Search results for: women learning
1779 Family Photos as Catalysts for Writing: A Pedagogical Exercise in Visual Analysis with MA Students
Authors: Susana Barreto
Abstract:
This paper explores a pedagogical exercise that employs family photos as catalysts for teaching visual analysis and inspiring academic writing among MA students. The study aimed to achieve two primary objectives: to impart students with the skills of analyzing images or artifacts and to ignite their writing for research purposes. Conducted at Viana Polytechnic in Portugal, the exercise involved two classes on Arts Management and Art Education Master course comprising approximately twenty students from diverse academic backgrounds, including Economics, Design, Fine Arts, and Sociology, among others. The exploratory exercise involved selecting an old family photo, analyzing its content and context, and deconstructing the chosen images in an intuitive and systematic manner. Students were encouraged to engage in photo elicitation, seeking insights from family/friends to gain multigenerational perspectives on the images. The feedback received from this exercise was consistently positive, largely due to the personal connection students felt with the objects of analysis. Family photos, with their emotional significance, fostered deeper engagement and motivation in the learning process. Furthermore, visual analysing family photos stimulated critical thinking as students interpreted the composition, subject matter, and potential meanings embedded in the images. This practice enhanced their ability to comprehend complex visual representations and construct compelling visual narratives, thereby facilitating the writing process. The exercise also facilitated the identification of patterns, similarities, and differences by comparing different family photos, leading to a more comprehensive analysis of visual elements and themes. Throughout the exercise, students found analyzing their own photographs both enjoyable and insightful. They progressed through preliminary analysis, explored content and context, and artfully interwove these components. Additionally, students experimented with various techniques such as converting photos to black and white, altering framing angles, and adjusting sizes to unveil hidden meanings.The methodology employed included observation, documental analysis of written reports, and student interviews. By including students from diverse academic backgrounds, the study enhanced its external validity, enabling a broader range of perspectives and insights during the exercise. Furthermore, encouraging students to seek multigenerational perspectives from family and friends added depth to the analysis, enriching the learning experience and broadening the understanding of the cultural and historical context associated with the family photos Highlighting the emotional significance of these family photos and the personal connection students felt with the objects of analysis fosters a deeper connection to the subject matter. Moreover, the emphasis on stimulating critical thinking through the analysis of composition, subject matter, and potential meanings in family photos suggests a targeted approach to developing analytical skills. This improvement focuses specifically on critical thinking and visual analysis, enhancing the overall quality of the exercise. Additionally, the inclusion of a step where students compare different family photos to identify patterns, similarities, and differences further enhances the depth of the analysis. This comparative approach adds a layer of complexity to the exercise, ultimately leading to a more comprehensive understanding of visual elements and themes. The expected results of this study will culminate in a set of practical recommendations for implementing this exercise in academic settings.Keywords: visual analysis, academic writing, pedagogical exercise, family photos
Procedia PDF Downloads 591778 Harnessing the Power of Feedback to Assist Progress: A Process-Based Approach of Providing Feedback to L2 Composition Students in the United Arab Emirates
Authors: Brad Curabba
Abstract:
Utilising active, process-based learning methods to improve critical thinking and writing skills of second language (L2) writers brings unique challenges. To comprehensively satisfy different learners' needs, when commenting on student work, instructors can embed multiple feedback methods so that the capstone of their abilities as writers can be achieved. This research project assesses faculty and student perceptions regarding the effectiveness of various feedback practices used in process-based writing classrooms with L2 students at the American University of Sharjah (AUS). In addition, the research explores the challenges encountered by faculty during the provision of feedback practices. The quantitative research findings are based on two concurrent electronically distributed anonymous surveys; one aimed at students who have just completed a process-based writing course, and the other at instructors who delivered these courses. The student sample is drawn from multiple sections of Academic Writing I and II, and the faculty survey was distributed among the Department of Writing Studies (DWS) faculty. Our findings strongly suggest that all methods of feedback are deemed equally important by both students and faculty. Students, in particular, find process writing and its feedback practices to have greatly contributed to their writing proficiency.Keywords: process writing, feedback, formative feedback, composition, reflection
Procedia PDF Downloads 1381777 Valuation of Entrepreneurship Education (EE) Curriculum and Self-Employment Generation among Graduates of Tertiary Institutions in Edo State, Nigeria
Authors: Angela Obose Oriazowanlan
Abstract:
Despite the introduction of Entrepreneurship education into the Nigerian University curriculum to prepare graduates for self-employment roles in order to abate employment challenges, their unemployment rate still soars high. The study, therefore, examined the relevance of the curriculum contents and its delivery mechanism to equip graduates with appropriate entrepreneurial skills prior to graduation. Four research questions and two hypotheses guided the study. The survey research design was adopted for the study. An infinite population of graduates of a period of five years with 200 sample representatives using the simple random sampling technique was adopted. A 45-item structured questionnaire was used for data gathering. The gathered data thereof was anlysed using the descriptive statistics of mean and standard deviation, while the formulated hypotheses were tested with Z-score at 0.5 level of significance. The findings revealed, among others, that graduates acquisition of appropriate entrepreneurial skills for self-employment generation is low due to curriculum deficiencies, insufficient time allotment, and the delivery mechanism. It was recommended, among others, that the curriculum should be reviewed to improve its relevancy and that sufficient time should be allotted to enable adequate teaching and learning process.Keywords: evaluation of entrepreneurship education (EE) curriculum, self-employment generation, graduates of tertiary institutions, Edo state, Nigeria
Procedia PDF Downloads 991776 Polyphenol-Rich Aronia Melanocarpa Juice Consumption and Line-1 Dna Methylation in a Cohort at Cardiovascular Risk
Authors: Ljiljana Stojković, Manja Zec, Maja Zivkovic, Maja Bundalo, Marija Glibetić, Dragan Alavantić, Aleksandra Stankovic
Abstract:
Cardiovascular disease (CVD) is associated with alterations in DNA methylation, the latter modulated by dietary polyphenols. The present pilot study (part of the original clinical study registered as NCT02800967 at www.clinicaltrials.gov) aimed to investigate the impact of 4-week daily consumption of polyphenol-rich Aronia melanocarpa juice on Long Interspersed Nucleotide Element-1 (LINE-1) methylation in peripheral blood leukocytes, in subjects (n=34, age of 41.1±6.6 years) at moderate CVD risk, including an increased body mass index, central obesity, high normal blood pressure and/or dyslipidemia. The goal was also to examine whether factors known to affect DNA methylation, such as folate intake levels, MTHFR C677T gene variant, as well as the anthropometric and metabolic parameters, modulated the LINE-1 methylation levels upon consumption of polyphenol-rich Aronia juice. The experimental analysis of LINE-1 methylation was done by the MethyLight method. MTHFR C677T genotypes were determined by the polymerase chain reaction-restriction fragment length polymorphism method. Folate intake was assessed by processing the data from the food frequency questionnaire and repeated 24-hour dietary recalls. Serum lipid profile was determined by using Roche Diagnostics kits. The statistical analyses were performed using the Statistica software package. In women, after vs. before the treatment period, a significant decrease in LINE-1 methylation levels was observed (97.54±1.50% vs. 98.39±0.86%, respectively; P=0.01). The change (after vs. before treatment) in LINE-1 methylation correlated directly with MTHFR 677T allele presence, average daily folate intake and the change in serum low-density lipoprotein cholesterol, while inversely with the change in serum triacylglycerols (R=0.72, R2=0.52, adjusted R2=0.36, P=0.03). The current results imply potential cardioprotective effects of habitual polyphenol-rich Aronia juice consumption achieved through the modifications of DNA methylation pattern in subjects at CVD risk, which should be further confirmed. Hence, the precision nutrition-driven modulations of DNA methylation may become targets for new approaches in the prevention and treatment of CVD.Keywords: Aronia melanocarpa, cardiovascular risk, LINE-1, methylation, peripheral blood leukocytes, polyphenol
Procedia PDF Downloads 1951775 Teaching Attentive Literature Reading in Higher Education French as a Foreign Language: A Pilot Study of a Flipped Classroom Teaching Model
Authors: Malin Isaksson
Abstract:
Teaching French as a foreign language usually implies teaching French literature, especially in higher education. Training university students in literary reading in a foreign language requires addressing several aspects at the same time: the (foreign) language, the poetic language, the aesthetic aspects of the studied works, and various interpretations of them. A pilot study sought to test a teaching model that would support students in learning to perform competent readings and short analyses of French literary works, in a rather independent manner. This shared practice paper describes the use of a flipped classroom method in two French literature courses, a campus course and an online course, and suggests that the teaching model may provide efficient tools for teaching literary reading and analysis in a foreign language. The teaching model builds on a high level of student activity and focuses on attentive reading, meta-perspectives such as theoretical concepts, individual analyses by students where said concepts are applied, and group discussions of the studied texts and of possible interpretations.Keywords: attentive reading, flipped classroom, literature in foreign language studies, teaching literature analysis
Procedia PDF Downloads 1271774 Development of Fuzzy Logic Control Ontology for E-Learning
Authors: Muhammad Sollehhuddin A. Jalil, Mohd Ibrahim Shapiai, Rubiyah Yusof
Abstract:
Nowadays, ontology is common in many areas like artificial intelligence, bioinformatics, e-commerce, education and many more. Ontology is one of the focus areas in the field of Information Retrieval. The purpose of an ontology is to describe a conceptual representation of concepts and their relationships within a particular domain. In other words, ontology provides a common vocabulary for anyone who needs to share information in the domain. There are several ontology domains in various fields including engineering and non-engineering knowledge. However, there are only a few available ontology for engineering knowledge. Fuzzy logic as engineering knowledge is still not available as ontology domain. In general, fuzzy logic requires step-by-step guidelines and instructions of lab experiments. In this study, we presented domain ontology for Fuzzy Logic Control (FLC) knowledge. We give Table of Content (ToC) with middle strategy based on the Uschold and King method to develop FLC ontology. The proposed framework is developed using Protégé as the ontology tool. The Protégé’s ontology reasoner, known as the Pellet reasoner is then used to validate the presented framework. The presented framework offers better performance based on consistency and classification parameter index. In general, this ontology can provide a platform to anyone who needs to understand FLC knowledge.Keywords: engineering knowledge, fuzzy logic control ontology, ontology development, table of content
Procedia PDF Downloads 2991773 The Influence of Concept-Based Teaching on High School Students’ Research Skills
Authors: Nazym Alykpashova
Abstract:
This article is based on the results of the action research at Nazarbayev Intellectual School in Pavlodar, Kazakhstan. The participants of this research were high school students who study Global Perspectives and Project Work course. Intellectual schools are designed to become an experimental site that develops, monitors, studies, analyzes, approves, implements modern models of educational programs. Subjects in NIS aimed to develop skills that will be useful for students in their life. Students learn how to do projects, research credible information, solve different issues. Many subjects cover complex topics, and most teachers feel that they often have to deliver a lot of information within one hour. Many educators recognize Conceptual Teaching, as well as Conceptual Learning, has a lot of benefits for students in terms of developing their perception of the subject topics. This qualitative paper presents findings of two research questions which explored high school students’ perception of conceptual teaching and its impact on their academic performance. Individual semi-structured interviews and observations were conducted with Global Perspectives teachers and students. The results of this action research assist teachers reflect on their professional practice.Keywords: concept-based teaching, students’ research skills, teacher’s professional development, kazakhstan
Procedia PDF Downloads 1361772 The Effectiveness of Multiple versus Once-Only Membrane Sweeping in Uncomplicated Primi Gravida at 40 Weeks of Gestational Age in a Tertiary Care Hospital, Sri Lanka: A Randomized Controlled Trial
Authors: Jeewantha Ranawaka, Gunawardane Kapila, Wijethunaga Mudiyanselage B. G. Jayathilake
Abstract:
Introduction: Sweeping of the membranes is a fairly simple technique that may positively influence the shift from maintenance of pregnancy to the beginning of labor. Objective: To assess the effectiveness and acceptability of twice versus once-only membrane sweeping in uncomplicated primi gravid at 40 weeks of gestational age in a tertiary care hospital in Sri Lanka. Methods: A randomized controlled clinical trial was done in Ward 05 of Teaching Hospital, Kandy. The participants were primi-gravida with a singleton live fetus who was at 40 weeks of gestation with intact fetal membranes and with a Modified Bishop’s score <5. After randomization both groups received membrane sweeping at 40 weeks of gestation and the experimental group received membrane sweeping after 48 hours (40+2 days). The modified Bishop Score was assessed at 40+5 days. In two groups who did not go into natural labor at 40+5 days were managed according to the ward policy of cervical ripening and with labor induction at 40+5 days. Two different methods were used to assess discomfort and pain. Patient acceptability was assessed using recommendation to another patient and acceptance during next pregnancy. Perinatal, maternal and labour outcomes were assessed. Results: A change of the Bishops score was 67.3% (n= 31 of 46) in experimental group whereas in control group it was 57.5% (n= 38 of 66). (p = 0.21, OR-1.52, CI = 0.6 -3.34). Mean (SD) of Modified Bishop score was 6.36 (1.94) in experimental group and 6.03 (.84) in control group (p = 0.354). The probability of having the spontaneous onset of labour in experimental group was 61.6% (n=74 of 120) whereas in control group it was 45% (n= 54 of 120) (p=0.01, OR-1.966, CI = 1.17 – 3.28 NNT = 5.99). Recommending the method to another among experimental group was 75% (n= 90 of 120) whereas in control group it was 79.2% (n= 95 of 120) (p= 0.443). Accepting membrane Sweeping for subsequent pregnancy among experimental was 72.5% (n=87 of 120) whereas in control group was 72.5% (n=87 of 120) (p= 1.00) Need of formal induction of labour at 40+ 5 days in experimental group was 38.4% (n=46 of 120) whereas in control group was 61.6% (n=66 of 120) (p=0.01, OR=0.5, CI= 0.3 – 0.8, NNT=6). Neonatal outcome, labour outcome such as Cesarean -section rate, need for augmentation and maternal complications such as fever, Premature rupture of membrane, bleeding were comparable in two groups. Conclusions and Recommendations: It can be concluded that twice sweeping of membrane was effective to reduce the need of formal induction of labour and increase the chances of having spontaneous onset of labour (SOL) at 40+5 days without increasing maternal or fetal morbidity. Acceptability of twice sweeping is not different from sweeping once. Hence we recommend consideration of multiple membranes sweeping as first line for women at 40 weeks of gestation.Keywords: acceptability, induction, labour, membrane sweeping
Procedia PDF Downloads 2971771 Exploratory Study of the Influencing Factors for Hotels' Competitors
Authors: Asma Ameur, Dhafer Malouche
Abstract:
Hotel competitiveness research is an essential phase of the marketing strategy for any hotel. Certainly, knowing the hotels' competitors helps the hotelier to grasp its position in the market and the citizen to make the right choice in picking a hotel. Thus, competitiveness is an important indicator that can be influenced by various factors. In fact, the issue of competitiveness, this ability to cope with competition, remains a difficult and complex concept to define and to exploit. Therefore, the purpose of this article is to make an exploratory study to calculate a competitiveness indicator for hotels. Further on, this paper makes it possible to determine the criteria of direct or indirect effect on the image and the perception of a hotel. The actual research is used to look into the right model for hotel ‘competitiveness. For this reason, we exploit different theoretical contributions in the field of machine learning. Thus, we use some statistical techniques such as the Principal Component Analysis (PCA) to reduce the dimensions, as well as other techniques of statistical modeling. This paper presents a survey covering of the techniques and methods in hotel competitiveness research. Furthermore, this study allows us to deduct the significant variables that influence the determination of hotel’s competitors. Lastly, the discussed experiences in this article found that the hotel competitors are influenced by several factors with different rates.Keywords: competitiveness, e-reputation, hotels' competitors, online hotel’ review, principal component analysis, statistical modeling
Procedia PDF Downloads 1191770 Utilization of Long Acting Reversible Contraceptive Methods, and Associated Factors among Female College Students in Gondar Town, Northwest Ethiopia, 2018
Authors: Woledegebrieal Aregay
Abstract:
Introduction: Family planning is defined as the ability of individuals and couples to anticipate and attain their desired number of children and the spacing and timing of their births. It is part of a strategy to reduce poverty, maternal, infant and child mortality; empowers women by lightening the burden of excessive childbearing. Family planning is achieved through the use of different contraceptive methods among which the most effective method is modern family planning methods like Long-Acting Reversible Contraceptive (LARCs) which are IUCD and Implant and these methods have multiple advantages over other reversible methods. Most importantly, once in place, they do not require maintenance and their duration of action is long, ranging from 3 to10 years. Methods: An institutional-based cross-sectional study was conducted in Gondar town among female college students from April-May. A simple random sampling technique was employed to recruit a total of 1166 study subjects. Descriptive variables were computed for all predictors & dependent variables. The presence of an association between covariates & LARC use was observed by two tables’ findings using the chi-square test. Bivariate logistic regression was conducted to identify all possible factors affecting LARC utilization & its crude Odds Ratio, 95% Confidence Interval (CI) & P-value was observed. A multivariable logistic regression model was developed to control possible confounding variables. Adjusted Odds Ratio (AOR) with 95% Confidence Interval (CI) &P-values will be computed to identify significantly associated factors (P < 0.05) with LARC utilization. Result: Utilization of LARCs was 20.4%, the most common is Implant 86(96.5%), and followed by Intra-Uterine Contraceptive Device (IUCD) 3(3.5%). The result of the multivariate analysis revealed that the significant association of marital status of the respondent on utilization of LARC [AOR 3.965(2.051-7.665)], discussion of the respondent about LARC utilization with the husband/boyfriend [AOR 2.198(1.191-4.058)], and attitude of the respondent on implant was found to be associated [AOR 0.365(0.143-0.933)].Conclusion: The level of knowledge and attitude in this study was not satisfactory, the utilization of long-acting reversible contraceptives among college students was relatively satisfactory but if the knowledge and attitude of the participant has improved the prevalence of LARC were increased.Keywords: utilization, long-acting reversible contraceptive, Ethiopia, Gondar
Procedia PDF Downloads 2241769 Design of Speed Bump Recognition System Integrated with Adjustable Shock Absorber Control
Authors: Ming-Yen Chang, Sheng-Hung Ke
Abstract:
This research focuses on the development of a speed bump identification system for real-time control of adjustable shock absorbers in vehicular suspension systems. The study initially involved the collection of images of various speed bumps, and rubber speed bump profiles found on roadways. These images were utilized for training and recognition purposes through the deep learning object detection algorithm YOLOv5. Subsequently, the trained speed bump identification program was integrated with an in-vehicle camera system for live image capture during driving. These images were instantly transmitted to a computer for processing. Using the principles of monocular vision ranging, the distance between the vehicle and an approaching speed bump was determined. The appropriate control distance was established through both practical vehicle measurements and theoretical calculations. Collaboratively, with the electronically adjustable shock absorbers equipped in the vehicle, a shock absorber control system was devised to dynamically adapt the damping force just prior to encountering a speed bump. This system effectively mitigates passenger discomfort and enhances ride quality.Keywords: adjustable shock absorbers, image recognition, monocular vision ranging, ride
Procedia PDF Downloads 671768 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery
Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao
Abstract:
Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset
Procedia PDF Downloads 1201767 Comparing Image Processing and AI Techniques for Disease Detection in Plants
Authors: Luiz Daniel Garay Trindade, Antonio De Freitas Valle Neto, Fabio Paulo Basso, Elder De Macedo Rodrigues, Maicon Bernardino, Daniel Welfer, Daniel Muller
Abstract:
Agriculture plays an important role in society since it is one of the main sources of food in the world. To help the production and yield of crops, precision agriculture makes use of technologies aiming at improving productivity and quality of agricultural commodities. One of the problems hampering quality of agricultural production is the disease affecting crops. Failure in detecting diseases in a short period of time can result in small or big damages to production, causing financial losses to farmers. In order to provide a map of the contributions destined to the early detection of plant diseases and a comparison of the accuracy of the selected studies, a systematic literature review of the literature was performed, showing techniques for digital image processing and neural networks. We found 35 interesting tool support alternatives to detect disease in 19 plants. Our comparison of these studies resulted in an overall average accuracy of 87.45%, with two studies very closer to obtain 100%.Keywords: pattern recognition, image processing, deep learning, precision agriculture, smart farming, agricultural automation
Procedia PDF Downloads 3791766 IoT and Advanced Analytics Integration in Biogas Modelling
Authors: Rakesh Choudhary, Ajay Kumar, Deepak Sharma
Abstract:
The main goal of this paper is to investigate the challenges and benefits of IoT integration in biogas production. This overview explains how the inclusion of IoT can enhance biogas production efficiency. Therefore, such collected data can be explored by advanced analytics, including Artificial intelligence (AI) and Machine Learning (ML) algorithms, consequently improving bio-energy processes. To boost biogas generation efficiency, this report examines the use of IoT devices for real-time data collection on key parameters, e.g., pH, temperature, gas composition, and microbial growth. Real-time monitoring through big data has made it possible to detect diverse, complex trends in the process of producing biogas. The Informed by advanced analytics can also help in improving bio-energy production as well as optimizing operational conditions. Moreover, IoT allows remote observation, control and management, which decreases manual intervention needed whilst increasing process effectiveness. Such a paradigm shift in the incorporation of IoT technologies into biogas production systems helps to achieve higher productivity levels as well as more practical biomass quality biomethane through real-time monitoring-based proactive decision-making, thus driving continuous performance improvement.Keywords: internet of things, biogas, renewable energy, sustainability, anaerobic digestion, real-time monitoring, optimization
Procedia PDF Downloads 201765 Degree Tracking System (DTS) to Improve the Efficiency and Effectiveness of Open Distance Learning System: A Case Study of Islamabad Allama Iqbal Open University (AIOU)
Authors: Hatib Shabbir
Abstract:
Student support services play an important role in providing technical and motivational support to distance learner. ICT based systems have improved the efficiency and effectiveness of support services. In distance education, students being at distant require quick responses from their institution. In the manual system, it is practically hard to give prompt response to each and every student, so as a result student has to suffer a lot. The best way to minimize inefficiencies is to use automated systems. This project involves the development of centralized automated software that would not only replace the manual degree issuance system of 1.3 million students studying at AIOU but also provide online tracking to all the students applying for Degrees. DTS is also the first step towards the paperless culture which is adopted by the major organizations of the world. DTS would not only save university cost but also save students cost and time too by conveying all the information/objection through email and SMS. Moreover, DTS also monitors the performance of each and every individual working in the exam department AIOU and generates daily, monthly and yearly reports of every individual which helps a lot in continuous performance monitoring of the employees.Keywords: aiou dts, dts aiou, dts, degree tracking aiou
Procedia PDF Downloads 2181764 Distance Training Packages on Providing for Learner with Special Needs
Authors: Jareeluk Ratanaphan
Abstract:
The purposed of this research were; 1.To survey the teacher’s needs on knowledge about special education management for special needs learner 2.To development of distance training packages on providing for learner with special needs. 3. To study the effects of using the packages on trainee’s achievement. 4. To study the effects of using the packages on trainee’s opinion on the distance training packages. The design of the experiment was research and development. The research sample for survey were 86 teachers, and 22 teachers for study the effects of using the packages on achievement and opinion. The research instrument comprised: 1) training packages on special education management for special needs learner 2) achievement test 3) questionnaire. Mean, percentage, standard deviation, t-test and content analysis were used for data analysis. The findings of the research were as follows: 1. The teacher’s needs on knowledge about teaching for learner with learning disability, mental retardation, autism, physical and health impairment and research in special education. 2. The package composed of special education management for special needs student document and manual of distance training packages. The efficiency of packages was established at 79.50/81.35. 3. The results of using the packages were the posttest average scores of trainee’s achievement were higher than pretest. 4. The trainee’s opinion on the package was at the highest level.Keywords: distance training, training package, teacher, learner with special needs
Procedia PDF Downloads 3391763 Data-Driven Approach to Predict Inpatient's Estimated Discharge Date
Authors: Ayliana Dharmawan, Heng Yong Sheng, Zhang Xiaojin, Tan Thai Lian
Abstract:
To facilitate discharge planning, doctors are presently required to assign an Estimated Discharge Date (EDD) for each patient admitted to the hospital. This assignment of the EDD is largely based on the doctor’s judgment. This can be difficult for cases which are complex or relatively new to the doctor. It is hypothesized that a data-driven approach would be able to facilitate the doctors to make accurate estimations of the discharge date. Making use of routinely collected data on inpatient discharges between January 2013 and May 2016, a predictive model was developed using machine learning techniques to predict the Length of Stay (and hence the EDD) of inpatients, at the point of admission. The predictive performance of the model was compared to that of the clinicians using accuracy measures. Overall, the best performing model was found to be able to predict EDD with an accuracy improvement in Average Squared Error (ASE) by -38% as compared to the first EDD determined by the present method. It was found that important predictors of the EDD include the provisional diagnosis code, patient’s age, attending doctor at admission, medical specialty at admission, accommodation type, and the mean length of stay of the patient in the past year. The predictive model can be used as a tool to accurately predict the EDD.Keywords: inpatient, estimated discharge date, EDD, prediction, data-driven
Procedia PDF Downloads 1741762 Effect of Media on Psycho-Social Interaction among the Children with Their Parents of Urban People in Dhaka
Authors: Nazma Sultana
Abstract:
Social media has become an important part of our daily life. It has a significance influences on the people who use them in their daily life frequently. The number of people using social network sites has been increasing continuously. For this frequent utilization has started to affect our social life. This study examine whether the use of social network sites affects the psychosocial interaction between children and their parents. At first parents introduce their children to the internet and different type of device in their early childhood. Many parents use device for feeding their children by watching rhyme or cartoon. As a result children are habituate with it. In Bangladesh 70% people are heavy internet users. About 23 percent of them spend more than five hours on the social networking sites a day. Media are increasing pervasive in the lives of children-roughly the average child today spends nearly about 45 hours per week with media, compared with 17 hours with parents and 30 hours in school. According to a social learning theory, children & adolescents learn by observing & imitating what they see on screen particularly when these behaviors are realistic or are rewarded. The influence of the media on the psychosocial development of children is profound. Thus it is important for parents to provide guidance on age-appropriate use of all media, including television, radio, music, video games and the internet.Keywords: social media, psychosocial, Technology, Parent, Social Relationship, Adolescents, Teenage, Youth
Procedia PDF Downloads 1131761 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 751760 Work-Related Shoulder Lesions and Labor Lawsuits in Brazil: Cross-Sectional Study on Worker Health Actions Developed by Employers
Authors: Reinaldo Biscaro, Luciano R. Ferreira, Leonardo C. Biscaro, Raphael C. Biscaro, Isabela S. Vasconcelos, Laura C. R. Ferreira, Cristiano M. Galhardi, Erica P. Baciuk
Abstract:
Introduction: The present study had the objective to present the profile of workers with shoulder disorders related to labor lawsuits in Brazil. The study analyzed the association between the worker’s health and the actions performed by the companies related to injured professional. The research method performed a retrospective, cross-sectional and quantitative database analysis. The documents of labor lawsuits with shoulder injury registered at the Regional Labor Court in the 15th region (Campinas - São Paulo) were submitted to the medical examination and evaluated during the period from 2012 until 2015. The data collected were age, gender, onset of symptoms, length of service, current occupation, type of shoulder injury, referred complaints, type of acromion, associated or related diseases, company actions as CAT (workplace accident communication), compliance of NR7 by the organization (Environmental Risk Prevention Program - PPRA and Medical Coordination Program in Occupational Health - PCMSO). Results: From the 93 workers evaluated, there was a prevalence of men (58.1%), with a mean age of 42.6 y-o, and 54.8% were included in the age group 35-49 years. Regarding the length of work time in the company, 66.7% have worked for more than 5 years. There was an association between gender and current occupational status (p < 0.005), with predominance of women in household occupation (13 vs. 2) and predominance of unemployed men in job search situation (24 vs. 10) and reintegrated to work by judicial decision (8 vs. 2). There was also a correlation between pain and functional limitation (p < 0.01). There was a positive association of PPRA with the complaint of functional limitation and negative association with pain (p < 0.04). There was also a correlation between the sedentary lifestyle and the presence of PCMSO and PPRA (p < 0.04), and the absence of CAT in the companies (p < 0.001). It was concluded that the appearance or aggravation of osseous and articular shoulder pathologies in workers who have undertaken labor law suits seem to be associated with individual habits or inadequate labor practices. These data can help preventing the occurrence of these lesions by implementing local health promotion policies at work.Keywords: work-related accidents, cross-sectional study, shoulder lesions, labor lawsuits
Procedia PDF Downloads 2181759 Awareness in the Code of Ethics for Nurse Educators among Nurse Educators, Nursing Students and Professional Nurses at the Royal Thai Army, Thailand
Authors: Wallapa Boonrod
Abstract:
Thai National Education Act 1999 required all educational institutions received external quality evaluation at least once every five years. The purpose of this study was to compare the awareness in the code of ethics for nurse educators among nurse educators, professional nurses, and nursing students under The Royal Thai Army Nurse College. The sample consisted of 51 of nurse educators 200 nursing students and 340 professional nurses from Army nursing college and hospital by stratified random sampling techniques. The descriptive statistics indicated that the nurse educators, nursing students and professional nurses had different levels of awareness in the 9 roles of nurse educators: Nurse, Reliable Sacrifice, Intelligence, Giver, Nursing Skills, Teaching Responsibility, Unbiased Care, Tie to Organization, and Role Model. The code of ethics for nurse educators (CENE) measurement models from the awareness of nurse educators, professional nurses, and nursing students were well fitted with the empirical data. The CENE models from them were invariant in forms, but variant in factor loadings. Thai Army nurse educators strive to create a learning environment that nurtures the highest nursing potential and standards in their nursing students.Keywords: awareness of the code of ethics for nurse educators, nursing college and hospital under The Royal Thai Army, Thai Army nurse educators, professional nurses
Procedia PDF Downloads 4501758 Using Satellite Images Datasets for Road Intersection Detection in Route Planning
Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever
Abstract:
Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles
Procedia PDF Downloads 1451757 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations
Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu
Abstract:
Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10
Procedia PDF Downloads 1111756 Web Quest as the Tool for Business Writing Skills Enhancement at Technical University EFL Classes
Authors: Nadezda Kobzeva
Abstract:
Under the current trend of globalization, economic and technological dynamics information and the means by which it is delivered and renewed becomes out-of-date rapidly. Thus, educational systems as well as higher education are being seriously tested. New strategies’ developing that is supported by Information and Communication Technology is urgently required. The essential educators’ mission is to meet the demands of the future by preparing our young learners with proper knowledge, skills and innovation capabilities necessary to advance our competitiveness globally. In response to the modern society and future demands, the oldest Siberian Tomsk Polytechnic University has wisely proposed several initiatives to promote the integration of Information and Communication Technology (ICT) in education, and increase the competitiveness of graduates by emphasizing inquiry-based learning, higher order thinking and problem solving. This paper gives a brief overview of how Web Quest as ICT device is being used for language teaching and describes its use advantages for teaching English as a Foreign Language (EFL), in particular business writing skills. This study proposes to use Web Quest to promote higher order thinking and ICT integration in the process of engineers training in Tomsk Polytechnic University, Russia.Keywords: web quest, web quest in pedagogy, resume (CVs) and cover letter writing skills, ICT integration
Procedia PDF Downloads 3791755 Dental Students’ Self-Assessment of Their Performance in a Preclinical Endodontic Practice
Authors: Minseock Seo
Abstract:
Dental education consists of both theoretical and practical learning for students. When dental students encounter practical courses as a new educational experience, they must also learn to evaluate themselves. The aim of this study was to investigate the self-assessment scores of third-year dental students and compare with the scores graded by the faculty in preclinical endodontic practice in a dental school in Korea. Faculty- and student-assigned scores were calculated from preclinical endodontic practice performed on phantom patients. The students were formally instructed on grading procedures for endodontic treatment. After each step, each item was assessed by the student. The students’ self-assessment score was then compared to the score by the faculty. The students were divided into 4 groups by analyzing the scores of self-assessment and faculty-assessment and statistically analyzed by summing the theoretical and practical examination scores. In the theoretical exam score, the group who over-estimated their performance (H group) was lower than the group with lower evaluation (L group). When comparing the first and last score determined by the faculty, H groups didn’t show any improvement, while the other group did. In H group, the less improvement of the self-assessment, the higher the theoretical exam score. In L group, the higher improvement of the self-assessment, the better the theoretical exam score. The results point to the need to develop students’ self-insight with more exercises and practical training.Keywords: dental students, endodontic, preclinical practice, self-assessment
Procedia PDF Downloads 2531754 Automatic Adjustment of Thresholds via Closed-Loop Feedback Mechanism for Solder Paste Inspection
Authors: Chia-Chen Wei, Pack Hsieh, Jeffrey Chen
Abstract:
Surface Mount Technology (SMT) is widely used in the area of the electronic assembly in which the electronic components are mounted to the surface of the printed circuit board (PCB). Most of the defects in the SMT process are mainly related to the quality of solder paste printing. These defects lead to considerable manufacturing costs in the electronics assembly industry. Therefore, the solder paste inspection (SPI) machine for controlling and monitoring the amount of solder paste printing has become an important part of the production process. So far, the setting of the SPI threshold is based on statistical analysis and experts’ experiences to determine the appropriate threshold settings. Because the production data are not normal distribution and there are various variations in the production processes, defects related to solder paste printing still occur. In order to solve this problem, this paper proposes an online machine learning algorithm, called the automatic threshold adjustment (ATA) algorithm, and closed-loop architecture in the SMT process to determine the best threshold settings. Simulation experiments prove that our proposed threshold settings improve the accuracy from 99.85% to 100%.Keywords: big data analytics, Industry 4.0, SPI threshold setting, surface mount technology
Procedia PDF Downloads 1161753 Ambiguity-Identification Prompting for Large Language Model to Better Understand Complex Legal Texts
Authors: Haixu Yu, Wenhui Cao
Abstract:
Tailoring Large Language Models (LLMs) to perform legal reasoning has been a popular trend in the study of AI and law. Researchers have mainly employed two methods to unlock the potential of LLMs, namely by finetuning the LLMs to expand their knowledge of law and by restructuring the prompts (In-Context Learning) to optimize the LLMs’ understanding of the legal questions. Although claiming the finetuning and renovated prompting can make LLMs more competent in legal reasoning, most state-of-the-art studies show quite limited improvements of practicability. In this paper, drawing on the study of the complexity and low interpretability of legal texts, we propose a prompting strategy based on the Chain of Thought (CoT) method. Instead of merely instructing the LLM to reason “step by step”, the prompting strategy requires the tested LLM to identify the ambiguity in the questions as the first step and then allows the LLM to generate corresponding answers in line with different understandings of the identified terms as the following step. The proposed prompting strategy attempts to encourage LLMs to "interpret" the given text from various aspects. Experiments that require the LLMs to answer “case analysis” questions of bar examination with general LLMs such as GPT 4 and legal LLMs such as LawGPT show that the prompting strategy can improve LLMs’ ability to better understand complex legal texts.Keywords: ambiguity-identification, prompt, large language model, legal text understanding
Procedia PDF Downloads 611752 The Role of Situational Attribution Training in Reducing Automatic In-Group Stereotyping in Females
Authors: Olga Mironiuk, Małgorzata Kossowska
Abstract:
The aim of the present study was to investigate the influence of Situational Attribution Training on reducing automatic in-group stereotyping in females. The experiment was conducted with the control of age and level of prejudice. 90 female participants were randomly assigned to two conditions: experimental and control group (each group was also divided into younger- and older-aged condition). Participants from the experimental condition were subjected to more extensive training. In the first part of the experiment, the experimental group took part in the first session of Situational Attribution Training while the control group participated in the Grammatical Training Control. In the second part of the research both groups took part in the Situational Attribution Training (which was considered as the second training session for the experimental group and the first one for the control condition). The training procedure was based on the descriptions of ambiguous situations which could be explained using situational or dispositional attributions. The participant’s task was to choose the situational explanation from two alternatives, out of which the second one presented the explanation based on neutral or stereotypically associated with women traits. Moreover, the experimental group took part in the third training session after two- day time delay, in order to check the persistence of the training effect. The main hypothesis stated that among participants taking part in the more extensive training, the automatic in-group stereotyping would be less frequent after having finished training sessions. The effectiveness of the training was tested by measuring the response time and the correctness of answers: the longer response time for the examples where one of two possible answers was based on the stereotype trait and higher correctness of answers was considered to be a proof of the training effectiveness. As the participants’ level of prejudice was controlled (using the Ambivalent Sexism Inventory), it was also assumed that the training effect would be weaker for participants revealing a higher level of prejudice. The obtained results did not confirm the hypothesis based on the response time: participants from the experimental group responded faster in case of situations where one of the possible explanations was based on stereotype trait. However, an interesting observation was made during the analysis of the answers’ correctness: regardless the condition and age group affiliation, participants made more mistakes while choosing the situational explanations when the alternative was based on stereotypical trait associated with the dimension of warmth. What is more, the correctness of answers was higher in the third training session for the experimental group in case when the alternative of situational explanation was based on the stereotype trait associated with the dimension of competence. The obtained results partially confirm the effectiveness of the training.Keywords: female, in-group stereotyping, prejudice, situational attribution training
Procedia PDF Downloads 1901751 Ontology Mapping with R-GNN for IT Infrastructure: Enhancing Ontology Construction and Knowledge Graph Expansion
Authors: Andrey Khalov
Abstract:
The rapid growth of unstructured data necessitates advanced methods for transforming raw information into structured knowledge, particularly in domain-specific contexts such as IT service management and outsourcing. This paper presents a methodology for automatically constructing domain ontologies using the DOLCE framework as the base ontology. The research focuses on expanding ITIL-based ontologies by integrating concepts from ITSMO, followed by the extraction of entities and relationships from domain-specific texts through transformers and statistical methods like formal concept analysis (FCA). In particular, this work introduces an R-GNN-based approach for ontology mapping, enabling more efficient entity extraction and ontology alignment with existing knowledge bases. Additionally, the research explores transfer learning techniques using pre-trained transformer models (e.g., DeBERTa-v3-large) fine-tuned on synthetic datasets generated via large language models such as LLaMA. The resulting ontology, termed IT Ontology (ITO), is evaluated against existing methodologies, highlighting significant improvements in precision and recall. This study advances the field of ontology engineering by automating the extraction, expansion, and refinement of ontologies tailored to the IT domain, thus bridging the gap between unstructured data and actionable knowledge.Keywords: ontology mapping, knowledge graphs, R-GNN, ITIL, NER
Procedia PDF Downloads 171750 Poverty: The Risk to Children’s Mental Health
Authors: Steven Walker
Abstract:
This paper assesses recent data on the prevalence of poverty among children and young people diagnosed with mental health problems. The paper will demonstrate that the current hierarchy of risk factors for developing mental health problems needs adjusting to place poverty among the highest risk factors. Globally poverty is calculated to keep rising especially among less developed countries, and the post-Covid 19 economic recession in developed countries is set to rise. The experience of young people enduring Pandemic isolation is already being quantified and is expected to increase referrals for specialist intervention. Searches on several medical/psychological/social databases using keywords: poverty, children, mental illness were undertaken between 2018 and 2021. Worldwide, 700 million people still live in extreme poverty, half of whom are children. Children are physically and mentally disproportionately affected. Children who grow up impoverished lack the basic necessities they need to survive and thrive. 150 million children have been plunged into multidimensional poverty due to COVID-19. The poorest children are twice as likely to die in childhood than their wealthier peers. For those growing up in humanitarian crises such as Ukraine, the risks of deprivation and exclusion are magnified. In the world’s richest countries, one in seven children still live in poverty. Currently, one in four children in the European Union are at risk of falling into poverty. In Europe the impact of Brexit on the UK economy is predicted to reduce GDP by 5% in 2021 with a corresponding rise in poverty. According to the global charity Oxfam wealth inequality impacts levels of child abuse and affects women and girls worse and is a contributory factor in the risk of developing childhood mental illness. In the UK 2000 Foodbanks have opened since 2010, handing out 2 million food parcels annually, where there are currently 4 million children officially living in poverty. This research demonstrates that there is a strong association between families’ socio-economic circumstances and the chances that their children will experience mental illness. Evidence of this association is found repeatedly across developed countries. The paper will conclude by arguing that psychologists, psychiatrists, psychotherapists, social workers and CAMHS specialists need to place more importance on this critical socio-economic variable when assessing referred children and also advocate for political priorities in governments to reduce poverty and lower the risk of childhood mental illness.Keywords: poverty, resilience, risk factor, socio economic, susceptibility
Procedia PDF Downloads 118