaluate responsiveness of the child organism during the course of ARD. The study involved 60 primary school-aged children (30 boys and 30 girls). In order to assess heart rhythm regulation, the record CIG was used on the "VNS-Micro" device of Neurosoft Company (Ivanovo) for 5 minutes in the supine position and 5 minutes during active orthostatic test. Subphase analysis of variance QT-interval and ST-segment was performed on the "KardioBOS" software Biokvant Company (Novosibirsk). In assessing the CIG in the supine position and in during orthostasis of children with acute respiratory diseases only RR-intervals are observed typical trend of general biological reactions through pressosensitive compensation mechanisms to lower blood pressure, but compared with healthy children the severity of the changes is different, of sick children are more pronounced indicators of heart rate regulation. But analysis CIG RR-intervals and analysis subphase ST-segment have yielded conflicting trends, which may be explained by the different nature of the intra- and extracardiac influences on regulatory mechanisms that implement the various phases of the cardiac cycle.

Keywords: acute respiratory diseases, cardiointervalography, subphase analysis, cardiac cycle

Procedia PDF Downloads 267
3595 The Layout Analysis of Handwriting Characters and the Fusion of Multi-style Ancient Books’ Background

Authors: Yaolin Tian, Shanxiong Chen, Fujia Zhao, Xiaoyu Lin, Hailing Xiong

Abstract:

Ancient books are significant culture inheritors and their background textures convey the potential history information. However, multi-style texture recovery of ancient books has received little attention. Restricted by insufficient ancient textures and complex handling process, the generation of ancient textures confronts with new challenges. For instance, training without sufficient data usually brings about overfitting or mode collapse, so some of the outputs are prone to be fake. Recently, image generation and style transfer based on deep learning are widely applied in computer vision. Breakthroughs within the field make it possible to conduct research upon multi-style texture recovery of ancient books. Under the circumstances, we proposed a network of layout analysis and image fusion system. Firstly, we trained models by using Deep Convolution Generative against Networks (DCGAN) to synthesize multi-style ancient textures; then, we analyzed layouts based on the Position Rearrangement (PR) algorithm that we proposed to adjust the layout structure of foreground content; at last, we realized our goal by fusing rearranged foreground texts and generated background. In experiments, diversified samples such as ancient Yi, Jurchen, Seal were selected as our training sets. Then, the performances of different fine-turning models were gradually improved by adjusting DCGAN model in parameters as well as structures. In order to evaluate the results scientifically, cross entropy loss function and Fréchet Inception Distance (FID) are selected to be our assessment criteria. Eventually, we got model M8 with lowest FID score. Compared with DCGAN model proposed by Radford at el., the FID score of M8 improved by 19.26%, enhancing the quality of the synthetic images profoundly.

Keywords: deep learning, image fusion, image generation, layout analysis

Procedia PDF Downloads 149