Search results for: shock loading
1154 Capnography for Detection of Return of Spontaneous Circulation Pseudo-Pea
Authors: Yiyuan David Hu, Alex Lindqwister, Samuel B. Klein, Karen Moodie, Norman A. Paradis
Abstract:
Introduction: Pseudo-Pulseless Electrical Activity (p-PEA) is a lifeless form of profound cardiac shock characterized by measurable cardiac mechanical activity without clinically detectable pulses. Patients in pseudo-PEA carry different prognoses than those in true PEA and may require different therapies. End-tidal carbon dioxide (ET-CO2) is a reliable indicator of the return of spontaneous circulation (ROSC) in ventricular fibrillation and true-PEA but has not been studied p-PEA. Hypothesis: ET-CO2 can be used as an independent indicator of ROSC in p-PEA resuscitation. Methods: 30kg female swine (N = 14) under intravenous anesthesia were instrumented with aortic and right atrial micromanometer pressure. ECG and ET-CO2 were measured continuously. p-PEA was induced by ventilation with 6% oxygen in 94% nitrogen and was defined as a systolic Ao less than 40 mmHg. The statistical relationships between ET-CO2 and ROSC are reported. Results: ET-CO2 during resuscitation strongly correlated with ROSC (Figure 1). Mean ET-CO2 during p-PEA was 28.4 ± 8.4, while mean ET-CO2 in ROSC for 100% O2 cohort was 42.2 ± 12.6 (p < 0.0001), mean ET-CO2 in ROSC for 100% O2 + CPR was 33.0 ± 15.4 (p < 0.0001). Analysis of slope was limited to one minute of resuscitation data to capture local linearity; assessment began 10 seconds after resuscitation started to allow the ventilator to mix 100% O2. Pigs who would recover with 100% O2 had a slope of 0.023 ± 0.001, oxygen + CPR had a slope of 0.018 ± 0.002, and oxygen + CPR + epinephrine had a slope of 0.0050 ± 0.0009. Conclusions: During resuscitation from porcine hypoxic p-PEA, a rise in ET-CO2 is indicative of ROSC.Keywords: ET-CO2, resuscitation, capnography, pseudo-PEA
Procedia PDF Downloads 1871153 Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS
Authors: A. Daftari, W. Kudla
Abstract:
Liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid cyclic loading. Liquefaction and related phenomena have been responsible for huge amounts of damage in historical earthquakes around the world. Modelling of soil behaviour is the main step in soil liquefaction prediction process. Nowadays, several constitutive models for sand have been presented. Nevertheless, only some of them can satisfy this mechanism. One of the most useful models in this term is UBCSAND model. In this research, the capability of this model is considered by using PLAXIS software. The real data of superstition hills earthquake 1987 in the Imperial Valley was used. The results of the simulation have shown resembling trend of the UBC3D-PLM model.Keywords: liquefaction, plaxis, pore-water pressure, UBC3D-PLM
Procedia PDF Downloads 3111152 Haemoperitoneum in a Case of Dengue Fever
Authors: Sagarjyoti Roy
Abstract:
Dengue is an arboviral infection, belonging to family flaviviridae, comprising of four serotypes; DENV1, DENV2, DENV3 and DENV4. All four serotypes are capable of causing full-spectrum of clinical features, ranging from self-limiting fever to severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Complications may affect any organ system, including those involving gastrointestinal system and serositis. We report a case, of a 28 years, non-alcoholic male, presenting with a 7 day history of fever and malaise followed by abdominal pain and distension, from 4th day of fever. He was admitted in medicine department of RG KAR medical college hospital. Dengue fever was confirmed by NS1 and dengue IgM positivity. Platelet count was 30,000/cc (1.5- 4 lac/cc) and haematocrit was 52% (38- 50% for men). Clinicoradiological findings revealed bilateral pleural effusion, ascites and splenomegaly. Ascitic fluid was hemorrhagic in nature, with a high protein and RBC content. Liver function tests revealed mild transaminitis with normal coagulation profile. Patient was managed conservatively. A diagnosis of dengue fever complicated by serositis and spontaneous haemoperitoneum was made. The symptoms subsided after a hospital stay of 10 days. The case highlights haemorrhage into peritoneal cavity as a possible complication of dengue fever. Although a definite explanation requires more detailed studies, platelet or endothelial cell dysfunction might be contributory.Keywords: ascites, dengue, haemoperitoneum, serositis
Procedia PDF Downloads 2631151 Behavior of Beam-Column Nodes Reinforced Concrete in Earthquake Zones
Authors: Zaidour Mohamed, Ghalem Ali Jr., Achit Henni Mohamed
Abstract:
This project is destined to study pole junctions of reinforced concrete beams subjected to seismic loads. A literature review was made to clarify the work done by researchers in the last three decades and especially the results of the last two years that were studied for the determination of the method of calculating the transverse reinforcement in the different nodes of a structure. For implementation efforts in the columns and beams of a building R + 4 in zone 3 were calculated using the finite element method through software. These results are the basis of our work which led to the calculation of the transverse reinforcement of the nodes of the structure in question.Keywords: beam–column joints, cyclic loading, shearing force, damaged joint
Procedia PDF Downloads 5501150 Effect of Fire on Structural Behavior of Normal and High Strength Concrete Beams
Authors: Alaa I. Arafa, Hemdan O. A. Said. Marwa A. M. Ali
Abstract:
This paper investigates and evaluates experimentally the structural behavior of high strength concrete (HSC) beams under fire and compares it with that of Normal strength concrete (NSC) beams. The main investigated parameters are: concrete compressive strength (300 or 600 kg/cm2); the concrete cover thickness (3 or 5 cm); the degree of temperature (room temperature or 600 oC); the type of cooling (air or water); and the fire exposure time (3 or 5 hours). Test results showed that the concrete compressive strength decreases significantly as the exposure time to fire increases.Keywords: experimental, fire, high strength concrete beams, monotonic loading
Procedia PDF Downloads 4021149 Pro-Ecological Antioxidants for Polymeric Composites
Authors: Masek A., Zaborski M.
Abstract:
In our studies, we propose the use of natural, pro-ecological substances such as polyphenols to protect polymers against ageing. In our studies, we plan to focus on the following compounds: polyphenols, gallic acid esters, flavonoides, carotenoids, curcumin and its derivatives, vitamin A, tocochromanoles, betalain. Phyto-compounds will be selected on the basis of available literature and our preliminary studies. So, we will select compounds with various contents of hydroxyl groups and colored substances capable of participating in color oxidation processes. The natural antioxidants which were added to ethylene-octene elastomer (polyolefin elastomer-Engage) and ethylene-nonbornene (TOPAS). Composites were then subjected to numerous ageing: weathering (climat of Floryda), UV (0,7 W/m2), thermo-oxidation ageing (1000C/10days) and thermal-shock (-600C/+1000C) as a function of the aging time. The efficiency of used anti-ageing agents was checked on the base of the changes after the degradation in deformation energy (tensile strength and elongation at the break), cross-link density, color (parameters L,a,b) and values of carbonyl index (based on the spectrum of infra red spectroscopy), OIT (induction oxygen time as performed in using differential scanning calorimeter -DSC) of the vulcanizates. Therefore polyphenols are considered to be the best stabilisers for polymeric composites against to oxidation processes.Keywords: polymers, flavonoids, stabilization, ageing, oxidation
Procedia PDF Downloads 3071148 Protein and MDA (Malondialdehyde) Profil of Bull Sperm and Seminal Plasma After Freezing
Authors: Sri Rahayu, M. Dwi Susan, Aris Soewondo, W. M. Agung Pramana
Abstract:
Semen is an organic fluid (seminal plasma) that contain spermatozoa. Proteins are one of the major seminal plasma components that modulate sperm functionality, influence sperm capacitation and maintaining the stability of the membrane. Semen freezing is a procedure to preserve sperm cells. The process causes decrease in sperm viability due to temperature shock and oxidation stress. Oxidation stress is a disturbance on phosphorylation that increases ROS concentration, and it produces lipid peroxide in spermatozoa membrane resulted in high MDA (malondialdehyde) concentration. The objective of this study was to examine the effect of freezing on protein and MDA profile of bovine sperm cell and seminal plasma after freezing. Protein and MDA of sperm cell and seminal plasma were isolated from 10 sample. Protein profiles was analyzed by SDS PAGE with separating gel 12,5 %. The concentration of MDA was measured by spectrophotometer. The results of the research indicated that freezing of semen cause lost of the seminal plasma proteins with molecular with 20, 10, and 9 kDa. In addition, the result research showed that protein of the sperm (26, 10, 9, 7, and 6 kDa) had been lost. There were difference MDA concentration of seminal plasma and sperm cell were increase after freezing. MDA concentration of seminal plasma before and after freezing were 2.2 and 2.4 nmol, respectively. MDA concentration of sperm cell before and after freezing were 1,5 and 1.8 nmol, respectively. In conclusion, there were differences protein profiles of spermatozoa before and after semen freezing and freezing cause increasing of the MDA concentration.Keywords: MDA, semen freezing, SDS PAGE, protein profile
Procedia PDF Downloads 2751147 Numerical Prediction of Width Crack of Concrete Dapped-End Beams
Authors: Jatziri Y. Moreno-Martinez, Arturo Galvan, Xavier Chavez Cardenas, Hiram Arroyo
Abstract:
Several methods have been utilized to study the prediction of cracking of concrete structural under loading. The finite element analysis is an alternative that shows good results. The aim of this work was the numerical study of the width crack in reinforced concrete beams with dapped ends, these are frequently found in bridge girders and precast concrete construction. Properly restricting cracking is an important aspect of the design in dapped ends, it has been observed that the cracks that exceed the allowable widths are unacceptable in an aggressive environment for reinforcing steel. For simulating the crack width, the discrete crack approach was considered by means of a Cohesive Zone (CZM) Model using a function to represent the crack opening. Two cases of dapped-end were constructed and tested in the laboratory of Structures and Materials of Engineering Institute of UNAM. The first case considers a reinforcement based on hangers as well as on vertical and horizontal ring, the second case considers 50% of the vertical stirrups in the dapped end to the main part of the beam were replaced by an equivalent area (vertically projected) of diagonal bars under. The loading protocol consisted on applying symmetrical loading to reach the service load. The models were performed using the software package ANSYS v. 16.2. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The reinforcement was introduced with smeared approach. Interface delamination was modeled by traditional fracture mechanics methods such as the nodal release technique adopting softening relationships between tractions and the separations, which in turn introduce a critical fracture energy that is also the energy required to break apart the interface surfaces. This technique is called CZM. The interface surfaces of the materials are represented by a contact elements Surface-to-Surface (CONTA173) with bonded (initial contact). The Mode I dominated bilinear CZM model assumes that the separation of the material interface is dominated by the displacement jump normal to the interface. Furthermore, the opening crack was taken into consideration according to the maximum normal contact stress, the contact gap at the completion of debonding, and the maximum equivalent tangential contact stress. The contact elements were placed in the crack re-entrant corner. To validate the proposed approach, the results obtained with the previous procedure are compared with experimental test. A good correlation between the experimental and numerical Load-Displacement curves was presented, the numerical models also allowed to obtain the load-crack width curves. In these two cases, the proposed model confirms the capability of predicting the maximum crack width, with an error of ± 30 %. Finally, the orientation of the crack is a fundamental for the prediction of crack width. The results regarding the crack width can be considered as good from the practical point view. Load-Displacement curve of the test and the location of the crack were able to obtain favorable results.Keywords: cohesive zone model, dapped-end beams, discrete crack approach, finite element analysis
Procedia PDF Downloads 1671146 Failure Simulation of Small-scale Walls with Chases Using the Lattic Discrete Element Method
Authors: Karina C. Azzolin, Luis E. Kosteski, Alisson S. Milani, Raquel C. Zydeck
Abstract:
This work aims to represent Numerically tests experimentally developed in reduced scale walls with horizontal and inclined cuts by using the Lattice Discrete Element Method (LDEM) implemented On de Abaqus/explicit environment. The cuts were performed with depths of 20%, 30%, and 50% On the walls subjected to centered and eccentric loading. The parameters used to evaluate the numerical model are its strength, the failure mode, and the in-plane and out-of-plane displacements.Keywords: structural masonry, wall chases, small scale, numerical model, lattice discrete element method
Procedia PDF Downloads 1781145 Curcumin Loaded Modified Chitosan Nanocarrier for Tumor Specificity
Authors: S. T. Kumbhar, M. S. Bhatia, R. C. Khairate
Abstract:
An effective nanodrug delivery system was developed by using chitosan for increased encapsulation efficiency and retarded release of curcumin. Potential ionotropic gelation method was used for the development of chitosan nanoparticles with TPP as cross-linker. The characterization was done for analysis of size, structure, surface morphology, and thermal behavior of synthesized chitosan nanoparticles. The encapsulation efficiency was more than 80%, with improved drug loading capacity. The in-vitro drug release study showed that curcumin release rate was decreased significantly. These chitosan nanoparticles could be a suitable platform for co-delivery of curcumin and anticancer agent for enhanced cytotoxic effect on tumor cells.Keywords: Curcumin, chitosan, nanoparticles, anticancer activity
Procedia PDF Downloads 1781144 Synthesis of High-Antifouling Ultrafiltration Polysulfone Membranes Incorporating Low Concentrations of Graphene Oxide
Authors: Abdulqader Alkhouzaam, Hazim Qiblawey, Majeda Khraisheh
Abstract:
Membrane treatment for desalination and wastewater treatment is one of the promising solutions to affordable clean water. It is a developing technology throughout the world and considered as the most effective and economical method available. However, the limitations of membranes’ mechanical and chemical properties restrict their industrial applications. Hence, developing novel membranes was the focus of most studies in the water treatment and desalination sector to find new materials that can improve the separation efficiency while reducing membrane fouling, which is the most important challenge in this field. Graphene oxide (GO) is one of the materials that have been recently investigated in the membrane water treatment sector. In this work, ultrafiltration polysulfone (PSF) membranes with high antifouling properties were synthesized by incorporating different loadings of GO. High-oxidation degree GO had been synthesized using a modified Hummers' method. The synthesized GO was characterized using different analytical techniques including elemental analysis, Fourier transform infrared spectroscopy - universal attenuated total reflectance sensor (FTIR-UATR), Raman spectroscopy, and CHNSO elemental analysis. CHNSO analysis showed a high oxidation degree of GO represented by its oxygen content (50 wt.%). Then, ultrafiltration PSF membranes incorporating GO were fabricated using the phase inversion technique. The prepared membranes were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and showed a clear effect of GO on PSF physical structure and morphology. The water contact angle of the membranes was measured and showed better hydrophilicity of GO membranes compared to pure PSF caused by the hydrophilic nature of GO. Separation properties of the prepared membranes were investigated using a cross-flow membrane system. Antifouling properties were studied using bovine serum albumin (BSA) and humic acid (HA) as model foulants. It has been found that GO-based membranes exhibit higher antifouling properties compared to pure PSF. When using BSA, the flux recovery ratio (FRR %) increased from 65.4 ± 0.9 % for pure PSF to 84.0 ± 1.0 % with a loading of 0.05 wt.% GO in PSF. When using HA as model foulant, FRR increased from 87.8 ± 0.6 % to 93.1 ± 1.1 % with 0.02 wt.% of GO in PSF. The pure water permeability (PWP) decreased with loadings of GO from 181.7 L.m⁻².h⁻¹.bar⁻¹ of pure PSF to 181.1, and 157.6 L.m⁻².h⁻¹.bar⁻¹ with 0.02 and 0.05 wt.% GO respectively. It can be concluded from the obtained results that incorporating low loading of GO could enhance the antifouling properties of PSF hence improving its lifetime and reuse.Keywords: antifouling properties, GO based membranes, hydrophilicity, polysulfone, ultrafiltration
Procedia PDF Downloads 1431143 The Effect of Organic Matter Maturation and Porosity Evolution on Methane Storage Potential in Shale-Gas Reservoirs
Authors: T. Topór, A. Derkowski, P. Ziemiański
Abstract:
Formation of organic matter (OM)-hosted nanopores upon thermal maturation are one of the key factor controlling methane storage potential in unconventional shale-gas reservoirs. In this study, the subcritical CO₂ and N₂ gas adsorption measurements combined with scanning electron microscopy and supercritical methane adsorption have been used to characterize pore system and methane storage potential in black shales from the Baltic Basin (Poland). The samples were collected from a virtually equivalent Llandovery strata across the basin and represent a complete digenetic sequence, from thermally immature to overmature. The results demonstrate that the thermal maturation is a dominant mechanism controlling the formation of OM micro- and mesopores in the Baltic Basin shales. The formation of micro- and mesopores occurs in the oil window (vitrinite reflectance; leavedVR; ~0.5-0.9%) as a result of oil expulsion from kerogenleft OM highly porous. The generated hydrocarbons then turn into solid bitumen causing pore blocking and substantial decrease in micro- and mesopore volume in late-mature shales (VR ~0.9-1.2%). Both micro- and mesopores are regenerated in a middle of the catagenesis range (VR 1.4-1.9%) due to secondary cracking of OM and gas formation. The micropore volume in investigated shales is almost exclusively controlled by the OM content. The contribution of clay minerals to micropore volume is insignificant and masked by a strong contribution from OM. Methane adsorption capacity in the Baltic Basin shales is predominantly controlled by microporous OM with pores < 1.5 nm. The mesopore volume (2-50 nm) and mesopore surface area have no effect on methane sorption behavior. The adsorbed methane density equivalent, calculated as absolute methane adsorption divided by micropore volume, reviled a decrease of the methane loading potential in micropores with increasing maturity. The highest methane loading potential in micropores is observed for OM before metagenesis (VR < 2%), where the adsorbed methane density equivalent is greater than the density of liquid methane. This implies that, in addition to physical adsorption, absorption of methane in OM may occur before metagenesis. After OM content reduction using NaOCl solution methane adoption capacity substantially decreases, suggesting significantly greater adsorption potential for OM microstructure than for the clay minerals matrix.Keywords: maturation, methane sorption, organic matter, porosity, shales
Procedia PDF Downloads 2361142 Static Modeling of the Delamination of a Composite Material Laminate in Mode II
Authors: Y. Madani, H. Achache, B. Boutabout
Abstract:
The purpose of this paper is to analyze numerically by the three-dimensional finite element method, using ABAQUS calculation code, the mechanical behavior of a unidirectional and multidirectional delaminated stratified composite under mechanical loading in Mode II. This study consists of the determination of the energy release rate G in mode II as well as the distribution of equivalent von Mises stresses along the damaged zone by varying several parameters such as the applied load and the delamination length. It allowed us to deduce that the high energy release rate favors delamination at the free edges of a stratified plate subjected to bending.Keywords: delamination, energy release rate, finite element method, stratified composite
Procedia PDF Downloads 1761141 Investigation on Porcine Follicular Fluid Protein Pattern of Medium and Large Follicles
Authors: Hatairuk Tungkasen, Somrudee Phetchrid, Suwapat Jaidee, Supinya Yoomak, Chantana Kankamol, Mayuree Pumipaiboon, Mayuva Areekijseree
Abstract:
Ovaries of reproductive female pigs were obtained from local slaughterhouses in Nakorn Pathom Province, Thailand. Follicular fluid of medium follicle (5-6 diameters) and large follicles (7-8 mm and 10 mm in diameter) were aspirated and collected by sterile technique and analyzed protein pattern. The follicular fluid protein bands were found by SDS-PAGE which has no protein band in difference compared to standard protein band. So we chose protein band molecular weight 50, 62-65, 75-80, 90, 120-160, and >220 kDa were analyzed by LC/MS/MS. The result was found immunoglobulin gamma chain, keratin, transferrin, heat shock protein, and plasminogen precursor, ceruloplasmin, and hemopexin, and protease, respectively. All proteins play important roles in promotion and regulation on growth and development of reproductive cells. The result of this study found many proteins which were useful and important for in vitro oocyte maturation and embryonic development of cell technology in animals. The further study will be use porcine follicular fluid protein of medium and large follicles as feeder cells in in vitro condition to promote oocyte and embryo maturation.Keywords: follicular fluid protein, LC/MS/MS, porcine oocyte, SDS-PAGE
Procedia PDF Downloads 5851140 Component Test of Martensitic/Ferritic Steels and Nickel-Based Alloys and Their Welded Joints under Creep and Thermo-Mechanical Fatigue Loading
Authors: Daniel Osorio, Andreas Klenk, Stefan Weihe, Andreas Kopp, Frank Rödiger
Abstract:
Future power plants currently face high design requirements due to worsening climate change and environmental restrictions, which demand high operational flexibility, superior thermal performance, minimal emissions, and higher cyclic capability. The aim of the paper is, therefore, to investigate the creep and thermo-mechanical material behavior of improved materials experimentally and welded joints at component scale under near-to-service operating conditions, which are promising for application in highly efficient and flexible future power plants. These materials promise an increase in flexibility and a reduction in manufacturing costs by providing enhanced creep strength and, therefore, the possibility for wall thickness reduction. At the temperature range between 550°C and 625°C, the investigation focuses on the in-phase thermo-mechanical fatigue behavior of dissimilar welded joints of conventional materials (ferritic and martensitic material T24 and T92) to nickel-based alloys (A617B and HR6W) by means of membrane test panels. The temperature and external load are varied in phase during the test, while the internal pressure remains constant. At the temperature range between 650°C and 750°C, it focuses on the creep behavior under multiaxial stress loading of similar and dissimilar welded joints of high temperature resistant nickel-based alloys (A740H, A617B, and HR6W) by means of a thick-walled-component test. In this case, the temperature, the external axial load, and the internal pressure remain constant during testing. Numerical simulations are used for the estimation of the axial component load in order to induce a meaningful damage evolution without causing a total component failure. Metallographic investigations after testing will provide support for understanding the damage mechanism and the influence of the thermo-mechanical load and multiaxiality on the microstructure change and on the creep and TMF- strength.Keywords: creep, creep-fatigue, component behaviour, weld joints, high temperature material behaviour, nickel-alloys, high temperature resistant steels
Procedia PDF Downloads 1191139 Aerodynamic Prediction and Performance Analysis for Mars Science Laboratory Entry Vehicle
Authors: Tang Wei, Yang Xiaofeng, Gui Yewei, Du Yanxia
Abstract:
Complex lifting entry was selected for precise landing performance during the Mars Science Laboratory entry. This study aims to develop the three-dimensional numerical method for precise computation and the surface panel method for rapid engineering prediction. Detailed flow field analysis for Mars exploration mission was performed by carrying on a series of fully three-dimensional Navier-Stokes computations. The static aerodynamic performance was then discussed, including the surface pressure, lift and drag coefficient, lift-to-drag ratio with the numerical and engineering method. Computation results shown that the shock layer is thin because of lower effective specific heat ratio, and that calculated results from both methods agree well with each other, and is consistent with the reference data. Aerodynamic performance analysis shows that CG location determines trim characteristics and pitch stability, and certain radially and axially shift of the CG location can alter the capsule lifting entry performance, which is of vital significance for the aerodynamic configuration des0ign and inner instrument layout of the Mars entry capsule.Keywords: Mars entry capsule, static aerodynamics, computational fluid dynamics, hypersonic
Procedia PDF Downloads 2991138 Key Roles of the N-Type Oxide Layer in Hybrid Perovskite Solar Cells
Authors: Thierry Pauporté
Abstract:
Wide bandgap n-type oxide layers (TiO2, SnO2, ZnO etc.) play key roles in perovskite solar cells. They act as electron transport layers, and they permit the charge separation. They are also the substrate for the preparation of perovskite in the direct architecture. Therefore, they have a strong influence on the perovskite loading, its crystallinity and they can induce a degradation phenomenon upon annealing. The interface between the oxide and the perovskite is important, and the quality of this heterointerface must be optimized to limit the recombination of charges phenomena and performance losses. One can also play on the oxide and use two oxide contact layers for improving the device stability and durability. These aspects will be developed and illustrated on the basis of recent results obtained at Chimie-ParisTech.Keywords: oxide, hybrid perovskite, solar cells, impedance
Procedia PDF Downloads 3151137 Functional Performance of Unpaved Roads Reinforced with Treated Coir Geotextiles
Authors: Priya Jaswal, Vivek, S. K. Sinha
Abstract:
One of the most important and complicated factors influencing the functional performance of unpaved roads is traffic loading. The complexity of traffic loading is caused by the variable magnitude and frequency of load, which causes unpaved roads to fail prematurely. Unpaved roads are low-volume roads, and as peri-urbanization increases, unpaved roads act as a means to boost the rural economy. This has also increased traffic on unpaved roads, intensifying the issue of settlement, rutting, and fatigue failure. This is a major concern for unpaved roads built on poor subgrade soil, as excessive rutting caused by heavy loads can cause driver discomfort, vehicle damage, and an increase in maintenance costs. Some researchers discovered that when a consistent static load is exerted as opposed to a rapidly changing load, the rate of deformation of unpaved roads increases. Previously, some of the most common methods for overcoming the problem of rutting and fatigue failure included chemical stabilisation, fibre reinforcement, and so on. However, due to their high cost, engineers' attention has shifted to geotextiles which are used as reinforcement in unpaved roads. Geotextiles perform the function of filtration, lateral confinement of base material, vertical restraint of subgrade soil, and the tension membrane effect. The use of geotextiles in unpaved roads increases the strength of unpaved roads and is an economically viable method because it reduces the required aggregate thickness, which would need less earthwork, and is thus recommended for unpaved road applications. The majority of geotextiles used previously were polymeric, but with a growing awareness of sustainable development to preserve the environment, researchers' focus has shifted to natural fibres. Coir is one such natural fibre that possesses the advantage of having a higher tensile strength than other bast fibres, being eco-friendly, low in cost, and biodegradable. However, various researchers have discovered that the surface of coir fibre is covered with various impurities, voids, and cracks, which act as a plane of weakness and limit the potential application of coir geotextiles. To overcome this limitation, chemical surface modification of coir geotextiles is widely accepted by researchers because it improves the mechanical properties of coir geotextiles. The current paper reviews the effect of using treated coir geotextiles as reinforcement on the load-deformation behaviour of a two-layered unpaved road model.Keywords: coir, geotextile, treated, unpaved
Procedia PDF Downloads 941136 Analysis of Impact Load Induced by Ultrasonic Cavitation Bubble Collapse Using Thin Film Pressure Sensors
Authors: Moiz S. Vohra, Nagalingam Arun Prasanth, Wei L. Tan, S. H. Yeo
Abstract:
The understanding of generation and collapse of acoustic cavitation bubbles are prerequisites for application of cavitation erosion. Microbubbles generated due to rapid fluctuation of pressure induced by propagation of ultrasonic wave lead to formation of high velocity microjets and or shock waves upon collapse. Due to vast application of ultrasonic, it is important to characterize and understand cavitation collapse pressure under the radiating surface at different conditions. A comparative investigation is carried out to determine impact load and dynamic pressure distribution exerted upon bubble collapse using thin film pressure sensors. Measurements were recorded at different input conditions such as amplitude, stand-off distance, insertion depth of the horn inside the liquid and pulse on-off time of acoustic vibrations. Impact force of 2.97 N is recorded at amplitude of 108 μm and stand-off distance of 1 mm from the sensor film, whereas impulsive force as low as 0.4 N is recorded at amplitude of 12 μm and stand-off distance of 5 mm from the sensor film. The results drawn from the investigation indicated that variety of impact loads can be achieved by controlling generation and collapse of bubbles, making it suitable to use for numerous application.Keywords: ultrasonic cavitation, bubble collapse, pressure mapping sensor, impact load
Procedia PDF Downloads 3391135 High Thrust Upper Stage Solar Hydrogen Rocket Design
Authors: Maged Assem Soliman Mossallam
Abstract:
The conversion of solar thruster model to an upper stage hydrogen rocket is considered. Solar thruster categorization limits its capabilities to low and moderate thrust system with high specific impulse. The current study proposes a different concept for such systems by increasing the thrust which enables using as an upper stage rocket and for future launching purposes. A computational model for the thruster is discussed for solar thruster subsystems. The first module depends on ray tracing technique to determine the intercepted solar power by the hydrogen combustion chamber. The cavity receiver is modeled using finite volume technique. The final module imports the heated hydrogen properties to the nozzle using quasi one dimensional simulation. The probability of shock waves formulation inside the nozzle is almost diminished as the outlet pressure in space environment tends to zero. The computational model relates the high thrust hydrogen rocket conversion to the design parameters and operating conditions of the thruster. Three different designs for solar thruster systems are discussed. The first design is a low thrust high specific impulse design that produces about 10 Newton of thrust .The second one output thrust is about 250 Newton and the third design produces about 1000 Newton.Keywords: space propulsion, hydrogen rocket, thrust, specific impulse
Procedia PDF Downloads 1661134 Digital Image Correlation: Metrological Characterization in Mechanical Analysis
Authors: D. Signore, M. Ferraiuolo, P. Caramuta, O. Petrella, C. Toscano
Abstract:
The Digital Image Correlation (DIC) is a newly developed optical technique that is spreading in all engineering sectors because it allows the non-destructive estimation of the entire surface deformation without any contact with the component under analysis. These characteristics make the DIC very appealing in all the cases the global deformation state is to be known without using strain gages, which are the most used measuring device. The DIC is applicable to any material subjected to distortion caused by either thermal or mechanical load, allowing to obtain high-definition mapping of displacements and deformations. That is why in the civil and the transportation industry, DIC is very useful for studying the behavior of metallic materials as well as of composite materials. DIC is also used in the medical field for the characterization of the local strain field of the vascular tissues surface subjected to uniaxial tensile loading. DIC can be carried out in the two dimension mode (2D DIC) if a single camera is used or in a three dimension mode (3D DIC) if two cameras are involved. Each point of the test surface framed by the cameras can be associated with a specific pixel of the image, and the coordinates of each point are calculated knowing the relative distance between the two cameras together with their orientation. In both arrangements, when a component is subjected to a load, several images related to different deformation states can be are acquired through the cameras. A specific software analyzes the images via the mutual correlation between the reference image (obtained without any applied load) and those acquired during the deformation giving the relative displacements. In this paper, a metrological characterization of the digital image correlation is performed on aluminum and composite targets both in static and dynamic loading conditions by comparison between DIC and strain gauges measures. In the static test, interesting results have been obtained thanks to an excellent agreement between the two measuring techniques. In addition, the deformation detected by the DIC is compliant with the result of a FEM simulation. In the dynamic test, the DIC was able to follow with a good accuracy the periodic deformation of the specimen giving results coherent with the ones given by FEM simulation. In both situations, it was seen that the DIC measurement accuracy depends on several parameters such as the optical focusing, the parameters chosen to perform the mutual correlation between the images and, finally, the reference points on image to be analyzed. In the future, the influence of these parameters will be studied, and a method to increase the accuracy of the measurements will be developed in accordance with the requirements of the industries especially of the aerospace one.Keywords: accuracy, deformation, image correlation, mechanical analysis
Procedia PDF Downloads 3111133 Further Development of Offshore Floating Solar and Its Design Requirements
Authors: Madjid Karimirad
Abstract:
Floating solar was not very well-known in the renewable energy field a decade ago; however, there has been tremendous growth internationally with a Compound Annual Growth Rate (CAGR) of nearly 30% in recent years. To reach the goal of global net-zero emission by 2050, all renewable energy sources including solar should be used. Considering that 40% of the world’s population lives within 100 kilometres of the coasts, floating solar in coastal waters is an obvious energy solution. However, this requires more robust floating solar solutions. This paper tries to enlighten the fundamental requirements in the design of floating solar for offshore installations from the hydrodynamic and offshore engineering points of view. In this regard, a closer look at dynamic characteristics, stochastic behaviour and nonlinear phenomena appearing in this kind of structure is a major focus of the current article. Floating solar structures are alternative and very attractive green energy installations with (a) Less strain on land usage for densely populated areas; (b) Natural cooling effect with efficiency gain; and (c) Increased irradiance from the reflectivity of water. Also, floating solar in conjunction with the hydroelectric plants can optimise energy efficiency and improve system reliability. The co-locating of floating solar units with other types such as offshore wind, wave energy, tidal turbines as well as aquaculture (fish farming) can result in better ocean space usage and increase the synergies. Floating solar technology has seen considerable developments in installed capacities in the past decade. Development of design standards and codes of practice for floating solar technologies deployed on both inland water-bodies and offshore is required to ensure robust and reliable systems that do not have detrimental impacts on the hosting water body. Floating solar will account for 17% of all PV energy produced worldwide by 2030. To enhance the development, further research in this area is needed. This paper aims to discuss the main critical design aspects in light of the load and load effects that the floating solar platforms are subjected to. The key considerations in hydrodynamics, aerodynamics and simultaneous effects from the wind and wave load actions will be discussed. The link of dynamic nonlinear loading, limit states and design space considering the environmental conditions is set to enable a better understanding of the design requirements of fast-evolving floating solar technology.Keywords: floating solar, offshore renewable energy, wind and wave loading, design space
Procedia PDF Downloads 791132 Design, Analysis and Construction of a 250vac 8amps Arc Welding Machine
Authors: Anthony Okechukwu Ifediniru, Austin Ikechukwu Gbasouzor, Isidore Uche Uju
Abstract:
This article is centered on the design, analysis, construction, and test of a locally made arc welding machine that operates on 250vac with 8 amp output taps ranging from 60vac to 250vac at a fixed frequency, which is of benefit to urban areas; while considering its cost-effectiveness, strength, portability, and mobility. The welding machine uses a power supply to create an electric arc between an electrode and the metal at the welding point. A current selector coil needed for current selection is connected to the primary winding. Electric power is supplied to the primary winding of its transformer and is transferred to the secondary winding by induction. The voltage and current output of the secondary winding are connected to the output terminal, which is used to carry out welding work. The output current of the machine ranges from 110amps for low current welding to 250amps for high current welding. The machine uses a step-down transformer configuration for stepping down the voltage in order to obtain a high current level for effective welding. The welder can adjust the output current within a certain range. This allows the welder to properly set the output current for the type of welding that is being performed. The constructed arc welding machine was tested by connecting the work piece to it. Since there was no shock or spark from the transformer’s laminated core and was successfully used to join metals, it confirmed and validated the design.Keywords: AC current, arc welding machine, DC current, transformer, welds
Procedia PDF Downloads 1811131 Control of Oxide and Silicon Loss during Exposure of Silicon Waveguide
Authors: Gu Zhonghua
Abstract:
Control method of bulk silicon dioxide etching process to approach then expose silicon waveguide has been developed. It has been demonstrated by silicon waveguide of photonics devices. It is also able to generalize other applications. Use plasma dry etching to etch bulk silicon dioxide and approach oxide-silicon interface accurately, then use dilute HF wet etching to etch silicon dioxide residue layer to expose the silicon waveguide as soft landing. Plasma dry etch macro loading effect and endpoint technology was used to determine dry etch time accurately with a low wafer expose ratio.Keywords: waveguide, etch, control, silicon loss
Procedia PDF Downloads 4141130 Food Service Waste Management In Nigeria: Emerging Opportunities And Policy Initiatives For Mitigation
Authors: Victor Oyewumi Ogunbiyi
Abstract:
Food waste is recognised as one of the major global challenges in achieving a sustainable future. Currently, very little is known about the multi-stakeholder approach to food waste management downstream of the supply chain, particularly in the foodservice sector. In order to better understand and explain the complex issues of food waste, a qualitative study was conducted on the generation of food waste in food services (restaurants, catering, canteens, and local food vendors) and policy initiatives to mitigate it from the perspective of the stakeholders. A semi-structured interview approach and observation were used to collect data from some 32 selected stakeholders in Garki, Abuja, Nigeria. Thematic analysis was employed to analyse the data from the qualitative instrument adopted in this study. Results revealed that the attitude of stakeholders, poor environmental hygiene, poor food cooking skills and handling, and lack of communication are the major causes of food waste. This study identified seven policy initiatives: regulations, information and education campaigns, economic instruments, mobile applications, stakeholders’ collaboration, firm internal action, and training. Finally, we link policy initiatives to food waste mitigation to provide a response to the damaging shock of food waste.Keywords: food waste, foodservices, emerging opportunities, policy initiatives, food waste prevention, multistakeholder. garki district-abuja
Procedia PDF Downloads 811129 Copper Removal from Synthetic Wastewater by a Novel Fluidized-bed Homogeneous Crystallization (FBHC) Technology
Authors: Cheng-Yen Huang, Yu-Jen Shih, Ming-Chun Yen, Yao-Hui Huang
Abstract:
This research developed a fluidized-bed homogeneous crystallization (FBHC) process to remove copper from synthetic wastewater in terms of recovery of highly pure malachite (Cu2(OH)2CO3) pellets. The experimental parameters of FBHC which included pH, molar ratio of copper to carbonate, copper loading, upper flowrate and bed height were tested in the absence of seed particles. Under optimized conditions, both the total copper removal (TR) and crystallization ratio (CR) reached 99%. The malachite crystals were characterized by XRD and SEM. FBHC was capable of treating concentrated copper (1600 ppm) wastewater and minimizing the sludge production.Keywords: copper, carbonate, fluidized-bed, crystallization, malachite
Procedia PDF Downloads 4221128 Status of Communication and Swallowing Therapy in Patient with a Tracheostomy
Authors: Ya-Hui Wang
Abstract:
Lower speech therapy rate of tracheostomized patient was noted in comparison with previous researches. This study is aim to shed light on the referral status of speech therapy in those patients in Taiwan. This study developed an analysis for the size and key characteristics of the population of tracheostomized in-patient in the Taiwan. Method: We analyzed National Healthcare Insurance data (The Collaboration Center of Health Information Application, CCHIA) from Jan 1 2010 to Dec 31 2010. Result: over ages 3, number of tracheostomized in-patient is directly proportional to age. A high service loading was observed in North region in comparison with other regions. Only 4.87% of the tracheostomized in-patients were referred for speech therapy, and 1.9% for swallow examination, 2.5% for communication evaluation.Keywords: refer, speech therapy, training, rehabilitation
Procedia PDF Downloads 4401127 Enhancement of the Performance of Al-Qatraneh 33-kV Transmission Line Using STATCOM: A Case Study
Authors: Ali Hamad, Ibrahim Al-Drous, Saleh Al-Jufout
Abstract:
This paper presents a case study of using STATCOM to enhance the performance of Al-Qatraneh 33-kV transmission line. The location of the STATCOM was identified maintaining minimum voltage drops at the 110 load nodes. The transmission line and the 110 load nodes have been modeled by MATLAB/Simulink. The suggested STATCOM and its location will increase the transmission capability of this transmission line and overcome the overload expected in the year 2020. The annual percentage loading rise has been considered as 14%. A graphical representation of the line voltages and the voltage drops at different load nodes has been illustrated.Keywords: FACTS, MATLAB, STATCOM, transmission line, voltage drop
Procedia PDF Downloads 4431126 Experimental Analysis of the Origins of the Anisotropy Behavior in the 2017 AA Aluminum Alloy
Authors: May Abdelghani
Abstract:
The present work is devoted to the study of the microstructural anisotropy in mechanical cyclic behavior of the 2017AA aluminum alloy which is widely used in the aerospace industry. The main purpose of the study is to investigate the microstructural origins of this anisotropy already confirmed in our previous work in 2017AA aluminum alloy. To do this, we have used the microstructural analysis resources such as Scanning Electron Microscope (SEM) to see the differences between breaks from different directions of cyclic loading. Another resource of investigation was used in this study is that the EBSD method, which allows us to obtain a mapping of the crystallographic texture of our material. According to the obtained results in the microscopic analysis, we are able to identify the origins of the anisotropic behavior at the macroscopic scale.Keywords: fatigue damage, cyclic behavior, anisotropy, microstructural analysis
Procedia PDF Downloads 4121125 The Catalytic Properties of PtSn/Al2O3 for Acetic Acid Hydrogenation
Authors: Mingchuan Zhou, Haitao Zhang, Hongfang Ma, Weiyong Ying
Abstract:
Alumina supported platinum and tin catalysts with different loadings of Pt and Sn were prepared and characterized by low temperature N2 adsorption/desorption, H2-temperature programed reduction and CO pulse chemisorption. Pt and Sn below 1% loading were suitable for acetic acid hydrogenation. The best performance over 0.75Pt1Sn/Al2O3 can reach 87.55% conversion of acetic acid and 47.39% selectivity of ethanol. The operating conditions of acetic acid hydrogenation over 1Pt1Sn/Al2O3 were investigated. High reaction temperature can enhance the conversion of acetic acid, but it decreased total selectivity of ethanol and acetyl acetate. High pressure and low weight hourly space velocity were beneficial to both conversion of acetic acid and selectivity to ethanol.Keywords: acetic acid, hydrogenation, operating condition, PtSn
Procedia PDF Downloads 356