Search results for: real estate price prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8224

Search results for: real estate price prediction

7414 Self-Carried Theranostic Nanoparticles for in vitro and in vivo Cancer Therapy with Real-Time Monitoring of Drug Release

Authors: Jinfeng Zhang, Chun-Sing Lee

Abstract:

The use of different nanocarriers for delivering hydrophobic pharmaceutical agents to tumor sites has garnered major attention. Despite the merits of these nanocarriers, further studies are needed for improving their drug loading capacities (typically less than 10%) and reducing their potential systemic toxicity. So development of alternative self-carried nanodrug delivery strategies without using any inert carriers is highly desirable. In this study, we developed a self-carried theranostic curcumin (Cur) nanodrug for highly effective cancer therapy in vitro and in vivo with real-time monitoring of drug release. With a biocompatible C18PMH-PEG functionalization, the Cur nanoparticles (NPs) showed excellent dispersibility and outstanding stability in physiological environment, with drug loading capacity higher than 78 wt.%. Both confocal microscopy and flow cytometry confirmed the cellular fluorescent “OFF-ON” activation and real-time monitoring of Cur molecule release, showing its potential for cancer diagnosis. In vitro and in vivo experiments clearly show that therapeutic efficacy of the PEGylated Cur NPs is much better than that of free Cur. This self-carried theranostic strategy with real-time monitoring of drug release may open a new way for simultaneous cancer therapy and diagnosis.

Keywords: drug delivery, in vitro and in vivo cancer therapy, real-time monitoring, self-carried

Procedia PDF Downloads 399
7413 Studies on the Applicability of Artificial Neural Network (ANN) in Prediction of Thermodynamic Behavior of Sodium Chloride Aqueous System Containing a Non-Electrolytes

Authors: Dariush Jafari, S. Mostafa Nowee

Abstract:

In this study a ternary system containing sodium chloride as solute, water as primary solvent and ethanol as the antisolvent was considered to investigate the application of artificial neural network (ANN) in prediction of sodium solubility in the mixture of water as the solvent and ethanol as the antisolvent. The system was previously studied using by Extended UNIQUAC model by the authors of this study. The comparison between the results of the two models shows an excellent agreement between them (R2=0.99), and also approves the capability of ANN to predict the thermodynamic behavior of ternary electrolyte systems which are difficult to model.

Keywords: thermodynamic modeling, ANN, solubility, ternary electrolyte system

Procedia PDF Downloads 385
7412 Electrical Machine Winding Temperature Estimation Using Stateful Long Short-Term Memory Networks (LSTM) and Truncated Backpropagation Through Time (TBPTT)

Authors: Yujiang Wu

Abstract:

As electrical machine (e-machine) power density re-querulents become more stringent in vehicle electrification, mounting a temperature sensor for e-machine stator windings becomes increasingly difficult. This can lead to higher manufacturing costs, complicated harnesses, and reduced reliability. In this paper, we propose a deep-learning method for predicting electric machine winding temperature, which can either replace the sensor entirely or serve as a backup to the existing sensor. We compare the performance of our method, the stateful long short-term memory networks (LSTM) with truncated backpropagation through time (TBTT), with that of linear regression, as well as stateless LSTM with/without residual connection. Our results demonstrate the strength of combining stateful LSTM and TBTT in tackling nonlinear time series prediction problems with long sequence lengths. Additionally, in industrial applications, high-temperature region prediction accuracy is more important because winding temperature sensing is typically used for derating machine power when the temperature is high. To evaluate the performance of our algorithm, we developed a temperature-stratified MSE. We propose a simple but effective data preprocessing trick to improve the high-temperature region prediction accuracy. Our experimental results demonstrate the effectiveness of our proposed method in accurately predicting winding temperature, particularly in high-temperature regions, while also reducing manufacturing costs and improving reliability.

Keywords: deep learning, electrical machine, functional safety, long short-term memory networks (LSTM), thermal management, time series prediction

Procedia PDF Downloads 99
7411 A Data Science Pipeline for Algorithmic Trading: A Comparative Study in Applications to Finance and Cryptoeconomics

Authors: Luyao Zhang, Tianyu Wu, Jiayi Li, Carlos-Gustavo Salas-Flores, Saad Lahrichi

Abstract:

Recent advances in AI have made algorithmic trading a central role in finance. However, current research and applications are disconnected information islands. We propose a generally applicable pipeline for designing, programming, and evaluating algorithmic trading of stock and crypto tokens. Moreover, we provide comparative case studies for four conventional algorithms, including moving average crossover, volume-weighted average price, sentiment analysis, and statistical arbitrage. Our study offers a systematic way to program and compare different trading strategies. Moreover, we implement our algorithms by object-oriented programming in Python3, which serves as open-source software for future academic research and applications.

Keywords: algorithmic trading, AI for finance, fintech, machine learning, moving average crossover, volume weighted average price, sentiment analysis, statistical arbitrage, pair trading, object-oriented programming, python3

Procedia PDF Downloads 144
7410 Novel GPU Approach in Predicting the Directional Trend of the S&P500

Authors: A. J. Regan, F. J. Lidgey, M. Betteridge, P. Georgiou, C. Toumazou, K. Hayatleh, J. R. Dibble

Abstract:

Our goal is development of an algorithm capable of predicting the directional trend of the Standard and Poor’s 500 index (S&P 500). Extensive research has been published attempting to predict different financial markets using historical data testing on an in-sample and trend basis, with many authors employing excessively complex mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, we moved to an out-of-sample strategy based on linear regression analysis of an extensive set of financial data correlated with historical closing prices of the S&P 500. We are pleased to report a directional trend accuracy of greater than 55% for tomorrow (t+1) in predicting the S&P 500.

Keywords: financial algorithm, GPU, S&P 500, stock market prediction

Procedia PDF Downloads 350
7409 The Impact of the Parking Spot’ Surroundings on Charging Decision: A Data-Driven Approach

Authors: Xizhen Zhou, Yanjie Ji

Abstract:

The charging behavior of drivers provides a reference for the planning and management of charging facilities. Based on the real trajectory data of electric vehicles, this study explored the influence of the surrounding environments of the parking spot on charging decisions. The built environment, the condition of vehicles, and the nearest charging station were all considered. And the mixed binary logit model was used to capture the impact of unobserved heterogeneity. The results show that the number of fast chargers in the charging station, parking price, dwell time, and shopping services all significantly impact the charging decision, while the leisure services, scenic spots, and mileage since the last charging are opposite. Besides, factors related to unobserved heterogeneity include the number of fast chargers, parking and charging prices, residential areas, etc. The interaction effects of random parameters further illustrate the complexity of charging choice behavior. The results provide insights for planning and managing charging facilities.

Keywords: charging decision, trajectory, electric vehicle, infrastructure, mixed logit

Procedia PDF Downloads 71
7408 The Antecedents of Brand Loyalty on Female Cosmetics Buying Behavior

Authors: Velly Anatasia

Abstract:

The worldwide annual expenditure for cosmetics is estimated at U.S. $18 billion and many players in the field are competing aggressively to capture more and more markets. Players in the cosmetics industry strive to be the foremost by establish customer loyalty. Furthermore, customer loyalty is portrayed by brand loyalty. Therefore, brand loyalty is the key determine of winning the competition in tight market. This study examines the influence of brand loyalty on cosmetics buying behavior of female consumers in Jakarta as capital of Indonesia. The seven factors of brand loyalty are brand name, Product quality, price, design, promotion, servicesquality and store environment. The paper adopted descriptive analysis, factor loading and multiple regression approach to test the hypotheses. The data has been collected by using questionnaires which were distributed and self-administered to 125female respondents accustomed using cosmetics. The findings of this study indicated that promotion has shown strong correlation with brand loyalty. The research results showed that there is positive and significant relationship between factors of brand loyalty (brand name, product quality, price, design, promotion, services quality and store environment) with cosmetics brand loyalty.

Keywords: brand loyalty, brand name, product quality, service quality, promotion

Procedia PDF Downloads 403
7407 Statistical Physics Model of Seismic Activation Preceding a Major Earthquake

Authors: Daniel S. Brox

Abstract:

Starting from earthquake fault dynamic equations, a correspondence between earthquake occurrence statistics in a seismic region before a major earthquake and eigenvalue statistics of a differential operator whose bound state eigenfunctions characterize the distribution of stress in the seismic region is derived. Modeling these eigenvalue statistics with a 2D Coulomb gas statistical physics model, previously reported deviation of seismic activation earthquake occurrence statistics from Gutenberg-Richter statistics in time intervals preceding the major earthquake is derived. It also explains how statistical physics modeling predicts a finite-dimensional nonlinear dynamic system that describes real-time velocity model evolution in the region undergoing seismic activation and how this prediction can be tested experimentally.

Keywords: seismic activation, statistical physics, geodynamics, signal processing

Procedia PDF Downloads 17
7406 A Study on the Life Prediction Performance Degradation Analysis of the Hydraulic Breaker

Authors: Jong Won, Park, Sung Hyun, Kim

Abstract:

The kinetic energy to pass subjected to shock and chisel reciprocating piston hydraulic power supplied by the excavator using for the purpose of crushing the rock, and roads, buildings, etc., hydraulic breakers blow. Impact frequency, efficiency measurement of the impact energy, hydraulic breakers, to demonstrate the ability of hydraulic breaker manufacturers and users to a very important item. And difficult in order to confirm the initial performance degradation in the life of the hydraulic breaker has been thought to be a problem.In this study, we measure the efficiency of hydraulic breaker, Impact energy and Impact frequency, the degradation analysis of research to predict the life.

Keywords: impact energy, impact frequency, hydraulic breaker, life prediction

Procedia PDF Downloads 441
7405 A Regression Model for Residual-State Creep Failure

Authors: Deepak Raj Bhat, Ryuichi Yatabe

Abstract:

In this study, a residual-state creep failure model was developed based on the residual-state creep test results of clayey soils. To develop the proposed model, the regression analyses were done by using the R. The model results of the failure time (tf) and critical displacement (δc) were compared with experimental results and found in close agreements to each others. It is expected that the proposed regression model for residual-state creep failure will be more useful for the prediction of displacement of different clayey soils in the future.

Keywords: regression model, residual-state creep failure, displacement prediction, clayey soils

Procedia PDF Downloads 408
7404 Design and Development of an Algorithm to Predict Fluctuations of Currency Rates

Authors: Nuwan Kuruwitaarachchi, M. K. M. Peiris, C. N. Madawala, K. M. A. R. Perera, V. U. N Perera

Abstract:

Dealing with businesses with the foreign market always took a special place in a country’s economy. Political and social factors came into play making currency rate changes fluctuate rapidly. Currency rate prediction has become an important factor for larger international businesses since large amounts of money exchanged between countries. This research focuses on comparing the accuracy of mainly three models; Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Networks(ANN) and Support Vector Machines(SVM). series of data import, export, USD currency exchange rate respect to LKR has been selected for training using above mentioned algorithms. After training the data set and comparing each algorithm, it was able to see that prediction in SVM performed better than other models. It was improved more by combining SVM and SVR models together.

Keywords: ARIMA, ANN, FFNN, RMSE, SVM, SVR

Procedia PDF Downloads 212
7403 Service Life Prediction of Tunnel Structures Subjected to Water Seepage

Authors: Hassan Baji, Chun-Qing Li, Wei Yang

Abstract:

Water seepage is one of the most common causes of damage in tunnel structures, which can cause direct and indirect e.g. reinforcement corrosion and calcium leaching damages. Estimation of water seepage or inflow is one of the main challenges in probabilistic assessment of tunnels. The methodology proposed in this study is an attempt for mathematically modeling the water seepage in tunnel structures and further predicting its service life. Using the time-dependent reliability, water seepage is formulated as a failure mode, which can be used for prediction of service life. Application of the formulated seepage failure mode to a case study tunnel is presented.

Keywords: water seepage, tunnels, time-dependent reliability, service life

Procedia PDF Downloads 482
7402 Demographic Bomb or Bonus in All Provinces in 100 Years after Indonesian Independence

Authors: Fitri CaturLestari

Abstract:

According to National Population and Family Planning Board (BKKBN), demographic bonus will occur in 2025-2035, when the number of people within the productive age bracket is higher than the number of elderly people and children. This time will be a gold moment for Indonesia to achieve maximum productivity and prosperity. But it will be a demographic bomb if it isn’t balanced by economic and social aspect considerations. Therefore it is important to make a prediction mapping of all provinces in Indonesia whether in demographic bomb or bonus condition after 100 years Indonesian independence. The purpose of this research were to make the demographic mapping based on the economic and social aspects of the provinces in Indonesia and categorizing them into demographic bomb and bonus condition. The research data are gained from Statistics Indonesia (BPS) as the secondary data. The multiregional component method, regression and quadrant analysis were used to predict the number of people, economic growth, Human Development Index (HDI), and gender equality in education and employment. There were different characteristic of provinces in Indonesia from economic aspect and social aspect. The west Indonesia was already better developed than the east one. The prediction result, many provinces in Indonesia will get demographic bonus but the others will get demographic bomb. It is important to prepare particular strategy to particular provinces with all of their characteristic based on the prediction result so the demographic bomb can be minimalized.

Keywords: demography, economic growth, gender, HDI

Procedia PDF Downloads 335
7401 Marketing Mix for Tourism in the Chonburi Province

Authors: Pisit Potjanajaruwit

Abstract:

The objectives of the study were to determine the marketing mix factors that influencing tourist’s destination decision making for cultural tourism in the Chonburi province. Both quantitative and qualitative data were applied in this study. The samples of 400 cases for quantitative analysis were tourists (both Thai and foreign) who were interested in cultural tourism in the Chonburi province, and traveled to cultural sites in Chonburi and 14 representatives from provincial tourism committee of Chonburi and local tourism experts. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. The study found that Thai and foreign tourists are influenced by different important marketing mix factors. The important factors for Thai respondents were physical evidence, price, people, and place at high importance level. For foreign respondents, physical evidence, price, people, and process were high importance level, whereas, product, place, and promotion were moderate importance level.

Keywords: Chonburi Province, decision making, cultural tourism, marketing mixed

Procedia PDF Downloads 391
7400 Prediction of Bariatric Surgery Publications by Using Different Machine Learning Algorithms

Authors: Senol Dogan, Gunay Karli

Abstract:

Identification of relevant publications based on a Medline query is time-consuming and error-prone. An all based process has the potential to solve this problem without any manual work. To the best of our knowledge, our study is the first to investigate the ability of machine learning to identify relevant articles accurately. 5 different machine learning algorithms were tested using 23 predictors based on several metadata fields attached to publications. We find that the Boosted model is the best-performing algorithm and its overall accuracy is 96%. In addition, specificity and sensitivity of the algorithm is 97 and 93%, respectively. As a result of the work, we understood that we can apply the same procedure to understand cancer gene expression big data.

Keywords: prediction of publications, machine learning, algorithms, bariatric surgery, comparison of algorithms, boosted, tree, logistic regression, ANN model

Procedia PDF Downloads 209
7399 An Analysis of Transition in Building Form from Abolition of Diagonal Plane Control by Street Width: Focusing on Site Plan and Urban Block

Authors: Joohyun Park, Jin Baek

Abstract:

The purpose of this study is to Analyze the role and effect arise from Diagonal Plane Control by Street Width (DPCSW) in Architecture in Seoul, and to predict the aspect of transition about the relationship among buildings and Urban morphology After the abolition. To find the tendency of building shape regulation, This study review Building Acts concerned with form making (the building to land Ratio, building designated line, wall designated line, building height limit (DPCSW) and etc.) and simulate the shape of urban blocks made by Acts in drawings. The review results show DPCSW is not only limitation about height, but also making the building setback from road and make the Road broader. And it makes the typical shape of the urban block that buildings are moving away from surrounding road After the Abolition of DPCSW; it is expected by the legislature that domestic real estate’s market would be promoted by increased total floor areas in each building. Some substitution from the legislature is announced, but it just deals with Building Maximum unit by Block unit except the regulation about arrangement in urban Figure and Ground. In conclusion, refrain from the uncontrolled development of city, It is important to make regulation about not only height factors but limitation line in land. Furthermore, through revising District Unit Plan, It is positively necessary to reset the relationship between buildings for the making the city space better.

Keywords: diagonal plane control by street width, building maximum height, district unit plan, building acts, urban block type, morphology, building shape

Procedia PDF Downloads 312
7398 Morality in Actual Behavior: The Moderation Effect of Identification with the Ingroup and Religion on Norm Compliance

Authors: Shauma L. Tamba

Abstract:

This study examined whether morality is the most important aspect in actual behavior. The prediction was that people tend to behave in line with moral (as compared to competence) norms, especially when such norms are presented by their ingroup. The actual behavior that was tested was support for a military intervention without a mandate from the UN. In addition, this study also examined whether identification with the ingroup and religion moderated the effect of group and norm on support for the norm that was prescribed by their ingroup. The prediction was that those who identified themselves higher with the ingroup moral would show a higher support for the norm. Furthermore, the prediction was also that those who have religion would show a higher support for the norm in the ingroup moral rather than competence. In an online survey, participants were asked to read a scenario in which a military intervention without a mandate was framed as either the moral (but stupid) or smart (but immoral) thing to do by members of their own (ingroup) or another (outgroup) society. This study found that when people identified themselves with the smart (but immoral) norm, they showed a higher support for the norm. However, when people identified themselves with the moral (but stupid) norm, they tend to show a lesser support towards the norm. Most of the results in the study did not support the predictions. Possible explanations and implications are discussed.

Keywords: morality, competence, ingroup identification, religion, group norm

Procedia PDF Downloads 408
7397 Application of the Electrical Resistivity Tomography and Tunnel Seismic Prediction 303 Methods for Detection Fracture Zones Ahead of Tunnel: A Case Study

Authors: Nima Dastanboo, Xiao-Qing Li, Hamed Gharibdoost

Abstract:

The purpose of this study is to investigate about the geological properties ahead of a tunnel face with using Electrical Resistivity Tomography ERT and Tunnel Seismic Prediction TSP303 methods. In deep tunnels with hydro-geological conditions, it is important to study the geological structures of the region before excavating tunnels. Otherwise, it would lead to unexpected accidents that impose serious damage to the project. For constructing Nosoud tunnel in west of Iran, the ERT and TSP303 methods are employed to predict the geological conditions dynamically during the excavation. In this paper, based on the engineering background of Nosoud tunnel, the important results of applying these methods are discussed. This work demonstrates seismic method and electrical tomography as two geophysical techniques that are able to detect a tunnel. The results of these two methods were being in agreement with each other but the results of TSP303 are more accurate and quality. In this case, the TSP 303 method was a useful tool for predicting unstable geological structures ahead of the tunnel face during excavation. Thus, using another geophysical method together with TSP303 could be helpful as a decision support in excavating, especially in complicated geological conditions.

Keywords: tunnel seismic prediction (TSP303), electrical resistivity tomography (ERT), seismic wave, velocity analysis, low-velocity zones

Procedia PDF Downloads 148
7396 Intermediate-Term Impact of Taiwan High-Speed Rail (HSR) and Land Use on Spatial Patterns of HSR Travel

Authors: Tsai Yu-hsin, Chung Yi-Hsin

Abstract:

The employment of an HSR system, resulting in elevation in the inter-city/-region accessibility, is likely to promote spatial interaction between places in the HSR and extended territory. The inter-city/-region travel via HSR could be, among others, affected by the land use, transportation, and location of the HSR station at both trip origin and destination ends. However, relatively few insights have been shed on these impacts and spatial patterns of the HSR travel. The research purposes, as phase one of a series of HSR related research, of this study are threefold: to analyze the general spatial patterns of HSR trips, such as the spatial distribution of trip origins and destinations; to analyze if specific land use, transportation characteristics, and trip characteristics affect HSR trips in terms of the use of HSR, the distribution of trip origins and destinations, and; to analyze the socio-economic characteristics of HSR travelers. With the Taiwan HSR starting operation in 2007, this study emphasizes on the intermediate-term impact of HSR, which is made possible with the population and housing census and industry and commercial census data and a station area intercept survey conducted in the summer 2014. The analysis will be conducted at the city, inter-city, and inter-region spatial levels, as necessary and required. The analysis tools include descriptive statistics and multivariate analysis with the assistance of SPSS, HLM and ArcGIS. The findings, on the one hand, can provide policy implications for associated land use, transportation plan and the site selection of HSR station. On the other hand, on the travel the findings are expected to provide insights that can help explain how land use and real estate values could be affected by HSR in following phases of this series of research.

Keywords: high speed rail, land use, travel, spatial pattern

Procedia PDF Downloads 462
7395 Enhancing Communicative Skills for Students in Automatics

Authors: Adrian Florin Busu

Abstract:

The communicative approach, or communicative language teaching, used for enhancing communicative skills in students in automatics is a modern teaching approach based on the concept of learning a language through having to communicate real meaning. In the communicative approach, real communication is both the objective of learning and the means through which it takes place. This approach was initiated during the 1970’s and quickly became prominent, as it proposed an alternative to the previous systems-oriented approaches. In other words, instead of focusing on the acquisition of grammar and vocabulary, the communicative approach aims at developing students’ competence to communicate in the target language with an enhanced focus on real-life situations. To put it in an nutshell, CLT considers using the language to be just as important as actually learning the language.

Keywords: communication, approach, objective, learning

Procedia PDF Downloads 160
7394 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials

Authors: Behzad Behnia, Noah LaRussa-Trott

Abstract:

In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.

Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model

Procedia PDF Downloads 141
7393 Time Variance and Spillover Effects between International Crude Oil Price and Ten Emerging Equity Markets

Authors: Murad A. Bein

Abstract:

This paper empirically examines the time-varying relationship and spillover effects between the international crude oil price and ten emerging equity markets, namely three oil-exporting countries (Brazil, Mexico, and Russia) and seven Central and Eastern European (CEE) countries (Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania, and Slovakia). The results revealed that there are spillover effects from oil markets into almost all emerging equity markets save Slovakia. Besides, the oil supply glut had a homogenous effect on the emerging markets, both net oil-exporting, and oil-importing countries (CEE). Further, the time variance drastically increased during financial turmoil. Indeed, the time variance remained high from 2009 to 2012 in response to aggregate demand shocks (global financial crisis and Eurozone debt crisis) and quantitative easing measures. Interestingly, the time variance was slightly higher for the oil-exporting countries than for some of the CEE countries. Decision-makers in emerging economies should therefore seek policy coordination when dealing with financial turmoil.

Keywords: crude oil, spillover effects, emerging equity, time-varying, aggregate demand shock

Procedia PDF Downloads 124
7392 Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology

Authors: Yusuf S. Dambatta, Ahmed A. D. Sarhan

Abstract:

Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results.

Keywords: surface roughness, fused deposition modelling (FDM), adaptive neuro fuzzy inference system (ANFIS), orientation

Procedia PDF Downloads 459
7391 Green Housing Projects in Egypt: A Futuristic Approach

Authors: Shimaa Mahmoud Ali Ahmed, Boshra Tawfek El-Shreef

Abstract:

Sustainable development has become an important concern worldwide, and climate change has become a global threat. Some of these affect how we approach environmental issues — and how we should approach them. Environmental aspects have an important impact on the built environment, that’s why knowledge about Green Building and Green Construction become a vital dimension of urban sustainable development to face the challenges of climate change. There are several levels of green buildings, from energy-efficient lighting to 100% eco-friendly construction; the concept of green buildings in Egypt is still a rare occurrence, with the concept being relatively new to the market. There are several projects on the ground that currently employing sustainable and green solutions to some extent, some of them achieve a limit of success and others fail to employ the new solutions. The market and the cost as well, are great factors. From the last century, green architecture and environmental sustainability become a famous trend that all the researchers like to follow. Nowadays, the trend towards green has shifted to housing and real estate projects. While the environmental aspects are the key to achieve green buildings, the economic benefits, and the market forces are considered as big challenges. The paper assumes that some appropriate environmental treatments could be added to the applied prototype of the governmental social housing projects in Egypt to achieve better environmental solutions. The aim of the research is to get housing projects in Egypt closer to the track of sustainable and green buildings, through making a local future proposal to be integrated into the current policies. The proposed model is based upon adding some appropriate, cheap environmental modifications to the prototype of the Ministry of Housing, Infrastructure, and New Urban Communities. The research is based on an analytical, comparative analytical, and inductive approach to study and analyze the housing projects in Egypt and the possibilities of integrating green techniques into it.

Keywords: green buildings, urban sustainability, housing projects, sustainable development goals, Egypt 2030

Procedia PDF Downloads 137
7390 Heart Failure Identification and Progression by Classifying Cardiac Patients

Authors: Muhammad Saqlain, Nazar Abbas Saqib, Muazzam A. Khan

Abstract:

Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.

Keywords: decision tree, heart failure, data mining, classification model

Procedia PDF Downloads 402
7389 Importance of Mathematical Modeling in Teaching Mathematics

Authors: Selahattin Gultekin

Abstract:

Today, in engineering departments, mathematics courses such as calculus, linear algebra and differential equations are generally taught by mathematicians. Therefore, during mathematicians’ classroom teaching there are few or no applications of the concepts to real world problems at all. Most of the times, students do not know whether the concepts or rules taught in these courses will be used extensively in their majors or not. This situation holds true of for all engineering and science disciplines. The general trend toward these mathematic courses is not good. The real-life application of mathematics will be appreciated by students when mathematical modeling of real-world problems are tackled. So, students do not like abstract mathematics, rather they prefer a solid application of the concepts to our daily life problems. The author highly recommends that mathematical modeling is to be taught starting in high schools all over the world In this paper, some mathematical concepts such as limit, derivative, integral, Taylor Series, differential equations and mean-value-theorem are chosen and their applications with graphical representations to real problems are emphasized.

Keywords: applied mathematics, engineering mathematics, mathematical concepts, mathematical modeling

Procedia PDF Downloads 319
7388 Behind Fuzzy Regression Approach: An Exploration Study

Authors: Lavinia B. Dulla

Abstract:

The exploration study of the fuzzy regression approach attempts to present that fuzzy regression can be used as a possible alternative to classical regression. It likewise seeks to assess the differences and characteristics of simple linear regression and fuzzy regression using the width of prediction interval, mean absolute deviation, and variance of residuals. Based on the simple linear regression model, the fuzzy regression approach is worth considering as an alternative to simple linear regression when the sample size is between 10 and 20. As the sample size increases, the fuzzy regression approach is not applicable to use since the assumption regarding large sample size is already operating within the framework of simple linear regression. Nonetheless, it can be suggested for a practical alternative when decisions often have to be made on the basis of small data.

Keywords: fuzzy regression approach, minimum fuzziness criterion, interval regression, prediction interval

Procedia PDF Downloads 298
7387 Customer Focus in Digital Economy: Case of Russian Companies

Authors: Maria Evnevich

Abstract:

In modern conditions, in most markets, price competition is becoming less effective. On the one hand, there is a gradual decrease in the level of marginality in main traditional sectors of the economy, so further price reduction becomes too ‘expensive’ for the company. On the other hand, the effect of price reduction is leveled, and the reason for this phenomenon is likely to be informational. As a result, it turns out that even if the company reduces prices, making its products more accessible to the buyer, there is a high probability that this will not lead to increase in sales unless additional large-scale advertising and information campaigns are conducted. Similarly, a large-scale information and advertising campaign have a much greater effect itself than price reductions. At the same time, the cost of mass informing is growing every year, especially when using the main information channels. The article presents generalization, systematization and development of theoretical approaches and best practices in the field of customer focus approach to business management and in the field of relationship marketing in the modern digital economy. The research methodology is based on the synthesis and content-analysis of sociological and marketing research and on the study of the systems of working with consumer appeals and loyalty programs in the 50 largest client-oriented companies in Russia. Also, the analysis of internal documentation on customers’ purchases in one of the largest retail companies in Russia allowed to identify if buyers prefer to buy goods for complex purchases in one retail store with the best price image for them. The cost of attracting a new client is now quite high and continues to grow, so it becomes more important to keep him and increase the involvement through marketing tools. A huge role is played by modern digital technologies used both in advertising (e-mailing, SEO, contextual advertising, banner advertising, SMM, etc.) and in service. To implement the above-described client-oriented omnichannel service, it is necessary to identify the client and work with personal data provided when filling in the loyalty program application form. The analysis of loyalty programs of 50 companies identified the following types of cards: discount cards, bonus cards, mixed cards, coalition loyalty cards, bank loyalty programs, aviation loyalty programs, hybrid loyalty cards, situational loyalty cards. The use of loyalty cards allows not only to stimulate the customer to purchase ‘untargeted’, but also to provide individualized offers, as well as to produce more targeted information. The development of digital technologies and modern means of communication has significantly changed not only the sphere of marketing and promotion, but also the economic landscape as a whole. Factors of competitiveness are the digital opportunities of companies in the field of customer orientation: personalization of service, customization of advertising offers, optimization of marketing activity and improvement of logistics.

Keywords: customer focus, digital economy, loyalty program, relationship marketing

Procedia PDF Downloads 163
7386 Willingness to Purchase and Pay a Price Premium for an Apartment with Exterior Green Walls

Authors: Tamar Trop, Michal Roffeh

Abstract:

One of the emerging trends in construction is installing an exterior “green wall” (GW). GW is an overarching and most common term for various techniques of incorporating greenery into buildings’ vertical elements, mainly facades. This green infrastructure yields numerous benefits for the urban environment, the public, and the buildings’ tenants and users, such as enhancing air quality and biodiversity, managing stormwater runoff, mitigating urban heat island and climate change, improving urban aesthetics and mental wellbeing, improving indoor comfort conditions, and saving energy. Yet, the penetration rate of GWs into the construction market, especially into the housing sector, is still very slow. Furthermore, the research regarding prospective homebuyers’ willingness to purchase and pay a price premium for GW apartments is scarce and does not refer to newly built buildings and specific GW types. This research aims to narrow these knowledge gaps by exploring the willingness of prospective homebuyers in Israel to purchase a newly built apartment with a hydroponic living wall, the size of the PP that they would be willing to pay for it, and the various factors ̶ knowledge-related, concern, economic, and personal ̶ that influence these motivations. A nationwide online survey was conducted among a sample of 514 adults using a structured questionnaire. Findings show that despite low familiarity with GWs and strong concerns about various kinds of nuisance, technical issues, and maintenance costs, potential homebuyers express a relatively high willingness to purchase and pay a significant price premium for such an apartment. The main motivations behind this willingness were found to be potential energy savings and governmental incentives. Study findings can contribute to a better understanding of the maturity of the housing market in Israel to adopt GWs and to better tailor intervention tools for increasing GWs’ uptake among potential homebuyers.

Keywords: green façade, green wall, living wall, willingness to pay

Procedia PDF Downloads 30
7385 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data

Authors: Gayathri Nagarajan, L. D. Dhinesh Babu

Abstract:

Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.

Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform

Procedia PDF Downloads 240