Search results for: hybrid ventilation techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8562

Search results for: hybrid ventilation techniques

162 Intelligent Crop Circle: A Blockchain-Driven, IoT-Based, AI-Powered Sustainable Agriculture System

Authors: Mishak Rahul, Naveen Kumar, Bharath Kumar

Abstract:

Conceived as a high-end engine to revolutionise sustainable agri-food production, the intelligent crop circle (ICC) aims to incorporate the Internet of Things (IoT), blockchain technology and artificial intelligence (AI) to bolster resource efficiency and prevent waste, increase the volume of production and bring about sustainable solutions with long-term ecosystem conservation as the guiding principle. The operating principle of the ICC relies on bringing together multidisciplinary bottom-up collaborations between producers, researchers and consumers. Key elements of the framework include IoT-based smart sensors for sensing soil moisture, temperature, humidity, nutrient and air quality, which provide short-interval and timely data; blockchain technology for data storage on a private chain, which maintains data integrity, traceability and transparency; and AI-based predictive analysis, which actively predicts resource utilisation, plant growth and environment. This data and AI insights are built into the ICC platform, which uses the resulting DSS (Decision Support System) outlined as help in decision making, delivered through an easy-touse mobile app or web-based interface. Farmers are assumed to use such a decision-making aid behind the power of the logic informed by the data pool. Building on existing data available in the farm management systems, the ICC platform is easily interoperable with other IoT devices. ICC facilitates connections and information sharing in real-time between users, including farmers, researchers and industrial partners, enabling them to cooperate in farming innovation and knowledge exchange. Moreover, ICC supports sustainable practice in agriculture by integrating gamification techniques to stimulate farm adopters, deploying VR technologies to model and visualise 3D farm environments and farm conditions, framing the field scenarios using VR headsets and Real-Time 3D engines, and leveraging edge technologies to facilitate secure and fast communication and collaboration between users involved. And through allowing blockchain-based marketplaces, ICC offers traceability from farm to fork – that is: from producer to consumer. It empowers informed decision-making through tailor-made recommendations generated by means of AI-driven analysis and technology democratisation, enabling small-scale and resource-limited farmers to get their voice heard. It connects with traditional knowledge, brings together multi-stakeholder interactions as well as establishes a participatory ecosystem to incentivise continuous growth and development towards more sustainable agro-ecological food systems. This integrated approach leverages the power of emerging technologies to provide sustainable solutions for a resilient food system, ensuring sustainable agriculture worldwide.

Keywords: blockchain, internet of things, artificial intelligence, decision support system, virtual reality, gamification, traceability, sustainable agriculture

Procedia PDF Downloads 42
161 The Importance of School Culture in Supporting Student Mental Health Following the COVID-19 Pandemic: Insights from a Qualitative Study

Authors: Rhiannon Barker, Gregory Hartwell, Matt Egan, Karen Lock

Abstract:

Background: Evidence suggests that mental health (MH) issues in children and young people (CYP) in the UK are on the rise. Of particular concern is data that indicates that the pandemic, together with the impact of school closures, have accentuated already pronounced inequalities; children from families on low incomes or from black and minority ethnic groups are reportedly more likely to have been adversely impacted. This study aimed to help identify specific support which may facilitate the building of a positive school climate and protect student mental health, particularly in the wake of school closures following the pandemic. It has important implications for integrated working between schools and statutory health services. Methods: The research comprised of three parts; scoping, case studies, and a stakeholder workshop to explore and consolidate results. The scoping phase included a literature review alongside interviews with a range of stakeholders from government, academia, and the third sector. Case studies were then conducted in two London state schools. Results: Our research identified how student MH was being impacted by a range of factors located at different system levels, both internal to the school and in the wider community. School climate, relating both to a shared system of beliefs and values, as well as broader factors including style of leadership, teaching, discipline, safety, and relationships -all played a role in the experience of school life and, consequently, the MH of both students and staff. Participants highlighted the importance of a whole school approach and ensuring that support for student MH was not separated from academic achievement, as well as the importance of identifying and applying universal measuring systems to establish levels of MH need. Our findings suggest that a school’s climate is influenced by the style and strength of its leadership, while this school climate - together with mechanisms put in place to respond to MH needs (both statutory and non-statutory) - plays a key role in supporting student MH. Implications: Schools in England have a responsibility to decide on the nature of MH support provided for their students, and there is no requirement for them to report centrally on the form this provision takes. The reality on the ground, as our study suggests, is that MH provision varies significantly between schools, particularly in relation to ‘lower’ levels of need which are not covered by statutory requirements. A valid concern may be that in the huge raft of possible options schools have to support CYP wellbeing, too much is left to chance. Work to support schools in rebuilding their cultures post-lockdowns must include the means to identify and promote appropriate tools and techniques to facilitate regular measurement of student MH. This will help establish both the scale of the problem and monitor the effectiveness of the response. A strong vision from a school’s leadership team that emphasises the importance of student wellbeing, running alongside (but not overshadowed by) academic attainment, should help shape a school climate to promote beneficial MH outcomes. The sector should also be provided with support to improve the consistency and efficacy of MH provision in schools across the country.

Keywords: mental health, schools, young people, whole-school culture

Procedia PDF Downloads 63
160 The Role of Temples Redevelopment for Informal Sector Business Development in India

Authors: Prashant Gupta

Abstract:

Throughout India, temples have served as cultural centers, commerce hubs, art galleries, educational institutions, and social centers in addition to being places of worship since centuries. Across the country, there are over two million temples, which are crucial economic hubs, attracting devotees and tourists worldwide. In India, we have 53 temples per each 100,000 Indians. As per NSSO survey, the temple economy is worth about $40 billion and 2.32 per cent of GDP based on major temple’s survey, which only includes formal sector. It could be much larger as an actual estimation has not been done yet. In India, 43.1% of total economy represents informal sector. Over 10 billion domestic tourists visit to new destinations every year within India. Even 20 per cent of the 90 million foreign tourists visited Madurai and Mahabalipuram temples which became the most visited tourist spot in 2022. Recently the current central government in power have started revitalizing the ancient Indian civilization by reconstructing and beautifying the major temples of India i.e., Kashi Vishwanath Corridor, Mahakaleshwara Temple, Kedarnath, Ayodhya etc. The reason researcher chose Kashi as a case study because it is known as a Spiritual Capital of India, which is also the abode for the spread of Hinduism, Buddhism, Jainism and Sikkism, which are core Sanatan Dharmic practices. 17,800 Million INR Amount was spend to redevelop Kashi Vishwanath Corridor since 2019. RESEARCH OBJECTIVES 1. To assess historical contribution of temples in socio economic development and revival of Indic Civilization. 2. To examine the role of temples redevelopment for informal sector businesses. 3. To identify the sub-sectors of informal sector businesses 4. To identify products and services of informal businesses for investigation of marketing strategies and business development. PROPOSED METHODS AND PROCEDURES This study will follow a mixed approach, employing both qualitative and quantitative methods of research. To conduct the study, data will be collected from 500 informal business owners through structured questionnaire and interview instruments. The informal business owners will be selected using a systematic random sampling technique. In addition, documents from government offices of the last 10 years of tax collection will be reviewed to substantiate the study. To analyze the study, descriptive and econometric analysis techniques will be employed. EXPECTED CONTRIBUTION OF THE PROPOSED STUDY By studying the contribution of temple re-development on informal business creation and growth, the study will be beneficial to the informal business owners and the government. For the government, scientific and empirical evidence on the contribution of temple re-development for informal business creation and growth to give evidence the study will give based infrastructural development and boosting tax collection. For informal businesses, the study will give them a detailed insight on the nature of their business and the possible future growth potential of their business, and the alternative products and services supplying to their customers in the future. Studying informal businesses will help to identify the key products and services which are majorly profitable and possess potential to multiply and grow through correct product marketing strategies and business development.

Keywords: business development, informal sector businesses, services and products marketing, temple economics

Procedia PDF Downloads 80
159 A Hardware-in-the-loop Simulation for the Development of Advanced Control System Design for a Spinal Joint Wear Simulator

Authors: Kaushikk Iyer, Richard M Hall, David Keeling

Abstract:

Hardware-in-the-loop (HIL) simulation is an advanced technique for developing and testing complex real-time control systems. This paper presents the benefits of HIL simulation and how it can be implemented and used effectively to develop, test, and validate advanced control algorithms used in a spinal joint Wear simulator for the Tribological testing of spinal disc prostheses. spinal wear simulator is technologically the most advanced machine currently employed For the in-vitro testing of newly developed spinal Discimplants. However, the existing control techniques, such as a simple position control Does not allow the simulator to test non-sinusoidal waveforms. Thus, there is a need for better and advanced control methods that can be developed and tested Rigorouslybut safely before deploying it into the real simulator. A benchtop HILsetupis was created for experimentation, controller verification, and validation purposes, allowing different control strategies to be tested rapidly in a safe environment. The HIL simulation aspect in this setup attempts to replicate similar spinal motion and loading conditions. The spinal joint wear simulator containsa four-Barlinkpowered by electromechanical actuators. LabVIEW software is used to design a kinematic model of the spinal wear Simulator to Validatehow each link contributes towards the final motion of the implant under test. As a result, the implant articulates with an angular motion specified in the international standards, ISO-18192-1, that define fixed, simplified, and sinusoid motion and load profiles for wear testing of cervical disc implants. Using a PID controller, a velocity-based position control algorithm was developed to interface with the benchtop setup that performs HIL simulation. In addition to PID, a fuzzy logic controller (FLC) was also developed that acts as a supervisory controller. FLC provides intelligence to the PID controller by By automatically tuning the controller for profiles that vary in amplitude, shape, and frequency. This combination of the fuzzy-PID controller is novel to the wear testing application for spinal simulators and demonstrated superior performance against PIDwhen tested for a spectrum of frequency. Kaushikk Iyer is a Ph.D. Student at the University of Leeds and an employee at Key Engineering Solutions, Leeds, United Kingdom, (e-mail: [email protected], phone: +44 740 541 5502). Richard M Hall is with the University of Leeds, the United Kingdom as a professor in the Mechanical Engineering Department (e-mail: [email protected]). David Keeling is the managing director of Key Engineering Solutions, Leeds, United Kingdom (e-mail: [email protected]). Results obtained are successfully validated against the load and motion tolerances specified by the ISO18192-1 standard and fall within limits, that is, ±0.5° at the maxima and minima of the motion and ±2 % of the complete cycle for phasing. The simulation results prove the efficacy of the test setup using HIL simulation to verify and validate the accuracy and robustness of the prospective controller before its deployment into the spinal wear simulator. This method of testing controllers enables a wide range of possibilities to test advanced control algorithms that can potentially test even profiles of patients performing various dailyliving activities.

Keywords: Fuzzy-PID controller, hardware-in-the-loop (HIL), real-time simulation, spinal wear simulator

Procedia PDF Downloads 171
158 Modeling Thermal Changes of Urban Blocks in Relation to the Landscape Structure and Configuration in Guilan Province

Authors: Roshanak Afrakhteh, Abdolrasoul Salman Mahini, Mahdi Motagh, Hamidreza Kamyab

Abstract:

Urban Heat Islands (UHIs) are distinctive urban areas characterized by densely populated central cores surrounded by less densely populated peripheral lands. These areas experience elevated temperatures, primarily due to impermeable surfaces and specific land use patterns. The consequences of these temperature variations are far-reaching, impacting the environment and society negatively, leading to increased energy consumption, air pollution, and public health concerns. This paper emphasizes the need for simplified approaches to comprehend UHI temperature dynamics and explains how urban development patterns contribute to land surface temperature variation. To illustrate this relationship, the study focuses on the Guilan Plain, utilizing techniques like principal component analysis and generalized additive models. The research centered on mapping land use and land surface temperature in the low-lying area of Guilan province. Satellite data from Landsat sensors for three different time periods (2002, 2012, and 2021) were employed. Using eCognition software, a spatial unit known as a "city block" was utilized through object-based analysis. The study also applied the normalized difference vegetation index (NDVI) method to estimate land surface radiance. Predictive variables for urban land surface temperature within residential city blocks were identified categorized as intrinsic (related to the block's structure) and neighboring (related to adjacent blocks) variables. Principal Component Analysis (PCA) was used to select significant variables, and a Generalized Additive Model (GAM) approach, implemented using R's mgcv package, modeled the relationship between urban land surface temperature and predictor variables.Notable findings included variations in urban temperature across different years attributed to environmental and climatic factors. Block size, shared boundary, mother polygon area, and perimeter-to-area ratio were identified as main variables for the generalized additive regression model. This model showed non-linear relationships, with block size, shared boundary, and mother polygon area positively correlated with temperature, while the perimeter-to-area ratio displayed a negative trend. The discussion highlights the challenges of predicting urban surface temperature and the significance of block size in determining urban temperature patterns. It also underscores the importance of spatial configuration and unit structure in shaping urban temperature patterns. In conclusion, this study contributes to the growing body of research on the connection between land use patterns and urban surface temperature. Block size, along with block dispersion and aggregation, emerged as key factors influencing urban surface temperature in residential areas. The proposed methodology enhances our understanding of parameter significance in shaping urban temperature patterns across various regions, particularly in Iran.

Keywords: urban heat island, land surface temperature, LST modeling, GAM, Gilan province

Procedia PDF Downloads 73
157 A Framework for Automated Nuclear Waste Classification

Authors: Seonaid Hume, Gordon Dobie, Graeme West

Abstract:

Detecting and localizing radioactive sources is a necessity for safe and secure decommissioning of nuclear facilities. An important aspect for the management of the sort-and-segregation process is establishing the spatial distributions and quantities of the waste radionuclides, their type, corresponding activity, and ultimately classification for disposal. The data received from surveys directly informs decommissioning plans, on-site incident management strategies, the approach needed for a new cell, as well as protecting the workforce and the public. Manual classification of nuclear waste from a nuclear cell is time-consuming, expensive, and requires significant expertise to make the classification judgment call. Also, in-cell decommissioning is still in its relative infancy, and few techniques are well-developed. As with any repetitive and routine tasks, there is the opportunity to improve the task of classifying nuclear waste using autonomous systems. Hence, this paper proposes a new framework for the automatic classification of nuclear waste. This framework consists of five main stages; 3D spatial mapping and object detection, object classification, radiological mapping, source localisation based on gathered evidence and finally, waste classification. The first stage of the framework, 3D visual mapping, involves object detection from point cloud data. A review of related applications in other industries is provided, and recommendations for approaches for waste classification are made. Object detection focusses initially on cylindrical objects since pipework is significant in nuclear cells and indeed any industrial site. The approach can be extended to other commonly occurring primitives such as spheres and cubes. This is in preparation of stage two, characterizing the point cloud data and estimating the dimensions, material, degradation, and mass of the objects detected in order to feature match them to an inventory of possible items found in that nuclear cell. Many items in nuclear cells are one-offs, have limited or poor drawings available, or have been modified since installation, and have complex interiors, which often and inadvertently pose difficulties when accessing certain zones and identifying waste remotely. Hence, this may require expert input to feature match objects. The third stage, radiological mapping, is similar in order to facilitate the characterization of the nuclear cell in terms of radiation fields, including the type of radiation, activity, and location within the nuclear cell. The fourth stage of the framework takes the visual map for stage 1, the object characterization from stage 2, and radiation map from stage 3 and fuses them together, providing a more detailed scene of the nuclear cell by identifying the location of radioactive materials in three dimensions. The last stage involves combining the evidence from the fused data sets to reveal the classification of the waste in Bq/kg, thus enabling better decision making and monitoring for in-cell decommissioning. The presentation of the framework is supported by representative case study data drawn from an application in decommissioning from a UK nuclear facility. This framework utilises recent advancements of the detection and mapping capabilities of complex radiation fields in three dimensions to make the process of classifying nuclear waste faster, more reliable, cost-effective and safer.

Keywords: nuclear decommissioning, radiation detection, object detection, waste classification

Procedia PDF Downloads 200
156 Microsimulation of Potential Crashes as a Road Safety Indicator

Authors: Vittorio Astarita, Giuseppe Guido, Vincenzo Pasquale Giofre, Alessandro Vitale

Abstract:

Traffic microsimulation has been used extensively to evaluate consequences of different traffic planning and control policies in terms of travel time delays, queues, pollutant emissions, and every other common measured performance while at the same time traffic safety has not been considered in common traffic microsimulation packages as a measure of performance for different traffic scenarios. Vehicle conflict techniques that were introduced at intersections in the early traffic researches carried out at the General Motor laboratory in the USA and in the Swedish traffic conflict manual have been applied to vehicles trajectories simulated in microscopic traffic simulators. The concept is that microsimulation can be used as a base for calculating the number of conflicts that will define the safety level of a traffic scenario. This allows engineers to identify unsafe road traffic maneuvers and helps in finding the right countermeasures that can improve safety. Unfortunately, most commonly used indicators do not consider conflicts between single vehicles and roadside obstacles and barriers. A great number of vehicle crashes take place with roadside objects or obstacles. Only some recent proposed indicators have been trying to address this issue. This paper introduces a new procedure based on the simulation of potential crash events for the evaluation of safety levels in microsimulation traffic scenarios, which takes into account also potential crashes with roadside objects and barriers. The procedure can be used to define new conflict indicators. The proposed simulation procedure generates with the random perturbation of vehicle trajectories a set of potential crashes which can be evaluated accurately in terms of DeltaV, the energy of the impact, and/or expected number of injuries or casualties. The procedure can also be applied to real trajectories giving birth to new surrogate safety performance indicators, which can be considered as “simulation-based”. The methodology and a specific safety performance indicator are described and applied to a simulated test traffic scenario. Results indicate that the procedure is able to evaluate safety levels both at the intersection level and in the presence of roadside obstacles. The procedure produces results that are expressed in the same unity of measure for both vehicle to vehicle and vehicle to roadside object conflicts. The total energy for a square meter of all generated crash can be used and is shown on the map, for the test network, after the application of a threshold to evidence the most dangerous points. Without any detailed calibration of the microsimulation model and without any calibration of the parameters of the procedure (standard values have been used), it is possible to identify dangerous points. A preliminary sensitivity analysis has shown that results are not dependent on the different energy thresholds and different parameters of the procedure. This paper introduces a specific new procedure and the implementation in the form of a software package that is able to assess road safety, also considering potential conflicts with roadside objects. Some of the principles that are at the base of this specific model are discussed. The procedure can be applied on common microsimulation packages once vehicle trajectories and the positions of roadside barriers and obstacles are known. The procedure has many calibration parameters and research efforts will have to be devoted to make confrontations with real crash data in order to obtain the best parameters that have the potential of giving an accurate evaluation of the risk of any traffic scenario.

Keywords: road safety, traffic, traffic safety, traffic simulation

Procedia PDF Downloads 135
155 A Randomised Simulation Study to Assess the Impact of a Focussed Crew Resource Management Course on UK Medical Students

Authors: S. MacDougall-Davis, S. Wysling, R. Willmore

Abstract:

Background: The application of good non-technical skills, also known as crew resource management (CRM), is central to the delivery of safe, effective healthcare. The authors have been running remote trauma courses for over 10 years, primarily focussing on developing participants’ CRM in time-critical, high-stress clinical situations. The course has undergone an iterative process over the past 10 years. We employ a number of experiential learning techniques for improving CRM, including small group workshops, military command tasks, high fidelity simulations with reflective debriefs, and a ‘flipped classroom’, where participants are asked to create their own simulations and assess and debrief their colleagues’ CRM. We created a randomised simulation study to assess the impact of our course on UK medical students’ CRM, both at an individual and a teams level. Methods: Sixteen students took part. Four clinical scenarios were devised, designed to be of similar urgency and complexity. Professional moulage effects and experienced clinical actors were used to increase fidelity and to further simulate high-stress environments. Participants were block randomised into teams of 4; each team was randomly assigned to one pre-course simulation. They then underwent our 5 day remote trauma CRM course. Post-course, students were re-randomised into four new teams; each was randomly assigned to a post-course simulation. All simulations were videoed. The footage was reviewed by two independent CRM-trained assessors, who were blinded to the before/after the status of the simulations. Assessors used the internationally validated team emergency assessment measure (TEAM) to evaluate key areas of team performance, as well as a global outcome rating. Prior to the study, assessors had scored two unrelated scenarios using the same assessment tool, demonstrating 89% concordance. Participants also completed pre- and post-course questionnaires. Likert scales were used to rate individuals’ perceived NTS ability and their confidence to work in a team in time-critical, high-stress situations. Results: Following participation in the course, a significant improvement in CRM was observed in all areas of team performance. Furthermore, the global outcome rating for team performance was markedly improved (40-70%; mean 55%), thus demonstrating an impact at Level 4 of Kirkpatrick’s hierarchy. At an individual level, participants’ self-perceived CRM improved markedly after the course (35-70% absolute improvement; mean 55%), as did their confidence to work in a team in high-stress situations. Conclusion: Our study demonstrates that with a short, cost-effective course, using easily reproducible teaching sessions, it is possible to significantly improve participants’ CRM skills, both at an individual and, perhaps more importantly, at a teams level. The successful functioning of multi-disciplinary teams is vital in a healthcare setting, particularly in high-stress, time-critical situations. Good CRM is of paramount importance in these scenarios. The authors believe that these concepts should be introduced from the earliest stages of medical education, thus promoting a culture of effective CRM and embedding an early appreciation of the importance of these skills in enabling safe and effective healthcare.

Keywords: crew resource management, non-technical skills, training, simulation

Procedia PDF Downloads 134
154 Wheat Cluster Farming Approach: Challenges and Prospects for Smallholder Farmers in Ethiopia

Authors: Hanna Mamo Ergando

Abstract:

Climate change is already having a severe influence on agriculture, affecting crop yields, the nutritional content of main grains, and livestock productivity. Significant adaptation investments will be necessary to sustain existing yields and enhance production and food quality to fulfill demand. Climate-smart agriculture (CSA) provides numerous potentials in this regard, combining a focus on enhancing agricultural output and incomes while also strengthening resilience and responding to climate change. To improve agriculture production and productivity, the Ethiopian government has adopted and implemented a series of strategies, including the recent agricultural cluster farming that is practiced as an effort to change, improve, and transform subsistence farming to modern, productive, market-oriented, and climate-smart approach through farmers production cluster. Besides, greater attention and focus have been given to wheat production and productivity by the government, and wheat is the major crop grown in cluster farming. Therefore, the objective of this assessment was to examine various opportunities and challenges farmers face in a cluster farming system. A qualitative research approach was used to generate primary and secondary data. Respondents were chosen using the purposeful sampling technique. Accordingly, experts from the Federal Ministry of Agriculture, the Ethiopian Agricultural Transformation Institute, the Ethiopian Agricultural Research Institute, and the Ethiopian Environment Protection Authority were interviewed. The assessment result revealed that farming in clusters is an economically viable technique for sustaining small, resource-limited, and socially disadvantaged farmers' agricultural businesses. The method assists farmers in consolidating their products and delivering them in bulk to save on transportation costs while increasing income. Smallholders' negotiating power has improved as a result of cluster membership, as has knowledge and information spillover. The key challenges, on the other hand, were identified as a lack of timely provision of modern inputs, insufficient access to credit services, conflict of interest in crop selection, and a lack of output market for agro-processing firms. Furthermore, farmers in the cluster farming approach grow wheat year after year without crop rotation or diversification techniques. Mono-cropping has disadvantages because it raises the likelihood of disease and insect outbreaks. This practice may result in long-term consequences, including soil degradation, reduced biodiversity, and economic risk for farmers. Therefore, the government must devote more resources to addressing the issue of environmental sustainability. Farmers' access to complementary services that promote production and marketing efficiencies through infrastructure and institutional services has to be improved. In general, the assessment begins with some hint that leads to a deeper study into the efficiency of the strategy implementation, upholding existing policy, and scaling up good practices in a sustainable and environmentally viable manner.

Keywords: cluster farming, smallholder farmers, wheat, challenges, opportunities

Procedia PDF Downloads 219
153 New Territories: Materiality and Craft from Natural Systems to Digital Experiments

Authors: Carla Aramouny

Abstract:

Digital fabrication, between advancements in software and machinery, is pushing practice today towards more complexity in design, allowing for unparalleled explorations. It is giving designers the immediate capacity to apply their imagined objects into physical results. Yet at no time have questions of material knowledge become more relevant and crucial, as technological advancements approach a radical re-invention of the design process. As more and more designers look towards tactile crafts for material know-how, an interest in natural behaviors has also emerged trying to embed intelligence from nature into the designed objects. Concerned with enhancing their immediate environment, designers today are pushing the boundaries of design by bringing in natural systems, materiality, and advanced fabrication as essential processes to produce active designs. New Territories, a yearly architecture and design course on digital design and materiality, allows students to explore processes of digital fabrication in intersection with natural systems and hands-on experiments. This paper will highlight the importance of learning from nature and from physical materiality in a digital design process, and how the simultaneous move between the digital and physical realms has become an essential design method. It will detail the work done over the course of three years, on themes of natural systems, crafts, concrete plasticity, and active composite materials. The aim throughout the course is to explore the design of products and active systems, be it modular facades, intelligent cladding, or adaptable seating, by embedding current digital technologies with an understanding of natural systems and a physical know-how of material behavior. From this aim, three main themes of inquiry have emerged through the varied explorations across the three years, each one approaching materiality and digital technologies through a different lens. The first theme involves crossing the study of naturals systems as precedents for intelligent formal assemblies with traditional crafts methods. The students worked on designing performative facade systems, starting from the study of relevant natural systems and a specific craft, and then using parametric modeling to develop their modular facades. The second theme looks at the cross of craft and digital technologies through form-finding techniques and elastic material properties, bringing in flexible formwork into the digital fabrication process. Students explored concrete plasticity and behaviors with natural references, as they worked on the design of an exterior seating installation using lightweight concrete composites and complex casting methods. The third theme brings in bio-composite material properties with additive fabrication and environmental concerns to create performative cladding systems. Students experimented in concrete composites materials, biomaterials and clay 3D printing to produce different cladding and tiling prototypes that actively enhance their immediate environment. This paper thus will detail the work process done by the students under these three themes of inquiry, describing their material experimentation, digital and analog design methodologies, and their final results. It aims to shed light on the persisting importance of material knowledge as it intersects with advanced digital fabrication and the significance of learning from natural systems and biological properties to embed an active performance in today’s design process.

Keywords: digital fabrication, design and craft, materiality, natural systems

Procedia PDF Downloads 126
152 Towards Automatic Calibration of In-Line Machine Processes

Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales

Abstract:

In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820

Keywords: data model, machine learning, industrial winding, calibration

Procedia PDF Downloads 241
151 The Mediating Effects of Student Satisfaction on the Relationship Between Organisational Image, Service Quality and Students’ Loyalty in Higher Education Institutions in Kano State, Nigeria

Authors: Ado Ismail Sabo

Abstract:

Statement of the Problem: The global trend in tertiary education institutions today is changing and moving towards engagement, promotion and marketing. The reason is to upscale reputation and impact positioning. More prominently, existing rivalry today seeks to draw-in the best and brightest students. A university or college is no longer just an institution of higher learning, but one adapting additional business nomenclature. Therefore, huge financial resources are invested by educational institutions to polish their image and improve their global and national ranking. In Nigeria, which boasts of a vast population of over 180 million people, some of whose patronage can bolster its education sector; standard of education continues to decline. Today, some Nigerian tertiary education institutions are shadows of their pasts, in terms of academic excellence. Quality has been relinquished because of the unquenchable quest by government officials, some civil servants, school heads and educators to amass wealth. It is very difficult to gain student satisfaction and their loyalty. Some of the student’s loyalties factor towards public higher educational institutions might be confusing. It is difficult to understand the extent to which students are satisfy on many needs. Some students might feel satisfy with the academic lecturers only, whereas others may want everything, and others will never satisfy. Due to these problems, this research aims to uncover the crucial factors influencing student loyalty and to examine if students’ satisfaction might impact mediate the relationship between service quality, organisational image and students’ loyalty towards public higher education institutions in Kano State, Nigeria. The significance of the current study is underscored by the paucity of similar research in the subject area and public tertiary education in a developing country like Nigeria as shown in existing literature. Methodology: The current study was undertaken by quantitative research methodology. Sample of 600 valid responses were obtained within the study population comprising six selected public higher education institutions in Kano State, Nigeria. These include: North West University Kano, Bayero University Kano, School of Management Studies Kano, School of Technology Kano, Sa’adatu Rimi College Kano and Federal College of Education (FCE) Kano. Four main hypotheses were formulated and tested using structural equation modeling techniques with Analysis of Moment Structure (AMOS Version 22.0). Results: Analysis of the data provided support for the main issue of this study, and the following findings are established: “Student Satisfaction mediates the relationship between Service Quality and Student Loyalty”, “Student Satisfaction mediates the relationship between Organizational Image and Student Loyalty” respectively. The findings of this study contributed to the theoretical implication which proposed a structural model that examined the relationships among overall Organizational image, service quality, student satisfaction and student loyalty. Conclusion: In addition, the findings offered a better insight to the managerial (higher institution of learning service providers) by focusing on portraying the image of service quality with student satisfaction in improving the quality of student loyalty.

Keywords: student loyalty, service quality, student satisfaction, organizational image

Procedia PDF Downloads 69
150 Surface-Enhanced Raman Detection in Chip-Based Chromatography via a Droplet Interface

Authors: Renata Gerhardt, Detlev Belder

Abstract:

Raman spectroscopy has attracted much attention as a structurally descriptive and label-free detection method. It is particularly suited for chemical analysis given as it is non-destructive and molecules can be identified via the fingerprint region of the spectra. In this work possibilities are investigated how to integrate Raman spectroscopy as a detection method for chip-based chromatography, making use of a droplet interface. A demanding task in lab-on-a-chip applications is the specific and sensitive detection of low concentrated analytes in small volumes. Fluorescence detection is frequently utilized but restricted to fluorescent molecules. Furthermore, no structural information is provided. Another often applied technique is mass spectrometry which enables the identification of molecules based on their mass to charge ratio. Additionally, the obtained fragmentation pattern gives insight into the chemical structure. However, it is only applicable as an end-of-the-line detection because analytes are destroyed during measurements. In contrast to mass spectrometry, Raman spectroscopy can be applied on-chip and substances can be processed further downstream after detection. A major drawback of Raman spectroscopy is the inherent weakness of the Raman signal, which is due to the small cross-sections associated with the scattering process. Enhancement techniques, such as surface enhanced Raman spectroscopy (SERS), are employed to overcome the poor sensitivity even allowing detection on a single molecule level. In SERS measurements, Raman signal intensity is improved by several orders of magnitude if the analyte is in close proximity to nanostructured metal surfaces or nanoparticles. The main gain of lab-on-a-chip technology is the building block-like ability to seamlessly integrate different functionalities, such as synthesis, separation, derivatization and detection on a single device. We intend to utilize this powerful toolbox to realize Raman detection in chip-based chromatography. By interfacing on-chip separations with a droplet generator, the separated analytes are encapsulated into numerous discrete containers. These droplets can then be injected with a silver nanoparticle solution and investigated via Raman spectroscopy. Droplet microfluidics is a sub-discipline of microfluidics which instead of a continuous flow operates with the segmented flow. Segmented flow is created by merging two immiscible phases (usually an aqueous phase and oil) thus forming small discrete volumes of one phase in the carrier phase. The study surveys different chip designs to realize coupling of chip-based chromatography with droplet microfluidics. With regards to maintaining a sufficient flow rate for chromatographic separation and ensuring stable eluent flow over the column different flow rates of eluent and oil phase are tested. Furthermore, the detection of analytes in droplets with surface enhanced Raman spectroscopy is examined. The compartmentalization of separated compounds preserves the analytical resolution since the continuous phase restricts dispersion between the droplets. The droplets are ideal vessels for the insertion of silver colloids thus making use of the surface enhancement effect and improving the sensitivity of the detection. The long-term goal of this work is the first realization of coupling chip based chromatography with droplets microfluidics to employ surface enhanced Raman spectroscopy as means of detection.

Keywords: chip-based separation, chip LC, droplets, Raman spectroscopy, SERS

Procedia PDF Downloads 245
149 Closing the Gap: Efficient Voxelization with Equidistant Scanlines and Gap Detection

Authors: S. Delgado, C. Cerrada, R. S. Gómez

Abstract:

This research introduces an approach to voxelizing the surfaces of triangular meshes with efficiency and accuracy. Our method leverages parallel equidistant scan-lines and introduces a Gap Detection technique to address the limitations of existing approaches. We present a comprehensive study showcasing the method's effectiveness, scalability, and versatility in different scenarios. Voxelization is a fundamental process in computer graphics and simulations, playing a pivotal role in applications ranging from scientific visualization to virtual reality. Our algorithm focuses on enhancing the voxelization process, especially for complex models and high resolutions. One of the major challenges in voxelization in the Graphics Processing Unit (GPU) is the high cost of discovering the same voxels multiple times. These repeated voxels incur in costly memory operations with no useful information. Our scan-line-based method ensures that each voxel is detected exactly once when processing the triangle, enhancing performance without compromising the quality of the voxelization. The heart of our approach lies in the use of parallel, equidistant scan-lines to traverse the interiors of triangles. This minimizes redundant memory operations and avoids revisiting the same voxels, resulting in a significant performance boost. Moreover, our method's computational efficiency is complemented by its simplicity and portability. Written as a single compute shader in Graphics Library Shader Language (GLSL), it is highly adaptable to various rendering pipelines and hardware configurations. To validate our method, we conducted extensive experiments on a diverse set of models from the Stanford repository. Our results demonstrate not only the algorithm's efficiency, but also its ability to produce 26 tunnel free accurate voxelizations. The Gap Detection technique successfully identifies and addresses gaps, ensuring consistent and visually pleasing voxelized surfaces. Furthermore, we introduce the Slope Consistency Value metric, quantifying the alignment of each triangle with its primary axis. This metric provides insights into the impact of triangle orientation on scan-line based voxelization methods. It also aids in understanding how the Gap Detection technique effectively improves results by targeting specific areas where simple scan-line-based methods might fail. Our research contributes to the field of voxelization by offering a robust and efficient approach that overcomes the limitations of existing methods. The Gap Detection technique fills a critical gap in the voxelization process. By addressing these gaps, our algorithm enhances the visual quality and accuracy of voxelized models, making it valuable for a wide range of applications. In conclusion, "Closing the Gap: Efficient Voxelization with Equidistant Scan-lines and Gap Detection" presents an effective solution to the challenges of voxelization. Our research combines computational efficiency, accuracy, and innovative techniques to elevate the quality of voxelized surfaces. With its adaptable nature and valuable innovations, this technique could have a positive influence on computer graphics and visualization.

Keywords: voxelization, GPU acceleration, computer graphics, compute shaders

Procedia PDF Downloads 72
148 The Development of Wind Energy and Its Social Acceptance: The Role of Income Received by Wind Farm Owners, the Case of Galicia, Northwest Spain

Authors: X. Simon, D. Copena, M. Montero

Abstract:

The last decades have witnessed a significant increase in renewable energy, especially wind energy, to achieve sustainable development. Specialized literature in this field has carried out interesting case studies to extensively analyze both the environmental benefits of this energy and its social acceptance. However, to the best of our knowledge, work to date makes no analysis of the role of private owners of lands with wind potential within a broader territory of strong wind implantation, nor does it estimate their economic incomes relating them to social acceptance. This work fills this gap by focusing on Galicia, territory housing over 4,000 wind turbines and almost 3,400 MW of power. The main difficulty in getting this financial information is that it is classified, not public. We develop methodological techniques (semi- structured interviews and work groups), inserted within the Participatory Research, to overcome this important obstacle. In this manner, the work directly compiles qualitative and quantitative information on the processes as well as the economic results derived from implementing wind energy in Galicia. During the field work, we held 106 semi-structured interviews and 32 workshops with owners of lands occupied by wind farms. The compiled information made it possible to create the socioeconomic database on wind energy in Galicia (SDWEG). This database collects a diversity of quantitative and qualitative information and contains economic information on the income received by the owners of lands occupied by wind farms. In the Galician case, regulatory framework prevented local participation under the community wind farm formula. The possibility of local participation in the new energy model narrowed down to companies wanting to install a wind farm and demanding land occupation. The economic mechanism of local participation begins here, thus explaining the level of acceptance of wind farms. Land owners can receive significant income given that these payments constitute an important source of economic resources, favor local economic activity, allow rural areas to develop productive dynamism projects and improve the standard of living of rural inhabitants. This work estimates that land owners in Galicia perceive about 10 million euros per year in total wind revenues. This represents between 1% and 2% of total wind farm invoicing. On the other hand, relative revenues (Euros per MW), far from the amounts reached in other spaces, show enormous payment variability. This signals the absence of a regulated market, the predominance of partial agreements, and the existence of asymmetric positions between owners and developers. Sustainable development requires the replacement of conventional technologies by low environmental impact technologies, especially those that emit less CO₂. However, this new paradigm also requires rural owners to participate in the income derived from the structural transformation processes linked to sustainable development. This paper demonstrates that regulatory framework may contribute to increasing sustainable technologies with high social acceptance without relevant local economic participation.

Keywords: regulatory framework, social acceptance, sustainable development, wind energy, wind income for landowners

Procedia PDF Downloads 142
147 Generative Syntaxes: Macro-Heterophony and the Form of ‘Synchrony’

Authors: Luminiţa Duţică, Gheorghe Duţică

Abstract:

One of the most powerful language innovation in the twentieth century music was the heterophony–hypostasis of the vertical syntax entered into the sphere of interest of many composers, such as George Enescu, Pierre Boulez, Mauricio Kagel, György Ligeti and others. The heterophonic syntax has a history of its growth, which means a succession of different concepts and writing techniques. The trajectory of settling this phenomenon does not necessarily take into account the chronology: there are highly complex primary stages and advanced stages of returning to the simple forms of writing. In folklore, the plurimelodic simultaneities are free or random and originate from the (unintentional) differences/‘deviations’ from the state of unison, through a variety of ornaments, melismas, imitations, elongations and abbreviations, all in a flexible rhythmic and non-periodic/immeasurable framework, proper to the parlando-rubato rhythmics. Within the general framework of the multivocal organization, the heterophonic syntax in elaborate (academic) version has imposed itself relatively late compared with polyphony and homophony. Of course, the explanation is simple, if we consider the causal relationship between the sound vocabulary elements – in this case, the modalism – and the typologies of vertical organization appropriate for it. Therefore, adding up the ‘classic’ pathway of the writing typologies (monody – polyphony – homophony), heterophony - applied equally to the structures of modal, serial or synthesis vocabulary – reclaims necessarily an own macrotemporal form, in the sense of the analogies enshrined by the evolution of the musical styles and languages: polyphony→fugue, homophony→sonata. Concerned about the prospect of edifying a new musical ontology, the composer Ştefan Niculescu experienced – along with the mathematical organization of heterophony according to his own original methods – the possibility of extrapolation of this phenomenon in macrostructural plan, reaching this way to the unique form of ‘synchrony’. Founded on coincidentia oppositorum principle (involving the ‘one-multiple’ binom), the sound architecture imagined by Ştefan Niculescu consists in one (temporal) model / algorithm of articulation of two sound states: 1. monovocality state (principle of identity) and 2. multivocality state (principle of difference). In this context, the heterophony becomes an (auto)generative mechanism, with macrotemporal amplitude, strategy that will be grown by the composer, practically throughout his creation (see the works: Ison I, Ison II, Unisonos I, Unisonos II, Duplum, Triplum, Psalmus, Héterophonies pour Montreux (Homages to Enescu and Bartók etc.). For the present demonstration, we selected one of the most edifying works of Ştefan Niculescu – Simphony II, Opus dacicum – where the form of (heterophony-)synchrony acquires monumental-symphonic features, representing an emblematic case for the complexity level achieved by this type of vertical syntax in the twentieth century music.

Keywords: heterophony, modalism, serialism, synchrony, syntax

Procedia PDF Downloads 344
146 Protected Cultivation of Horticultural Crops: Increases Productivity per Unit of Area and Time

Authors: Deepak Loura

Abstract:

The most contemporary method of producing horticulture crops both qualitatively and quantitatively is protected cultivation, or greenhouse cultivation, which has gained widespread acceptance in recent decades. Protected farming, commonly referred to as controlled environment agriculture (CEA), is extremely productive, land- and water-wise, as well as environmentally friendly. The technology entails growing horticulture crops in a controlled environment where variables such as temperature, humidity, light, soil, water, fertilizer, etc. are adjusted to achieve optimal output and enable a consistent supply of them even during the off-season. Over the past ten years, protected cultivation of high-value crops and cut flowers has demonstrated remarkable potential. More and more agricultural and horticultural crop production systems are moving to protected environments as a result of the growing demand for high-quality products by global markets. By covering the crop, it is possible to control the macro- and microenvironments, enhancing plant performance and allowing for longer production times, earlier harvests, and higher yields of higher quality. These shielding features alter the environment of the plant while also offering protection from wind, rain, and insects. Protected farming opens up hitherto unexplored opportunities in agriculture as the liberalised economy and improved agricultural technologies advance. Typically, the revenues from fruit, vegetable, and flower crops are 4 to 8 times higher than those from other crops. If any of these high-value crops are cultivated in protected environments like greenhouses, net houses, tunnels, etc., this profit can be multiplied. Vegetable and cut flower post-harvest losses are extremely high (20–0%), however sheltered growing techniques and year-round cropping can greatly minimize post-harvest losses and enhance yield by 5–10 times. Seasonality and weather have a big impact on the production of vegetables and flowers. The variety of their products results in significant price and quality changes for vegetables. For the application of current technology in crop production, achieving a balance between year-round availability of vegetables and flowers with minimal environmental impact and remaining competitive is a significant problem. The future of agriculture will be protected since population growth is reducing the amount of land that may be held. Protected agriculture is a particularly profitable endeavor for tiny landholdings. Small greenhouses, net houses, nurseries, and low tunnel greenhouses can all be built by farmers to increase their income. Protected agriculture is also aided by the rise in biotic and abiotic stress factors. As a result of the greater productivity levels, these technologies are not only opening up opportunities for producers with larger landholdings, but also for those with smaller holdings. Protected cultivation can be thought of as a kind of precise, forward-thinking, parallel agriculture that covers almost all aspects of farming and is rather subject to additional inspection for technical applicability to circumstances, farmer economics, and market economics.

Keywords: protected cultivation, horticulture, greenhouse, vegetable, controlled environment agriculture

Procedia PDF Downloads 76
145 Spinetoram10% WG+Sulfoxaflor 30% WG: A Promising Green Chemistry to Manage Pest Complex in Bt Cotton

Authors: Siddharudha B. Patil

Abstract:

Cotton is a premier commercial fibre crop of India subjected to ravages of insect pests. Sucking pests viz thrips, Thrips tabaci,(lind) leaf hopper Amrsca devastance,(dist) miridbug, Poppiocapsidea beseratense (Dist) and bollworms continue to inflict damage Bt Cotton right from seeding stage. Their infestation impact cotton yield to an extent of 30-40 percent. Chemical control is still adoptable as one of the techniques for combating these pests. Presently, growers have many challenges in selecting effective chemicals which fit in with an integrated pest management. Spinetoram has broad spectrum with excellent insecticidal activity against both sucking pests and bollworms. Hence, it is expected to make a great contribution to stable production and quality improvement of agricultural products. Spinetoram is a derivative of biologically active substances (Spinosyns) produced by soil actinomycetes, Saccharopolypara spinosa which is semi synthetic active ingredient representing Spinosyn chemical class of insecticide and has demonstrated higher level of efficacy with reduced risk on beneficial arthropods. The efforts were made in the present study to test the efficacy of Spinetoram against sucking pests and bollworms in comparison with other insecticides in Bt Cotton under field condition. Field experiment was laid out during 2013-14 and 2014-15 at Agricultural Research station Dharwad (Karnataka-India) in a randomized block design comprising eight treatments and three replications. Bt cotton genotype, Bunny BG-II was sown in a plot size of 5.4 m x5.4 m. Recommend agronomical practices were followed. The Spinetoram 12% SC alone and incombination with sulfaxaflore with varied dosages against pest complex was tested. Performance was compared with Spinosad 45% SC and thiamethoxam 25% WG. The results of consecutive seasons revealed that nonsignificant difference in thrips and leafhopper population and varied significantly after 3 days of imposition. Among the treatments, combiproduct, Spinetoram 10%WG + Sulfoxaflor 30% WG@ 140 gai/ha registered lowest population of thrips (3.91/3 leaves) and leaf hoppers (1.08/3 leaves) followed by its lower dosages viz 120 gai/ha (4.86/3 leaves and 1.14/3 leaves of thrips and leaf hoppers, respectively) and 100 gai/ha (6.02 and 1.23./3 leaves of thrips and leaf hoppers respectively) being at par, significantly superior to rest of the treatments. On the contrary, the population of thrips, leaf hopper and miridbugs in untreated control was on higher side. Similarly the higher dosage of Spinetoram 10% WG+ Sulfoxaflor 30% WG (140 gai/ha) proved its bioefficacy by registering lowest miridbug incidence of 1.70/25 squares, followed by its lower dosage (1.78 and 1.83/25 squares respectively) Further observation made on bollworms incidence revealed that the higher dosage of Spinetoram 10% WG+Sulfoxaflor 30% WG (140 gai/ha) registered lowest percentage of boll damage (7.22%), more number of good opened bolls (36.89/plant) and higher seed cotton yield (19.45q/ha) followed by rest of its lower dosages, Spinetoram 12% SC alone and Spinosad 45% SC being at par significantly superior to rest of the treatments. However, significantly higher boll damage (15.13%) and lower seed cotton yield (14.45 q/ha) was registered in untreated control. Thus Spinetoram10% WG+Sulfoxaflor 30% WG can be a promising option for pest management in Bt Cotton.

Keywords: Spinetoram10% WG+Sulfoxaflor 30% WG, sucking pests, bollworms, Bt cotton, management

Procedia PDF Downloads 250
144 Application of Alumina-Aerogel in Post-Combustion CO₂ Capture: Optimization by Response Surface Methodology

Authors: S. Toufigh Bararpour, Davood Karami, Nader Mahinpey

Abstract:

Dependence of global economics on fossil fuels has led to a large growth in the emission of greenhouse gases (GHGs). Among the various GHGs, carbon dioxide is the main contributor to the greenhouse effect due to its huge emission amount. To mitigate the threatening effect of CO₂, carbon capture and sequestration (CCS) technologies have been studied widely in recent years. For the combustion processes, three main CO₂ capture techniques have been proposed such as post-combustion, pre-combustion and oxyfuel combustion. Post-combustion is the most commonly used CO₂ capture process as it can be readily retrofit into the existing power plants. Multiple advantages have been reported for the post-combustion by solid sorbents such as high CO₂ selectivity, high adsorption capacity, and low required regeneration energy. Chemical adsorption of CO₂ over alkali-metal-based solid sorbents such as K₂CO₃ is a promising method for the selective capture of diluted CO₂ from the huge amount of nitrogen existing in the flue gas. To improve the CO₂ capture performance, K₂CO₃ is supported by a stable and porous material. Al₂O₃ has been employed commonly as the support and enhanced the cyclic CO₂ capture efficiency of K₂CO₃. Different phases of alumina can be obtained by setting the calcination temperature of boehmite at 300, 600 (γ-alumina), 950 (δ-alumina) and 1200 °C (α-alumina). By increasing the calcination temperature, the regeneration capacity of alumina increases, while the surface area reduces. However, sorbents with lower surface areas have lower CO₂ capture capacity as well (except for the sorbents prepared by hydrophilic support materials). To resolve this issue, a highly efficient alumina-aerogel support was synthesized with a BET surface area of over 2000 m²/g and then calcined at a high temperature. The synthesized alumina-aerogel was impregnated on K₂CO₃ based on 50 wt% support/K₂CO₃, which resulted in the preparation of a sorbent with remarkable CO₂ capture performance. The effect of synthesis conditions such as types of alcohols, solvent-to-co-solvent ratios, and aging times was investigated on the performance of the support. The best support was synthesized using methanol as the solvent, after five days of aging time, and at a solvent-to-co-solvent (methanol-to-toluene) ratio (v/v) of 1/5. Response surface methodology was used to investigate the effect of operating parameters such as carbonation temperature and H₂O-to-CO₂ flowrate ratio on the CO₂ capture capacity. The maximum CO₂ capture capacity, at the optimum amounts of operating parameters, was 7.2 mmol CO₂ per gram K₂CO₃. Cyclic behavior of the sorbent was examined over 20 carbonation and regenerations cycles. The alumina-aerogel-supported K₂CO₃ showed a great performance compared to unsupported K₂CO₃ and γ-alumina-supported K₂CO₃. Fundamental performance analyses and long-term thermal and chemical stability test will be performed on the sorbent in the future. The applicability of the sorbent for a bench-scale process will be evaluated, and a corresponding process model will be established. The fundamental material knowledge and respective process development will be delivered to industrial partners for the design of a pilot-scale testing unit, thereby facilitating the industrial application of alumina-aerogel.

Keywords: alumina-aerogel, CO₂ capture, K₂CO₃, optimization

Procedia PDF Downloads 116
143 Smart Mobility Planning Applications in Meeting the Needs of the Urbanization Growth

Authors: Caroline Atef Shoukry Tadros

Abstract:

Massive Urbanization growth threatens the sustainability of cities and the quality of city life. This raised the need for an alternate model of sustainability, so we need to plan the future cities in a smarter way with smarter mobility. Smart Mobility planning applications are solutions that use digital technologies and infrastructure advances to improve the efficiency, sustainability, and inclusiveness of urban transportation systems. They can contribute to meeting the needs of Urbanization growth by addressing the challenges of traffic congestion, pollution, accessibility, and safety in cities. Some example of a Smart Mobility planning application are Mobility-as-a-service: This is a service that integrates different transport modes, such as public transport, shared mobility, and active mobility, into a single platform that allows users to plan, book, and pay for their trips. This can reduce the reliance on private cars, optimize the use of existing infrastructure, and provide more choices and convenience for travelers. MaaS Global is a company that offers mobility-as-a-service solutions in several cities around the world. Traffic flow optimization: This is a solution that uses data analytics, artificial intelligence, and sensors to monitor and manage traffic conditions in real-time. This can reduce congestion, emissions, and travel time, as well as improve road safety and user satisfaction. Waycare is a platform that leverages data from various sources, such as connected vehicles, mobile applications, and road cameras, to provide traffic management agencies with insights and recommendations to optimize traffic flow. Logistics optimization: This is a solution that uses smart algorithms, blockchain, and IoT to improve the efficiency and transparency of the delivery of goods and services in urban areas. This can reduce the costs, emissions, and delays associated with logistics, as well as enhance the customer experience and trust. ShipChain is a blockchain-based platform that connects shippers, carriers, and customers and provides end-to-end visibility and traceability of the shipments. Autonomous vehicles: This is a solution that uses advanced sensors, software, and communication systems to enable vehicles to operate without human intervention. This can improve the safety, accessibility, and productivity of transportation, as well as reduce the need for parking space and infrastructure maintenance. Waymo is a company that develops and operates autonomous vehicles for various purposes, such as ride-hailing, delivery, and trucking. These are some of the ways that Smart Mobility planning applications can contribute to meeting the needs of the Urbanization growth. However, there are also various opportunities and challenges related to the implementation and adoption of these solutions, such as the regulatory, ethical, social, and technical aspects. Therefore, it is important to consider the specific context and needs of each city and its stakeholders when designing and deploying Smart Mobility planning applications.

Keywords: smart mobility planning, smart mobility applications, smart mobility techniques, smart mobility tools, smart transportation, smart cities, urbanization growth, future smart cities, intelligent cities, ICT information and communications technologies, IoT internet of things, sensors, lidar, digital twin, ai artificial intelligence, AR augmented reality, VR virtual reality, robotics, cps cyber physical systems, citizens design science

Procedia PDF Downloads 73
142 A Geospatial Approach to Coastal Vulnerability Using Satellite Imagery and Coastal Vulnerability Index: A Case Study Mauritius

Authors: Manta Nowbuth, Marie Anais Kimberley Therese

Abstract:

The vulnerability of coastal areas to storm surges stands as a critical global concern. The increasing frequency and intensity of extreme weather events have increased the risks faced by communities living along the coastlines Worldwide. Small Island developing states (SIDS) stands out as being exceptionally vulnerable, coastal regions, ecosystems of human habitation and natural forces, bear witness to the frontlines of climate-induced challenges, and the intensification of storm surges underscores the urgent need for a comprehensive understanding of coastal vulnerability. With limited landmass, low-lying terrains, and resilience on coastal resources, SIDS face an amplified vulnerability to the consequences of storm surges, the delicate balance between human activities and environmental dynamics in these island nations increases the urgency of tailored strategies for assessing and mitigating coastal vulnerability. This research uses an approach to evaluate the vulnerability of coastal communities in Mauritius. The Satellite imagery analysis makes use of sentinel satellite imageries, modified normalised difference water index, classification techniques and the DSAS add on to quantify the extent of shoreline erosion or accumulation, providing a spatial perspective on coastal vulnerability. The coastal Vulnerability Index (CVI) is applied by Gonitz et al Formula, this index considers factors such as coastal slope, sea level rise, mean significant wave height, and tidal range. Weighted assessments identify regions with varying levels of vulnerability, ranging from low to high. The study was carried out in a Village Located in the south of Mauritius, namely Rivière des Galets, with a population of about 500 people over an area of 60,000m². The Village of Rivière des Galets being located in the south, and the southern coast of Mauritius being exposed to the open Indian ocean, is vulnerable to swells, The swells generated by the South east trade winds can lead to large waves and rough sea conditions along the Southern Coastline which has an impact on the coastal activities, including fishing, tourism and coastal Infrastructures, hence, On the one hand, the results highlighted that from a stretch of 123km of coastline the linear rate regression for the 5 –year span varies from-24.1m/yr. to 8.2m/yr., the maximum rate of change in terms of eroded land is -24m/yr. and the maximum rate of accretion is 8.2m/yr. On the other hand, the coastal vulnerability index varies from 9.1 to 45.6 and it was categorised into low, moderate, high and very high risks zones. It has been observed that region which lacks protective barriers and are made of sandy beaches are categorised as high risks zone and hence it is imperative to high risk regions for immediate attention and intervention, as they will most likely be exposed to coastal hazards and impacts from climate change, which demands proactive measures for enhanced resilience and sustainable adaptation strategies.

Keywords: climate change, coastal vulnerability, disaster management, remote sensing, satellite imagery, storm surge

Procedia PDF Downloads 8
141 Assessment of Rooftop Rainwater Harvesting in Gomti Nagar, Lucknow

Authors: Rajkumar Ghosh

Abstract:

Water scarcity is a pressing issue in urban areas, even in smart cities where efficient resource management is a priority. This scarcity is mainly caused by factors such as lifestyle changes, excessive groundwater extraction, over-usage of water, rapid urbanization, and uncontrolled population growth. In the specific case of Gomti Nagar, Lucknow, Uttar Pradesh, India, the depletion of groundwater resources is particularly severe, leading to a water imbalance and posing a significant challenge for the region's sustainable development. The aim of this study is to address the water shortage in the Gomti Nagar region by focusing on the implementation of artificial groundwater recharge methods. Specifically, the research aims to investigate the effectiveness of rainwater collection through rooftop rainwater harvesting systems (RTRWHs) as a sustainable approach to reduce aquifer depletion and bridge the gap between groundwater recharge and extraction. The research methodology for this study involves the utilization of RTRWHs as the main method for collecting rainwater. This approach is considered effective in managing and conserving water resources in a sustainable manner. The focus is on implementing RTRWHs in residential and commercial buildings to maximize the collection of rainwater and its subsequent utilization for various purposes in the Gomti Nagar region. The study reveals that the installation of RTRWHs in the Gomti Nagar region has a positive impact on addressing the water scarcity issue. Currently, RTRWHs cover only a small percentage (0.04%) of the total rainfall collected in the region. However, when RTRWHs are installed in all buildings, their influence on increasing water availability and reducing aquifer depletion will be significantly greater. The study also highlights the significant water imbalance of 24519 ML/yr in the region, emphasizing the urgent need for sustainable water management practices. This research contributes to the theoretical understanding of sustainable water management systems in smart cities. By highlighting the effectiveness of RTRWHs in reducing aquifer depletion, it emphasizes the importance of implementing such systems in urban areas. The findings of this study can serve as a basis for policymakers, urban planners, and developers to prioritize and incentivize the installation of RTRWHs as a potential solution to the water shortage crisis. The data for this study were collected through various sources such as government reports, surveys, and existing groundwater abstraction patterns. The collected data were then analysed to assess the current water situation, groundwater depletion rate, and the potential impact of implementing RTRWHs. Statistical analysis and modelling techniques were employed to quantify the water imbalance and evaluate the effectiveness of RTRWHs. The findings of this study demonstrate that the implementation of RTRWHs can effectively mitigate the water scarcity crisis in Gomti Nagar. By reducing aquifer depletion and bridging the gap between groundwater recharge and extraction, RTRWHs offer a sustainable solution to the region's water scarcity challenges. The study highlights the need for widespread adoption of RTRWHs in all buildings and emphasizes the importance of integrating such systems into the urban planning and development process. By doing so, smart cities like Gomti Nagar can achieve efficient water management, ensuring a better future with improved water availability for its residents.

Keywords: rooftop rainwater harvesting, rainwater, water management, aquifer

Procedia PDF Downloads 95
140 On the Influence of Sleep Habits for Predicting Preterm Births: A Machine Learning Approach

Authors: C. Fernandez-Plaza, I. Abad, E. Diaz, I. Diaz

Abstract:

Births occurring before the 37th week of gestation are considered preterm births. A threat of preterm is defined as the beginning of regular uterine contractions, dilation and cervical effacement between 23 and 36 gestation weeks. To author's best knowledge, the factors that determine the beginning of the birth are not completely defined yet. In particular, the incidence of sleep habits on preterm births is weekly studied. The aim of this study is to develop a model to predict the factors affecting premature delivery on pregnancy, based on the above potential risk factors, including those derived from sleep habits and light exposure at night (introduced as 12 variables obtained by a telephone survey using two questionnaires previously used by other authors). Thus, three groups of variables were included in the study (maternal, fetal and sleep habits). The study was approved by Research Ethics Committee of the Principado of Asturias (Spain). An observational, retrospective and descriptive study was performed with 481 births between January 1, 2015 and May 10, 2016 in the University Central Hospital of Asturias (Spain). A statistical analysis using SPSS was carried out to compare qualitative and quantitative variables between preterm and term delivery. Chi-square test qualitative variable and t-test for quantitative variables were applied. Statistically significant differences (p < 0.05) between preterm vs. term births were found for primiparity, multi-parity, kind of conception, place of residence or premature rupture of membranes and interruption during nights. In addition to the statistical analysis, machine learning methods to look for a prediction model were tested. In particular, tree based models were applied as the trade-off between performance and interpretability is especially suitable for this study. C5.0, recursive partitioning, random forest and tree bag models were analysed using caret R-package. Cross validation with 10-folds and parameter tuning to optimize the methods were applied. In addition, different noise reduction methods were applied to the initial data using NoiseFiltersR package. The best performance was obtained by C5.0 method with Accuracy 0.91, Sensitivity 0.93, Specificity 0.89 and Precision 0.91. Some well known preterm birth factors were identified: Cervix Dilation, maternal BMI, Premature rupture of membranes or nuchal translucency analysis in the first trimester. The model also identifies other new factors related to sleep habits such as light through window, bedtime on working days, usage of electronic devices before sleeping from Mondays to Fridays or change of sleeping habits reflected in the number of hours, in the depth of sleep or in the lighting of the room. IF dilation < = 2.95 AND usage of electronic devices before sleeping from Mondays to Friday = YES and change of sleeping habits = YES, then preterm is one of the predicting rules obtained by C5.0. In this work a model for predicting preterm births is developed. It is based on machine learning together with noise reduction techniques. The method maximizing the performance is the one selected. This model shows the influence of variables related to sleep habits in preterm prediction.

Keywords: machine learning, noise reduction, preterm birth, sleep habit

Procedia PDF Downloads 147
139 Organisational Mindfulness Case Study: A 6-Week Corporate Mindfulness Programme Significantly Enhances Organisational Well-Being

Authors: Dana Zelicha

Abstract:

A 6-week mindfulness programme was launched to improve the well being and performance of 20 managers (including the supervisor) of an international corporation in London. A unique assessment methodology was customised to the organisation’s needs, measuring four parameters: prioritising skills, listening skills, mindfulness levels and happiness levels. All parameters showed significant improvements (p < 0.01) post intervention, with a remarkable increase in listening skills and mindfulness levels. Although corporate mindfulness programmes have proven to be effective, the challenge remains the low engagement levels at home and the implementation of these tools beyond the scope of the intervention. This study has offered an innovative approach to enforce home engagement levels, which yielded promising results. The programme launched with a 2-day introduction intervention, which was followed by a 6-week training course (1 day a week; 2 hours each). Participants learned all basic principles of mindfulness such as mindfulness meditations, Mindfulness Based Stress Reduction (MBSR) techniques and Mindfulness Based Cognitive Therapy (MBCT) practices to incorporate into their professional and personal lives. The programme contained experiential mindfulness meditations and innovative mindfulness tools (OWBA-MT) created by OWBA - The Well Being Agency. Exercises included Mindful Meetings, Unitasking and Mindful Feedback. All sessions concluded with guided discussions and group reflections. One fundamental element of this programme was engagement level outside of the workshop. In the office, participants connected with a mindfulness buddy - a team member in the group with whom they could find support throughout the programme. At home, participants completed online daily mindfulness forms that varied according to weekly themes. These customised forms gave participants the opportunity to reflect on whether they made time for daily mindfulness practice, and to facilitate a sense of continuity and responsibility. At the end of the programme, the most engaged team member was crowned the ‘mindful maven’ and received a special gift. The four parameters were measured using online self-reported questionnaires, including the Listening Skills Inventory (LSI), Mindfulness Attention Awareness Scale (MAAS), Time Management Behaviour Scale (TMBS) and a modified version of the Oxford Happiness Questionnaire (OHQ). Pre-intervention questionnaires were collected at the start of the programme, and post-intervention data was collected 4-weeks following completion. Quantitative analysis using paired T-tests of means showed significant improvements, with a 23% increase in listening skills, a 22% improvement in mindfulness levels, a 12% increase in prioritising skills, and an 11% improvement in happiness levels. Participant testimonials exhibited high levels of satisfaction and the overall results indicate that the mindfulness programme substantially impacted the team. These results suggest that 6-week mindfulness programmes can improve employees’ capacities to listen and work well with others, to effectively manage time and to experience enhanced satisfaction both at work and in life. Limitations noteworthy to consider include the afterglow effect and lack of generalisability, as this study was conducted on a small and fairly homogenous sample.

Keywords: corporate mindfulness, listening skills, organisational well being, prioritising skills, mindful leadership

Procedia PDF Downloads 270
138 Thermodynamic Modeling of Cryogenic Fuel Tanks with a Model-Based Inverse Method

Authors: Pedro A. Marques, Francisco Monteiro, Alessandra Zumbo, Alessia Simonini, Miguel A. Mendez

Abstract:

Cryogenic fuels such as Liquid Hydrogen (LH₂) must be transported and stored at extremely low temperatures. Without expensive active cooling solutions, preventing fuel boil-off over time is impossible. Hence, one must resort to venting systems at the cost of significant energy and fuel mass loss. These losses increase significantly in propellant tanks installed on vehicles, as the presence of external accelerations induces sloshing. Sloshing increases heat and mass transfer rates and leads to significant pressure oscillations, which might further trigger propellant venting. To make LH₂ economically viable, it is essential to minimize these factors by using advanced control techniques. However, these require accurate modelling and a full understanding of the tank's thermodynamics. The present research aims to implement a simple thermodynamic model capable of predicting the state of a cryogenic fuel tank under different operating conditions (i.e., filling, pressurization, fuel extraction, long-term storage, and sloshing). Since this model relies on a set of closure parameters to drive the system's transient response, it must be calibrated using experimental or numerical data. This work focuses on the former approach, wherein the model is calibrated through an experimental campaign carried out on a reduced-scale model of a cryogenic tank. The thermodynamic model of the system is composed of three control volumes: the ullage, the liquid, and the insulating walls. Under this lumped formulation, the governing equations are derived from energy and mass balances in each region, with mass-averaged properties assigned to each of them. The gas-liquid interface is treated as an infinitesimally thin region across which both phases can exchange mass and heat. This results in a coupled system of ordinary differential equations, which must be closed with heat and mass transfer coefficients between each control volume. These parameters are linked to the system evolution via empirical relations derived from different operating regimes of the tank. The derivation of these relations is carried out using an inverse method to find the optimal relations that allow the model to reproduce the available data. This approach extends classic system identification methods beyond linear dynamical systems via a nonlinear optimization step. Thanks to the data-driven assimilation of the closure problem, the resulting model accurately predicts the evolution of the tank's thermodynamics at a negligible computational cost. The lumped model can thus be easily integrated with other submodels to perform complete system simulations in real time. Moreover, by setting the model in a dimensionless form, a scaling analysis allowed us to relate the tested configurations to a representative full-size tank for naval applications. It was thus possible to compare the relative importance of different transport phenomena between the laboratory model and the full-size prototype among the different operating regimes.

Keywords: destratification, hydrogen, modeling, pressure-drop, pressurization, sloshing, thermodynamics

Procedia PDF Downloads 92
137 Capturing Healthcare Expert’s Knowledge Digitally: A Scoping Review of Current Approaches

Authors: Sinead Impey, Gaye Stephens, Declan O’Sullivan

Abstract:

Mitigating organisational knowledge loss presents challenges for knowledge managers. Expert knowledge is embodied in people and captured in ‘routines, processes, practices and norms’ as well as in the paper system. These knowledge stores have limitations in so far as they make knowledge diffusion beyond geography or over time difficult. However, technology could present a potential solution by facilitating the capture and management of expert knowledge in a codified and sharable format. Before it can be digitised, however, the knowledge of healthcare experts must be captured. Methods: As a first step in a larger project on this topic, a scoping review was conducted to identify how expert healthcare knowledge is captured digitally. The aim of the review was to identify current healthcare knowledge capture practices, identify gaps in the literature, and justify future research. The review followed a scoping review framework. From an initial 3,430 papers retrieved, 22 were deemed relevant and included in the review. Findings: Two broad approaches –direct and indirect- with themes and subthemes emerged. ‘Direct’ describes a process whereby knowledge is taken directly from subject experts. The themes identified were: ‘Researcher mediated capture’ and ‘Digital mediated capture’. The latter was further distilled into two sub-themes: ‘Captured in specified purpose platforms (SPP)’ and ‘Captured in a virtual community of practice (vCoP)’. ‘Indirect’ processes rely on extracting new knowledge using artificial intelligence techniques from previously captured data. Using this approach, the theme ‘Generated using artificial intelligence methods’ was identified. Although presented as distinct themes, some papers retrieved discuss combining more than one approach to capture knowledge. While no approach emerged as superior, two points arose from the literature. Firstly, human input was evident across themes, even with indirect approaches. Secondly, a range of challenges common among approaches was highlighted. These were (i) ‘Capturing an expert’s knowledge’- Difficulties surrounding capturing an expert’s knowledge related to identifying the ‘expert’ say from the very experienced and how to capture their tacit or difficult to articulate knowledge. (ii) ‘Confirming quality of knowledge’- Once captured, challenges noted surrounded how to validate knowledge captured and, therefore, quality. (iii) ‘Continual knowledge capture’- Once knowledge is captured, validated, and used in a system; however, the process is not complete. Healthcare is a knowledge-rich environment with new evidence emerging frequently. As such, knowledge needs to be reviewed, updated, or removed (redundancy) as appropriate. Although some methods were proposed to address this, such as plausible reasoning or case-based reasoning, conclusions could not be drawn from the papers retrieved. It was, therefore, highlighted as an area for future research. Conclusion: The results described two broad approaches – direct and indirect. Three themes were identified: ‘Researcher mediated capture (Direct)’; ‘Digital mediated capture (Direct)’ and ‘Generated using artificial intelligence methods (Indirect)’. While no single approach was deemed superior, common challenges noted among approaches were: ‘capturing an expert’s knowledge’, ‘confirming quality of knowledge’, and ‘continual knowledge capture’. However, continual knowledge capture was not fully explored in the papers retrieved and was highlighted as an important area for future research. Acknowledgments: This research is partially funded by the ADAPT Centre under the SFI Research Centres Programme (Grant 13/RC/2106) and is co-funded under the European Regional Development Fund.

Keywords: expert knowledge, healthcare, knowledge capture and knowledge management

Procedia PDF Downloads 134
136 Scalable CI/CD and Scalable Automation: Assisting in Optimizing Productivity and Fostering Delivery Expansion

Authors: Solanki Ravirajsinh, Kudo Kuniaki, Sharma Ankit, Devi Sherine, Kuboshima Misaki, Tachi Shuntaro

Abstract:

In software development life cycles, the absence of scalable CI/CD significantly impacts organizations, leading to increased overall maintenance costs, prolonged release delivery times, heightened manual efforts, and difficulties in meeting tight deadlines. Implementing CI/CD with standard serverless technologies using cloud services overcomes all the above-mentioned issues and helps organizations improve efficiency and faster delivery without the need to manage server maintenance and capacity. By integrating scalable CI/CD with scalable automation testing, productivity, quality, and agility are enhanced while reducing the need for repetitive work and manual efforts. Implementing scalable CI/CD for development using cloud services like ECS (Container Management Service), AWS Fargate, ECR (to store Docker images with all dependencies), Serverless Computing (serverless virtual machines), Cloud Log (for monitoring errors and logs), Security Groups (for inside/outside access to the application), Docker Containerization (Docker-based images and container techniques), Jenkins (CI/CD build management tool), and code management tools (GitHub, Bitbucket, AWS CodeCommit) can efficiently handle the demands of diverse development environments and are capable of accommodating dynamic workloads, increasing efficiency for faster delivery with good quality. CI/CD pipelines encourage collaboration among development, operations, and quality assurance teams by providing a centralized platform for automated testing, deployment, and monitoring. Scalable CI/CD streamlines the development process by automatically fetching the latest code from the repository every time the process starts, building the application based on the branches, testing the application using a scalable automation testing framework, and deploying the builds. Developers can focus more on writing code and less on managing infrastructure as it scales based on the need. Serverless CI/CD eliminates the need to manage and maintain traditional CI/CD infrastructure, such as servers and build agents, reducing operational overhead and allowing teams to allocate resources more efficiently. Scalable CI/CD adjusts the application's scale according to usage, thereby alleviating concerns about scalability, maintenance costs, and resource needs. Creating scalable automation testing using cloud services (ECR, ECS Fargate, Docker, EFS, Serverless Computing) helps organizations run more than 500 test cases in parallel, aiding in the detection of race conditions, performance issues, and reducing execution time. Scalable CI/CD offers flexibility, dynamically adjusting to varying workloads and demands, allowing teams to scale resources up or down as needed. It optimizes costs by only paying for the resources as they are used and increases reliability. Scalable CI/CD pipelines employ automated testing and validation processes to detect and prevent errors early in the development cycle.

Keywords: achieve parallel execution, cloud services, scalable automation testing, scalable continuous integration and deployment

Procedia PDF Downloads 43
135 Neighborhood Relations in a Context of Cultural and Social Diversity - Qualitative Analysis of a Case Study in a Territory in the inner City of Lisbon

Authors: Madalena Corte-real, João Pedro Nunes, Bernardo Fernandes, Ana Jorge Correira

Abstract:

This presentation looks, from a sociological perspective, at neighboring practices in the inner city of Lisbon. The capital of Portugal, with half a million inhabitants, inserted in a metropolitan area with almost 2,9 million people, has been in the international spotlight seen as an interesting city to live in and to invest in, especially in the real estate market. This promotion emerged in the context of the financial crisis, where local authorities aimed to make Lisbon a more competitive city, calling for visitors and financial and human capital. Especially in the last decade, Portugal’s capital has been experiencing a significant increase in terms of migration from creative and entrepreneurial exiles to economic and political expats. In this context, the territory under analysis, in particular, is a mixed-used area undergoing rapid transformations in recent years marked by the presence of newcomers and non-nationals as well as social and cultural heterogeneity. It is next to one of the main arteries, considered the most multicultural part of the city, and presented in the press as one of the coolest neighborhoods in Europe. In view of these aspects, this research aims to address key-topics in current urban research: anonymity often related to big cities, socio-spatial attachment to the neighborhood, and the effects of diversity in the everyday relations of residents and shopkeepers. This case-study intends to look at particularities in local regimes differently affected by growing mobility. Against a backdrop of unidimensional generalizations and a tendency to refer to central countries and global cities, it aims to discuss national and local specificities. In methodological terms, the project comprises essentially a qualitative approach that consists of direct observation techniques and ethnographic methods as well semi-structured interviews to residents and local stakeholders whose narratives are subject to content analysis. The paper starts with a characterization of the broader context of the city of Lisbon, followed by territorial specificities regarding socio-spatial development, namely the city’s and the inner-areas morphology as well as the population’s socioeconomic profile. Following the residents and stakeholders’ narratives and practices it will assess the perception and behaviors regarding the representation of the area, relationships and experiences, routines, and sociability. Results point to a significant presence of neighborhood relations and different forms of support, in particular, among the different groups – e.g., old long-time residents, middle-class families, global creative class, and communities of economic migrants. Fieldwork reveals low levels of place-attachment although some residents refer, presently, high levels of satisfaction. Engagement with living space, this case-study suggests, reveals the social construction and lived the experience of neighboring by different groups, but also the way different and contrasting visions and desires are articulated to the profound urban, cultural and political changes that permeate the area.

Keywords: diversity, lisbon, neighboring and neighborhood, place-attachment

Procedia PDF Downloads 108
134 Rethinking Urban Voids: An Investigation beneath the Kathipara Flyover, Chennai into a Transit Hub by Adaptive Utilization of Space

Authors: V. Jayanthi

Abstract:

Urbanization and pace of urbanization have increased tremendously in last few decades. More towns are now getting converted into cities. Urbanization trend is seen all over the world but is becoming most dominant in Asia. Today, the scale of urbanization in India is so huge that Indian cities are among the fastest-growing in the world, including Bangalore, Hyderabad, Pune, Chennai, Delhi, and Mumbai. Urbanization remains a single predominant factor that is continuously linked to the destruction of urban green spaces. With reference to Chennai as a case study, which is suffering from rapid deterioration of its green spaces, this paper sought to fill this gap by exploring key factors aside urbanization that is responsible for the destruction of green spaces. The paper relied on a research approach and triangulated data collection techniques such as interviews, focus group discussion, personal observation and retrieval of archival data. It was observed that apart from urbanization, problem of ownership of green space lands, low priority to green spaces, poor maintenance, enforcement of development controls, wastage of underpass spaces, and uncooperative attitudes of the general public, play a critical role in the destruction of urban green spaces. Therefore the paper narrows down to a point, that for a city to have a proper sustainable urban green space, broader city development plans are essential. Though rapid urbanization is an indicator of positive development, it is also accompanied by a host of challenges. Chennai lost a lot of greenery, as the city urbanized rapidly that led to a steep fall in vegetation cover. Environmental deterioration will be the big price we pay if Chennai continues to grow at the expense of greenery. Soaring skyscrapers, multistoried complexes, gated communities, and villas, frame the iconic skyline of today’s Chennai city which reveals that we overlook the importance of our green cover, which is important to balance our urban and lung spaces. Chennai, with a clumped landscape at the center of the city, is predicted to convert 36% of its total area into urban areas by 2026. One major issue is that a city designed and planned in isolation creates underused spaces all around the cities which are of negligence. These urban voids are dead, underused, unused spaces in the cities that are formed due to inefficient decision making, poor land management, and poor coordination. Urban voids have huge potential of creating a stronger urban fabric, exploited as public gathering spaces, pocket parks or plazas or just enhance public realm, rather than dumping of debris and encroachments. Flyovers need to justify their existence themselves by being more than just traffic and transport solutions. The vast, unused space below the Kathipara flyover is a case in point. This flyover connects three major routes: Tambaram, Koyambedu, and Adyar. This research will focus on the concept of urban voids, how these voids under the flyovers, can be used for place making process, how this space beneath flyovers which are neglected, can be a part of the urban realm through urban design and landscaping.

Keywords: landscape design, flyovers, public spaces, reclaiming lost spaces, urban voids

Procedia PDF Downloads 282
133 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning

Authors: Pinzhe Zhao

Abstract:

This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.

Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity

Procedia PDF Downloads 20