Search results for: potential intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12713

Search results for: potential intelligence

11903 Efficiency and Reliability Analysis of SiC-Based and Si-Based DC-DC Buck Converters in Thin-Film PV Systems

Authors: Elaid Bouchetob, Bouchra Nadji

Abstract:

This research paper compares the efficiency and reliability (R(t)) of SiC-based and Si-based DC-DC buck converters in thin layer PV systems with an AI-based MPPT controller. Using Simplorer/Simulink simulations, the study assesses their performance under varying conditions. Results show that the SiC-based converter outperforms the Si-based one in efficiency and cost-effectiveness, especially in high temperature and low irradiance conditions. It also exhibits superior reliability, particularly at high temperature and voltage. Reliability calculation (R(t)) is analyzed to assess system performance over time. The SiC-based converter demonstrates better reliability, considering factors like component failure rates and system lifetime. The research focuses on the buck converter's role in charging a Lithium battery within the PV system. By combining the SiC-based converter and AI-based MPPT controller, higher charging efficiency, improved reliability, and cost-effectiveness are achieved. The SiC-based converter proves superior under challenging conditions, emphasizing its potential for optimizing PV system charging. These findings contribute insights into the efficiency, reliability, and reliability calculation of SiC-based and Si-based converters in PV systems. SiC technology's advantages, coupled with advanced control strategies, promote efficient and sustainable energy storage using Lithium batteries. The research supports PV system design and optimization for reliable renewable energy utilization.

Keywords: efficiency, reliability, artificial intelligence, sic device, thin layer, buck converter

Procedia PDF Downloads 62
11902 The Protection of Artificial Intelligence (AI)-Generated Creative Works Through Authorship: A Comparative Analysis Between the UK and Nigerian Copyright Experience to Determine Lessons to Be Learnt from the UK

Authors: Esther Ekundayo

Abstract:

The nature of AI-generated works makes it difficult to identify an author. Although, some scholars have suggested that all the players involved in its creation should be allocated authorship according to their respective contribution. From the programmer who creates and designs the AI to the investor who finances the AI and to the user of the AI who most likely ends up creating the work in question. While others suggested that this issue may be resolved by the UK computer-generated works (CGW) provision under Section 9(3) of the Copyright Designs and Patents Act 1988. However, under the UK and Nigerian copyright law, only human-created works are recognised. This is usually assessed based on their originality. This simply means that the work must have been created as a result of its author’s creative and intellectual abilities and not copied. Such works are literary, dramatic, musical and artistic works and are those that have recently been a topic of discussion with regards to generative artificial intelligence (Generative AI). Unlike Nigeria, the UK CDPA recognises computer-generated works and vests its authorship with the human who made the necessary arrangement for its creation . However, making necessary arrangement in the case of Nova Productions Ltd v Mazooma Games Ltd was interpreted similarly to the traditional authorship principle, which requires the skills of the creator to prove originality. Although, some recommend that computer-generated works complicates this issue, and AI-generated works should enter the public domain as authorship cannot be allocated to AI itself. Additionally, the UKIPO recognising these issues in line with the growing AI trend in a public consultation launched in the year 2022, considered whether computer-generated works should be protected at all and why. If not, whether a new right with a different scope and term of protection should be introduced. However, it concluded that the issue of computer-generated works would be revisited as AI was still in its early stages. Conversely, due to the recent developments in this area with regards to Generative AI systems such as ChatGPT, Midjourney, DALL-E and AIVA, amongst others, which can produce human-like copyright creations, it is therefore important to examine the relevant issues which have the possibility of altering traditional copyright principles as we know it. Considering that the UK and Nigeria are both common law jurisdictions but with slightly differing approaches to this area, this research, therefore, seeks to answer the following questions by comparative analysis: 1)Who is the author of an AI-generated work? 2)Is the UK’s CGW provision worthy of emulation by the Nigerian law? 3) Would a sui generis law be capable of protecting AI-generated works and its author under both jurisdictions? This research further examines the possible barriers to the implementation of the new law in Nigeria, such as limited technical expertise and lack of awareness by the policymakers, amongst others.

Keywords: authorship, artificial intelligence (AI), generative ai, computer-generated works, copyright, technology

Procedia PDF Downloads 96
11901 A Large Language Model-Driven Method for Automated Building Energy Model Generation

Authors: Yake Zhang, Peng Xu

Abstract:

The development of building energy models (BEM) required for architectural design and analysis is a time-consuming and complex process, demanding a deep understanding and proficient use of simulation software. To streamline the generation of complex building energy models, this study proposes an automated method for generating building energy models using a large language model and the BEM library aimed at improving the efficiency of model generation. This method leverages a large language model to parse user-specified requirements for target building models, extracting key features such as building location, window-to-wall ratio, and thermal performance of the building envelope. The BEM library is utilized to retrieve energy models that match the target building’s characteristics, serving as reference information for the large language model to enhance the accuracy and relevance of the generated model, allowing for the creation of a building energy model that adapts to the user’s modeling requirements. This study enables the automatic creation of building energy models based on natural language inputs, reducing the professional expertise required for model development while significantly decreasing the time and complexity of manual configuration. In summary, this study provides an efficient and intelligent solution for building energy analysis and simulation, demonstrating the potential of a large language model in the field of building simulation and performance modeling.

Keywords: artificial intelligence, building energy modelling, building simulation, large language model

Procedia PDF Downloads 26
11900 Feasibility Study and Developing Appropriate Hybrid Energy Systems in Regional Level

Authors: Ahmad Rouhani

Abstract:

Iran has several potentials for using renewable energies, so use them could significantly contribute to energy supply. The purpose of this paper is to identify the potential of the country and select the appropriate DG technologies with consideration the potential and primary energy resources in the regions. In this context, hybrid energy systems proportionate with the potential of different regions will be determined based on technical, economic, and environmental aspect. In the following, the proposed structure will be optimized in terms of size and cost. DG technologies used in this project include the photovoltaic system, wind turbine, diesel generator, and battery bank. The HOMER software is applied for choosing the appropriate structure and the optimization of system sizing. The results have been analyzed in terms of technical and economic. The performance and the cost of each project demonstrate the appropriate structure of hybrid energy system in that region.

Keywords: feasibility, hybrid energy system, Iran, renewable energy

Procedia PDF Downloads 484
11899 Event Related Potentials in Terms of Visual and Auditory Stimuli

Authors: Seokbeen Lim, KyeongSeok Sim, DaKyeong Shin, Gilwon Yoon

Abstract:

Event-related potential (ERP) is one of the useful tools for investigating cognitive reactions. In this study, the potential of ERP components detected after auditory and visual stimuli was examined. Subjects were asked to respond upon stimuli that were of three categories; Target, Non-Target and Standard stimuli. The ERP after stimulus was measured. In the experiment of visual evoked potentials (VEPs), the subjects were asked to gaze at a center point on the monitor screen where the stimuli were provided by the reversal pattern of the checkerboard. In consequence of the VEP experiments, we observed consistent reactions. Each peak voltage could be measured when the ensemble average was applied. Visual stimuli had smaller amplitude and a longer latency compared to that of auditory stimuli. The amplitude was the highest with Target and the smallest with Standard in both stimuli.

Keywords: auditory stimulus, EEG, event related potential, oddball task, visual stimulus

Procedia PDF Downloads 283
11898 Automated Vehicle Traffic Control Tower: A Solution to Support the Next Level Automation

Authors: Xiaoyun Zhao, Rami Darwish, Anna Pernestål

Abstract:

Automated vehicles (AVs) have the potential to enhance road capacity, improving road safety and traffic efficiency. Research and development on AVs have been going on for many years. However, when the complicated traffic rules and real situations interacted, AVs fail to make decisions on contradicting situations, and are not able to have control in all conditions due to highly dynamic driving scenarios. This limits AVs’ usage and restricts the full potential benefits that they can bring. Furthermore, regulations, infrastructure development, and public acceptance cannot keep up at the same pace as technology breakthroughs. Facing these challenges, this paper proposes automated vehicle traffic control tower (AVTCT) acting as a safe, efficient and integrated solution for AV control. It introduces a concept of AVTCT for control, management, decision-making, communication and interaction with various aspects in transportation. With the prototype demonstrations and simulations, AVTCT has the potential to overcome the control challenges with AVs and can facilitate AV reaching their full potential. Possible functionalities, benefits as well as challenges of AVTCT are discussed, which set the foundation for the conceptual model, simulation and real application of AVTCT.

Keywords: automated vehicle, connectivity and automation, intelligent transport system, traffic control, traffic safety

Procedia PDF Downloads 138
11897 Ab Initio Spectroscopic Study of the Electronic Properties of the (Bana)+ Molecular Ion

Authors: Tahani H. Alluhaybi, Leila Mejrissi

Abstract:

In the present theoretical study, we investigated adiabatically the electronic structure of the (BaNa)+ by the use of the ab initio calculation. We optimized a large atomic GTO basis set for Na and Ba atoms. The (BaNa)+ molecular ion is considered a two-electron thank to a non-empirical pseudo-potentials approach applied to Ba and Na cores with the Core Polarization Potentials operator (CPP). Then, we performed the Full Configuration Interaction (FCI) method. Accordingly, we calculated the adiabatic Potential Energy Curves (PECs) and their spectroscopic constants (well depth De, transition energies Te, the equilibrium distances Re, vibrational constant ⍵e, and anharmonic constant ⍵exe) for 10 electronic states in Σ+ symmetry. Then we determined the vibrational level energies and their spacing, and the electric Permanent Dipole Moments (PDM).

Keywords: Ab initio, dipole moment, non-empirical pseudo-potential, potential energy curves, spectroscopic constants, vibrational energy

Procedia PDF Downloads 113
11896 Impact of Research-Informed Teaching and Case-Based Teaching on Memory Retention and Recall in University Students

Authors: Durvi Yogesh Vagani

Abstract:

This research paper explores the effectiveness of Research-informed teaching and Case-based teaching in enhancing the retention and recall of memory during discussions among university students. Additionally, it investigates the impact of using Artificial Intelligence (AI) tools on the quality of research conducted by students and its correlation with better recollection. The study hypothesizes that Case-based teaching will lead to greater recall and storage of information. The research gap in the use of AI in educational settings, particularly with actual participants, is addressed by leveraging a multi-method approach. The hypothesis is that the use of AI, such as ChatGPT and Bard, would lead to better retention and recall of information. Before commencing the study, participants' attention levels and IQ were assessed using the Digit Span Test and the Wechsler Adult Intelligence Scale, respectively, to ensure comparability among participants. Subsequently, participants were divided into four conditions, each group receiving identical information presented in different formats based on their assigned condition. Following this, participants engaged in a group discussion on the given topic. Their responses were then evaluated against a checklist. Finally, participants completed a brief test to measure their recall ability after the discussion. Preliminary findings suggest that students who utilize AI tools for learning demonstrate improved grasping of information and are more likely to integrate relevant information into discussions compared to providing extraneous details. Furthermore, Case-based teaching fosters greater attention and recall during discussions, while Research-informed teaching leads to greater knowledge for application. By addressing the research gap in AI application in education, this study contributes to a deeper understanding of effective teaching methodologies and the role of technology in student learning outcomes. The implication of the present research is to tailor teaching methods based on the subject matter. Case-based teaching facilitates application-based teaching, and research-based teaching can be beneficial for theory-heavy topics. Integrating AI in education. Combining AI with research-based teaching may optimize instructional strategies and deepen learning experiences. This research suggests tailoring teaching methods in psychology based on subject matter. Case-based teaching suits practical subjects, facilitating application, while research-based teaching aids understanding of theory-heavy topics. Integrating AI in education could enhance learning outcomes, offering detailed information tailored to students' needs.

Keywords: artificial intelligence, attention, case-based teaching, memory recall, memory retention, research-informed teaching

Procedia PDF Downloads 28
11895 Artificial Intelligence-Generated Previews of Hyaluronic Acid-Based Treatments

Authors: Ciro Cursio, Giulia Cursio, Pio Luigi Cursio, Luigi Cursio

Abstract:

Communication between practitioner and patient is of the utmost importance in aesthetic medicine: as of today, images of previous treatments are the most common tool used by doctors to describe and anticipate future results for their patients. However, using photos of other people often reduces the engagement of the prospective patient and is further limited by the number and quality of pictures available to the practitioner. Pre-existing work solves this issue in two ways: 3D scanning of the area with manual editing of the 3D model by the doctor or automatic prediction of the treatment by warping the image with hand-written parameters. The first approach requires the manual intervention of the doctor, while the second approach always generates results that aren’t always realistic. Thus, in one case, there is significant manual work required by the doctor, and in the other case, the prediction looks artificial. We propose an AI-based algorithm that autonomously generates a realistic prediction of treatment results. For the purpose of this study, we focus on hyaluronic acid treatments in the facial area. Our approach takes into account the individual characteristics of each face, and furthermore, the prediction system allows the patient to decide which area of the face she wants to modify. We show that the predictions generated by our system are realistic: first, the quality of the generated images is on par with real images; second, the prediction matches the actual results obtained after the treatment is completed. In conclusion, the proposed approach provides a valid tool for doctors to show patients what they will look like before deciding on the treatment.

Keywords: prediction, hyaluronic acid, treatment, artificial intelligence

Procedia PDF Downloads 114
11894 Next-Gen Solutions: How Generative AI Will Reshape Businesses

Authors: Aishwarya Rai

Abstract:

This study explores the transformative influence of generative AI on startups, businesses, and industries. We will explore how large businesses can benefit in the area of customer operations, where AI-powered chatbots can improve self-service and agent effectiveness, greatly increasing efficiency. In marketing and sales, generative AI could transform businesses by automating content development, data utilization, and personalization, resulting in a substantial increase in marketing and sales productivity. In software engineering-focused startups, generative AI can streamline activities, significantly impacting coding processes and work experiences. It can be extremely useful in product R&D for market analysis, virtual design, simulations, and test preparation, altering old workflows and increasing efficiency. Zooming into the retail and CPG industry, industry findings suggest a 1-2% increase in annual revenues, equating to $400 billion to $660 billion. By automating customer service, marketing, sales, and supply chain management, generative AI can streamline operations, optimizing personalized offerings and presenting itself as a disruptive force. While celebrating economic potential, we acknowledge challenges like external inference and adversarial attacks. Human involvement remains crucial for quality control and security in the era of generative AI-driven transformative innovation. This talk provides a comprehensive exploration of generative AI's pivotal role in reshaping businesses, recognizing its strategic impact on customer interactions, productivity, and operational efficiency.

Keywords: generative AI, digital transformation, LLM, artificial intelligence, startups, businesses

Procedia PDF Downloads 76
11893 Design and Implementation of Low-code Model-building Methods

Authors: Zhilin Wang, Zhihao Zheng, Linxin Liu

Abstract:

This study proposes a low-code model-building approach that aims to simplify the development and deployment of artificial intelligence (AI) models. With an intuitive way to drag and drop and connect components, users can easily build complex models and integrate multiple algorithms for training. After the training is completed, the system automatically generates a callable model service API. This method not only lowers the technical threshold of AI development and improves development efficiency but also enhances the flexibility of algorithm integration and simplifies the deployment process of models. The core strength of this method lies in its ease of use and efficiency. Users do not need to have a deep programming background and can complete the design and implementation of complex models with a simple drag-and-drop operation. This feature greatly expands the scope of AI technology, allowing more non-technical people to participate in the development of AI models. At the same time, the method performs well in algorithm integration, supporting many different types of algorithms to work together, which further improves the performance and applicability of the model. In the experimental part, we performed several performance tests on the method. The results show that compared with traditional model construction methods, this method can make more efficient use, save computing resources, and greatly shorten the model training time. In addition, the system-generated model service interface has been optimized for high availability and scalability, which can adapt to the needs of different application scenarios.

Keywords: low-code, model building, artificial intelligence, algorithm integration, model deployment

Procedia PDF Downloads 29
11892 Modeling the Saltatory Conduction in Myelinated Axons by Order Reduction

Authors: Ruxandra Barbulescu, Daniel Ioan, Gabriela Ciuprina

Abstract:

The saltatory conduction is the way the action potential is transmitted along a myelinated axon. The potential diffuses along the myelinated compartments and it is regenerated in the Ranvier nodes due to the ion channels allowing the flow across the membrane. For an efficient simulation of populations of neurons, it is important to use reduced order models both for myelinated compartments and for Ranvier nodes and to have control over their accuracy and inner parameters. The paper presents a reduced order model of this neural system which allows an efficient simulation method for the saltatory conduction in myelinated axons. This model is obtained by concatenating reduced order linear models of 1D myelinated compartments and nonlinear 0D models of Ranvier nodes. The models for the myelinated compartments are selected from a series of spatially distributed models developed and hierarchized according to their modeling errors. The extracted model described by a nonlinear PDE of hyperbolic type is able to reproduce the saltatory conduction with acceptable accuracy and takes into account the finite propagation speed of potential. Finally, this model is again reduced in order to make it suitable for the inclusion in large-scale neural circuits.

Keywords: action potential, myelinated segments, nonlinear models, Ranvier nodes, reduced order models, saltatory conduction

Procedia PDF Downloads 161
11891 Reliability Analysis of Soil Liquefaction Based on Standard Penetration: A Case Study in Babol City

Authors: Mehran Naghizaderokni, Asscar Janalizadechobbasty

Abstract:

There are more probabilistic and deterministic liquefaction evaluation procedures in order to judge whether liquefaction will occur or not. A review of this approach reveals that there is a need for a comprehensive procedure that accounts for different sources of uncertainty in liquefaction evaluation. In fact, for the same set of input parameters, different methods provide different factors of safety and/or probabilities of liquefaction. To account for the different uncertainties, including both the model and measurement uncertainties, reliability analysis is necessary. This paper has obtained information from Standard Penetration Test (SPT) and some empirical approaches such as: Seed et al, Highway bridge of Japan approach to soil liquefaction, The Overseas Coastal Area Development Institute of Japan (OCDI) and reliability method to studying potential of liquefaction in soil of Babol city in the north of Iran are compared. Evaluation potential of liquefaction in soil of Babol city is an important issue since the soil of some area contains sand, seismic area, increasing level of underground waters and consequently saturation of soil; therefore, one of the most important goals of this paper is to gain suitable recognition of liquefaction potential and find the most appropriate procedure of evaluation liquefaction potential to decrease related damages.

Keywords: reliability analysis, liquefaction, Babol, civil, construction and geological engineering

Procedia PDF Downloads 498
11890 An Inverse Docking Approach for Identifying New Potential Anticancer Targets

Authors: Soujanya Pasumarthi

Abstract:

Inverse docking is a relatively new technique that has been used to identify potential receptor targets of small molecules. Our docking software package MDock is well suited for such an application as it is both computationally efficient, yet simultaneously shows adequate results in binding affinity predictions and enrichment tests. As a validation study, we present the first stage results of an inverse-docking study which seeks to identify potential direct targets of PRIMA-1. PRIMA-1 is well known for its ability to restore mutant p53's tumor suppressor function, leading to apoptosis in several types of cancer cells. For this reason, we believe that potential direct targets of PRIMA-1 identified in silico should be experimentally screened for their ability to inhibitcancer cell growth. The highest-ranked human protein of our PRIMA-1 docking results is oxidosqualene cyclase (OSC), which is part of the cholesterol synthetic pathway. The results of two followup experiments which treat OSC as a possible anti-cancer target are promising. We show that both PRIMA-1 and Ro 48-8071, a known potent OSC inhibitor, significantly reduce theviability of BT-474 breast cancer cells relative to normal mammary cells. In addition, like PRIMA-1, we find that Ro 48-8071 results in increased binding of mutant p53 to DNA in BT- 474cells (which highly express p53). For the first time, Ro 48-8071 is shown as a potent agent in killing human breast cancer cells. The potential of OSC as a new target for developing anticancer therapies is worth further investigation.

Keywords: inverse docking, in silico screening, protein-ligand interactions, molecular docking

Procedia PDF Downloads 446
11889 Identification of Potential Large Scale Floating Solar Sites in Peninsular Malaysia

Authors: Nur Iffika Ruslan, Ahmad Rosly Abbas, Munirah Stapah@Salleh, Nurfaziera Rahim

Abstract:

Increased concerns and awareness of environmental hazards by fossil fuels burning for energy have become the major factor driving the transition toward green energy. It is expected that an additional of 2,000 MW of renewable energy is to be recorded from the renewable sources by 2025 following the implementation of Large Scale Solar projects in Peninsular Malaysia, including Large Scale Floating Solar projects. Floating Solar has better advantages over its landed counterparts such as the requirement for land acquisition is relatively insignificant. As part of the site selection process established by TNB Research Sdn. Bhd., a set of mandatory and rejection criteria has been developed in order to identify only sites that are feasible for the future development of Large Scale Floating Solar power plant. There are a total of 85 lakes and reservoirs identified within Peninsular Malaysia. Only lakes and reservoirs with a minimum surface area of 120 acres will be considered as potential sites for the development of Large Scale Floating Solar power plant. The result indicates a total of 10 potential Large Scale Floating Solar sites identified which are located in Selangor, Johor, Perak, Pulau Pinang, Perlis and Pahang. This paper will elaborate on the various mandatory and rejection criteria, as well as on the various site selection process required to identify potential (suitable) Large Scale Floating Solar sites in Peninsular Malaysia.

Keywords: Large Scale Floating Solar, Peninsular Malaysia, Potential Sites, Renewable Energy

Procedia PDF Downloads 181
11888 Modeling of Traffic Turning Movement

Authors: Michael Tilahun Mulugeta

Abstract:

Pedestrians are the most vulnerable road users as they are more exposed to the risk of collusion. Pedestrian safety at road intersections still remains the most vital and yet unsolved issue in Addis Ababa, Ethiopia. One of the critical points in pedestrian safety is the occurrence of conflict between turning vehicle and pedestrians at un-signalized intersection. However, a better understanding of the factors that affect the likelihood of the conflicts would help provide direction for countermeasures aimed at reducing the number of crashes. This paper has sorted to explore a model to describe the relation between traffic conflicts and influencing factors using Multiple Linear regression methodology. In this research the main focus is to study the interaction of turning (left & right) vehicle with pedestrian at unsignalized intersections. The specific objectives also to determine factors that affect the number of potential conflicts and develop a model of potential conflict.

Keywords: potential, regression analysis, pedestrian, conflicts

Procedia PDF Downloads 66
11887 SEAWIZARD-Multiplex AI-Enabled Graphene Based Lab-On-Chip Sensing Platform for Heavy Metal Ions Monitoring on Marine Water

Authors: M. Moreno, M. Alique, D. Otero, C. Delgado, P. Lacharmoise, L. Gracia, L. Pires, A. Moya

Abstract:

Marine environments are increasingly threatened by heavy metal contamination, including mercury (Hg), lead (Pb), and cadmium (Cd), posing significant risks to ecosystems and human health. Traditional monitoring techniques often fail to provide the spatial and temporal resolution needed for real-time detection of these contaminants, especially in remote or harsh environments. SEAWIZARD addresses these challenges by leveraging the flexibility, adaptability, and cost-effectiveness of printed electronics, with the integration of microfluidics to develop a compact, portable, and reusable sensor platform designed specifically for real-time monitoring of heavy metal ions in seawater. The SEAWIZARD sensor is a multiparametric Lab-on-Chip (LoC) device, a miniaturized system that integrates several laboratory functions into a single chip, drastically reducing sample volumes and improving adaptability. This platform integrates three printed graphene electrodes for the simultaneous detection of Hg, Cd and Pb via square wave voltammetry. These electrodes share the reference and the counter electrodes to improve space efficiency. Additionally, it integrates printed pH and temperature sensors to correct environmental interferences that may impact the accuracy of metal detection. The pH sensor is based on a carbon electrode with iridium oxide electrodeposited while the temperature sensor is graphene based. A protective dielectric layer is printed on top of the sensor to safeguard it in harsh marine conditions. The use of flexible polyethylene terephthalate (PET) as the substrate enables the sensor to conform to various surfaces and operate in challenging environments. One of the key innovations of SEAWIZARD is its integrated microfluidic layer, fabricated from cyclic olefin copolymer (COC). This microfluidic component allows a controlled flow of seawater over the sensing area, allowing for significant improved detection limits compared to direct water sampling. The system’s dual-channel design separates the detection of heavy metals from the measurement of pH and temperature, ensuring that each parameter is measured under optimal conditions. In addition, the temperature sensor is finely tuned with a serpentine-shaped microfluidic channel to ensure precise thermal measurements. SEAWIZARD also incorporates custom electronics that allow for wireless data transmission via Bluetooth, facilitating rapid data collection and user interface integration. Embedded artificial intelligence further enhances the platform by providing an automated alarm system, capable of detecting predefined metal concentration thresholds and issuing warnings when limits are exceeded. This predictive feature enables early warnings of potential environmental disasters, such as industrial spills or toxic levels of heavy metal pollutants, making SEAWIZARD not just a detection tool, but a comprehensive monitoring and early intervention system. In conclusion, SEAWIZARD represents a significant advancement in printed electronics applied to environmental sensing. By combining flexible, low-cost materials with advanced microfluidics, custom electronics, and AI-driven intelligence, SEAWIZARD offers a highly adaptable and scalable solution for real-time, high-resolution monitoring of heavy metals in marine environments. Its compact and portable design makes it an accessible, user-friendly tool with the potential to transform water quality monitoring practices and provide critical data to protect marine ecosystems from contamination-related risks.

Keywords: lab-on-chip, printed electronics, real-time monitoring, microfluidics, heavy metal contamination

Procedia PDF Downloads 29
11886 Predicting the Turbulence Intensity, Excess Energy Available and Potential Power Generated by Building Mounted Wind Turbines over Four Major UK City

Authors: Emejeamara Francis

Abstract:

The future of potentials wind energy applications within suburban/urban areas are currently faced with various problems. These include insufficient assessment of urban wind resource, and the effectiveness of commercial gust control solutions as well as unavailability of effective and cheaper valuable tools for scoping the potentials of urban wind applications within built-up environments. In order to achieve effective assessment of the potentials of urban wind installations, an estimation of the total energy that would be available to them were effective control systems to be used, and evaluating the potential power to be generated by the wind system is required. This paper presents a methodology of predicting the power generated by a wind system operating within an urban wind resource. This method was developed by using high temporal resolution wind measurements from eight potential sites within the urban and suburban environment as inputs to a vertical axis wind turbine multiple stream tube model. A relationship between the unsteady performance coefficient obtained from the stream tube model results and turbulence intensity was demonstrated. Hence, an analytical methodology for estimating the unsteady power coefficient at a potential turbine site is proposed. This is combined with analytical models that were developed to predict the wind speed and the excess energy (EEC) available in estimating the potential power generated by wind systems at different heights within a built environment. Estimates of turbulence intensities, wind speed, EEC and turbine performance based on the current methodology allow a more complete assessment of available wind resource and potential urban wind projects. This methodology is applied to four major UK cities namely Leeds, Manchester, London and Edinburgh and the potential to map the turbine performance at different heights within a typical urban city is demonstrated.

Keywords: small-scale wind, turbine power, urban wind energy, turbulence intensity, excess energy content

Procedia PDF Downloads 277
11885 Predicting the Compressive Strength of Geopolymer Concrete Using Machine Learning Algorithms: Impact of Chemical Composition and Curing Conditions

Authors: Aya Belal, Ahmed Maher Eltair, Maggie Ahmed Mashaly

Abstract:

Geopolymer concrete is gaining recognition as a sustainable alternative to conventional Portland Cement concrete due to its environmentally friendly nature, which is a key goal for Smart City initiatives. It has demonstrated its potential as a reliable material for the design of structural elements. However, the production of Geopolymer concrete is hindered by batch-to-batch variations, which presents a significant challenge to the widespread adoption of Geopolymer concrete. To date, Machine learning has had a profound impact on various fields by enabling models to learn from large datasets and predict outputs accurately. This paper proposes an integration between the current drift to Artificial Intelligence and the composition of Geopolymer mixtures to predict their mechanical properties. This study employs Python software to develop machine learning model in specific Decision Trees. The research uses the percentage oxides and the chemical composition of the Alkali Solution along with the curing conditions as the input independent parameters, irrespective of the waste products used in the mixture yielding the compressive strength of the mix as the output parameter. The results showed 90 % agreement of the predicted values to the actual values having the ratio of the Sodium Silicate to the Sodium Hydroxide solution being the dominant parameter in the mixture.

Keywords: decision trees, geopolymer concrete, machine learning, smart cities, sustainability

Procedia PDF Downloads 87
11884 Opinion Mining to Extract Community Emotions on Covid-19 Immunization Possible Side Effects

Authors: Yahya Almurtadha, Mukhtar Ghaleb, Ahmed M. Shamsan Saleh

Abstract:

The world witnessed a fierce attack from the Covid-19 virus, which affected public life socially, economically, healthily and psychologically. The world's governments tried to confront the pandemic by imposing a number of precautionary measures such as general closure, curfews and social distancing. Scientists have also made strenuous efforts to develop an effective vaccine to train the immune system to develop antibodies to combat the virus, thus reducing its symptoms and limiting its spread. Artificial intelligence, along with researchers and medical authorities, has accelerated the vaccine development process through big data processing and simulation. On the other hand, one of the most important negatives of the impact of Covid 19 was the state of anxiety and fear due to the blowout of rumors through social media, which prompted governments to try to reassure the public with the available means. This study aims to proposed using Sentiment Analysis (AKA Opinion Mining) and deep learning as efficient artificial intelligence techniques to work on retrieving the tweets of the public from Twitter and then analyze it automatically to extract their opinions, expression and feelings, negatively or positively, about the symptoms they may feel after vaccination. Sentiment analysis is characterized by its ability to access what the public post in social media within a record time and at a lower cost than traditional means such as questionnaires and interviews, not to mention the accuracy of the information as it comes from what the public expresses voluntarily.

Keywords: deep learning, opinion mining, natural language processing, sentiment analysis

Procedia PDF Downloads 171
11883 Half-Metallic Ferromagnetism in CdCoTe and CdMnTe: Ab-Initio Study

Authors: A.Zitouni, S.Bentata, B.Bouadjemi, T.Lantri, W. Benstaali, Z.Aziz, S.Cherid, A. Sefir

Abstract:

Using the first-principles method, we investigate the structural, electronic, and magnetic properties of the diluted magnetic semiconductors CdCoTe and CdMnTe in the zinc blende phase with 12.5% of Cr. The calculations are performed by a developed full potential augmented plane wave (FP-L/APW) method within the spin density functional theory (DFT). As exchange–correlation potential, we used the new generalized gradient approximation GGA. Structural properties are determined from the total energy calculations and we found that these compounds are stable in the ferromagnetic phase. We discuss the electronic structures, total and partial densities of states and local moments. Finally, CdCoTe and CdMnTe in the zinc-blend phase show the half-metallic ferromagnetic nature and are expected to be potential materials for spintronic devices.

Keywords: DFT, GGA, band structures, half-metallic, spintronics

Procedia PDF Downloads 451
11882 Potential Biosorption of Rhodococcus erythropolis, an Isolated Strain from Sossego Copper Mine, Brazil

Authors: Marcela dos P. G. Baltazar, Louise H. Gracioso, Luciana J. Gimenes, Bruno Karolski, Ingrid Avanzi, Elen A. Perpetuo

Abstract:

In this work, bacterial strains were isolated from environmental samples from a copper mine and three of them presented potential for bioremediation of copper. All the strains were identified by mass spectrometry (MALDI-TOF-Biotyper) and grown in three diferent media supplemented with 100 ppm of copper chloride in flasks of 500mL and it was incubated at 28 °C and 180 rpm. Periodically, samples were taken and monitored for cellular growth and copper biosorption by spectrophotometer UV-Vis (600 nm) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), respectively. At the end of exponential phase of cellular growth, the biomass was utilized to construct a correlation curve between absorbance and dry mass of the cells. Among the three isolates with potential for biorremediation, 1 strain exhibit capacity the most for bioremediation of effluents contaminated by copper being identified as Rhodococcus erythropolis.

Keywords: bioprocess, bioremediation, biosorption, copper

Procedia PDF Downloads 388
11881 An Inquiry of the Impact of Flood Risk on Housing Market with Enhanced Geographically Weighted Regression

Authors: Lin-Han Chiang Hsieh, Hsiao-Yi Lin

Abstract:

This study aims to determine the impact of the disclosure of flood potential map on housing prices. The disclosure is supposed to mitigate the market failure by reducing information asymmetry. On the other hand, opponents argue that the official disclosure of simulated results will only create unnecessary disturbances on the housing market. This study identifies the impact of the disclosure of the flood potential map by comparing the hedonic price of flood potential before and after the disclosure. The flood potential map used in this study is published by Taipei municipal government in 2015, which is a result of a comprehensive simulation based on geographical, hydrological, and meteorological factors. The residential property sales data of 2013 to 2016 is used in this study, which is collected from the actual sales price registration system by the Department of Land Administration (DLA). The result shows that the impact of flood potential on residential real estate market is statistically significant both before and after the disclosure. But the trend is clearer after the disclosure, suggesting that the disclosure does have an impact on the market. Also, the result shows that the impact of flood potential differs by the severity and frequency of precipitation. The negative impact for a relatively mild, high frequency flood potential is stronger than that for a heavy, low possibility flood potential. The result indicates that home buyers are of more concern to the frequency, than the intensity of flood. Another contribution of this study is in the methodological perspective. The classic hedonic price analysis with OLS regression suffers from two spatial problems: the endogeneity problem caused by omitted spatial-related variables, and the heterogeneity concern to the presumption that regression coefficients are spatially constant. These two problems are seldom considered in a single model. This study tries to deal with the endogeneity and heterogeneity problem together by combining the spatial fixed-effect model and geographically weighted regression (GWR). A series of literature indicates that the hedonic price of certain environmental assets varies spatially by applying GWR. Since the endogeneity problem is usually not considered in typical GWR models, it is arguable that the omitted spatial-related variables might bias the result of GWR models. By combing the spatial fixed-effect model and GWR, this study concludes that the effect of flood potential map is highly sensitive by location, even after controlling for the spatial autocorrelation at the same time. The main policy application of this result is that it is improper to determine the potential benefit of flood prevention policy by simply multiplying the hedonic price of flood risk by the number of houses. The effect of flood prevention might vary dramatically by location.

Keywords: flood potential, hedonic price analysis, endogeneity, heterogeneity, geographically-weighted regression

Procedia PDF Downloads 290
11880 AI Applications in Accounting: Transforming Finance with Technology

Authors: Alireza Karimi

Abstract:

Artificial Intelligence (AI) is reshaping various industries, and accounting is no exception. With the ability to process vast amounts of data quickly and accurately, AI is revolutionizing how financial professionals manage, analyze, and report financial information. In this article, we will explore the diverse applications of AI in accounting and its profound impact on the field. Automation of Repetitive Tasks: One of the most significant contributions of AI in accounting is automating repetitive tasks. AI-powered software can handle data entry, invoice processing, and reconciliation with minimal human intervention. This not only saves time but also reduces the risk of errors, leading to more accurate financial records. Pattern Recognition and Anomaly Detection: AI algorithms excel at pattern recognition. In accounting, this capability is leveraged to identify unusual patterns in financial data that might indicate fraud or errors. AI can swiftly detect discrepancies, enabling auditors and accountants to focus on resolving issues rather than hunting for them. Real-Time Financial Insights: AI-driven tools, using natural language processing and computer vision, can process documents faster than ever. This enables organizations to have real-time insights into their financial status, empowering decision-makers with up-to-date information for strategic planning. Fraud Detection and Prevention: AI is a powerful tool in the fight against financial fraud. It can analyze vast transaction datasets, flagging suspicious activities and reducing the likelihood of financial misconduct going unnoticed. This proactive approach safeguards a company's financial integrity. Enhanced Data Analysis and Forecasting: Machine learning, a subset of AI, is used for data analysis and forecasting. By examining historical financial data, AI models can provide forecasts and insights, aiding businesses in making informed financial decisions and optimizing their financial strategies. Artificial Intelligence is fundamentally transforming the accounting profession. From automating mundane tasks to enhancing data analysis and fraud detection, AI is making financial processes more efficient, accurate, and insightful. As AI continues to evolve, its role in accounting will only become more significant, offering accountants and finance professionals powerful tools to navigate the complexities of modern finance. Embracing AI in accounting is not just a trend; it's a necessity for staying competitive in the evolving financial landscape.

Keywords: artificial intelligence, accounting automation, financial analysis, fraud detection, machine learning in finance

Procedia PDF Downloads 63
11879 Assessment of Risk Factors in Residential Areas of Bosso in Minna, Nigeria

Authors: Junaid Asimiyu Mohammed, Olakunle Docas Tosin

Abstract:

The housing environment in many developing countries is fraught with risks that have potential negative impacts on the lives of the residents. The study examined the risk factors in residential areas of two neighborhoods in Bosso Local Government Areas of Minna in Nigeria with a view to determining the level of their potential impacts. A sample of 378 households was drawn from the estimated population of 22,751 household heads. The questionnaire and direct observation were used as instruments for data collection. The data collected were analyzed using the Relative Importance Index (RII) rule to determine the level of the potential impact of the risk factors while ArcGIS was used for mapping the spatial distribution of the risks. The study established that the housing environment of Angwan Biri and El-Waziri areas of Bosso is poor and vulnerable as 26% of the houses were not habitable and 57% were only fairly habitable. The risks of epidemics, building collapse and rainstorms were evident in the area as 53% of the houses had poor ventilation; 20% of residents had no access to toilets; 47% practiced open waste dumping; 46% of the houses had cracked walls while 52% of the roofs were weak and sagging. The results of the analysis of the potential impact of the risk factors indicate a RII score of 0.528 for building collapse, 0.758 for rainstorms and 0.830 for epidemics, indicating a moderate to very high level of potential impacts. The mean RII score of 0.639 shows a significant potential impact of the risk factors. The study recommends the implementation of sanitation measures, provision of basic urban facilities and neighborhood revitalization through housing infrastructure retrofitting as measures to mitigate the risks of disasters and improve the living conditions of the residents of the study area.

Keywords: assessment, risk, residential, Nigeria

Procedia PDF Downloads 57
11878 Web-Based Decision Support Systems and Intelligent Decision-Making: A Systematic Analysis

Authors: Serhat Tüzün, Tufan Demirel

Abstract:

Decision Support Systems (DSS) have been investigated by researchers and technologists for more than 35 years. This paper analyses the developments in the architecture and software of these systems, provides a systematic analysis for different Web-based DSS approaches and Intelligent Decision-making Technologies (IDT), with the suggestion for future studies. Decision Support Systems literature begins with building model-oriented DSS in the late 1960s, theory developments in the 1970s, and the implementation of financial planning systems and Group DSS in the early and mid-80s. Then it documents the origins of Executive Information Systems, online analytic processing (OLAP) and Business Intelligence. The implementation of Web-based DSS occurred in the mid-1990s. With the beginning of the new millennia, intelligence is the main focus on DSS studies. Web-based technologies are having a major impact on design, development and implementation processes for all types of DSS. Web technologies are being utilized for the development of DSS tools by leading developers of decision support technologies. Major companies are encouraging its customers to port their DSS applications, such as data mining, customer relationship management (CRM) and OLAP systems, to a web-based environment. Similarly, real-time data fed from manufacturing plants are now helping floor managers make decisions regarding production adjustment to ensure that high-quality products are produced and delivered. Web-based DSS are being employed by organizations as decision aids for employees as well as customers. A common usage of Web-based DSS has been to assist customers configure product and service according to their needs. These systems allow individual customers to design their own products by choosing from a menu of attributes, components, prices and delivery options. The Intelligent Decision-making Technologies (IDT) domain is a fast growing area of research that integrates various aspects of computer science and information systems. This includes intelligent systems, intelligent technology, intelligent agents, artificial intelligence, fuzzy logic, neural networks, machine learning, knowledge discovery, computational intelligence, data science, big data analytics, inference engines, recommender systems or engines, and a variety of related disciplines. Innovative applications that emerge using IDT often have a significant impact on decision-making processes in government, industry, business, and academia in general. This is particularly pronounced in finance, accounting, healthcare, computer networks, real-time safety monitoring and crisis response systems. Similarly, IDT is commonly used in military decision-making systems, security, marketing, stock market prediction, and robotics. Even though lots of research studies have been conducted on Decision Support Systems, a systematic analysis on the subject is still missing. Because of this necessity, this paper has been prepared to search recent articles about the DSS. The literature has been deeply reviewed and by classifying previous studies according to their preferences, taxonomy for DSS has been prepared. With the aid of the taxonomic review and the recent developments over the subject, this study aims to analyze the future trends in decision support systems.

Keywords: decision support systems, intelligent decision-making, systematic analysis, taxonomic review

Procedia PDF Downloads 279
11877 Artificial Intelligence in Bioscience: The Next Frontier

Authors: Parthiban Srinivasan

Abstract:

With recent advances in computational power and access to enough data in biosciences, artificial intelligence methods are increasingly being used in drug discovery research. These methods are essentially a series of advanced statistics based exercises that review the past to indicate the likely future. Our goal is to develop a model that accurately predicts biological activity and toxicity parameters for novel compounds. We have compiled a robust library of over 150,000 chemical compounds with different pharmacological properties from literature and public domain databases. The compounds are stored in simplified molecular-input line-entry system (SMILES), a commonly used text encoding for organic molecules. We utilize an automated process to generate an array of numerical descriptors (features) for each molecule. Redundant and irrelevant descriptors are eliminated iteratively. Our prediction engine is based on a portfolio of machine learning algorithms. We found Random Forest algorithm to be a better choice for this analysis. We captured non-linear relationship in the data and formed a prediction model with reasonable accuracy by averaging across a large number of randomized decision trees. Our next step is to apply deep neural network (DNN) algorithm to predict the biological activity and toxicity properties. We expect the DNN algorithm to give better results and improve the accuracy of the prediction. This presentation will review all these prominent machine learning and deep learning methods, our implementation protocols and discuss these techniques for their usefulness in biomedical and health informatics.

Keywords: deep learning, drug discovery, health informatics, machine learning, toxicity prediction

Procedia PDF Downloads 356
11876 Geophysical Mapping of the Groundwater Aquifer System in Gode Area, Northeastern Hosanna, Ethiopia

Authors: Esubalew Yehualaw Melaku

Abstract:

In this study, two basic geophysical methods are applied for mapping the groundwater aquifer system in the Gode area along the Guder River, northeast of Hosanna town, near the western margin of the Central Main Ethiopian Rift. The main target of the study is to map the potential aquifer zone and investigate the groundwater potential for current and future development of the resource in the Gode area. The geophysical methods employed in this study include, Vertical Electrical Sounding (VES) and magnetic survey techniques. Electrical sounding was used to examine and map the depth to the potential aquifer zone of the groundwater and its distribution over the area. On the other hand, a magnetic survey was used to delineate contact between lithologic units and geological structures. The 2D magnetic modeling and the geoelectric sections are used for the identification of weak zones, which control the groundwater flow and storage system. The geophysical survey comprises of twelve VES readings collected by using a Schlumberger array along six profile lines and more than four hundred (400) magnetic readings at about 10m station intervals along four profiles and 20m along three random profiles. The study result revealed that the potential aquifer in the area is obtained at a depth range from 45m to 92m. This is the response of the highly weathered/ fractured ignimbrite and pumice layer with sandy soil, which is the main water-bearing horizon. Overall, in the neighborhood of four VES points, VES- 2, VES- 3, VES-10, and VES-11, shows good water-bearing zones in the study area.

Keywords: vertical electrical sounding, magnetic survey, aquifer, groundwater potential

Procedia PDF Downloads 127
11875 Mediating Health in Rural Ghana: An Exploratory Study of AI-Driven Health Communications Channels and Media Reportage in Accra

Authors: Amos Ekow Coffie

Abstract:

This exploratory study investigates the impact of AI-driven health communications and media reportage on health outcomes in rural Ghana, focusing on rural communities within Accra. Despite the potential of AI-driven health communications in improving health outcomes, its adoption in rural Ghana is hindered by infrastructure challenges, digital literacy, and cultural factors. Media reportage plays a crucial role in shaping health perceptions and behaviors, but its impact is limited by inadequate health reporting, lack of specialized health journalists, and limited access to health information. This study aims to explore the integration of AI-driven health communications into media practices in rural Ghana, addressing the following research questions: How do AI-driven health communications impact health outcomes in rural Ghana? What role does media reportage play in shaping health perceptions and behaviors in Accra? How can AI-driven health communications and media reportage be optimized to improve health outcomes in rural Ghana? Using a mixed-methods approach, this study will combine surveys, interviews, and content analysis to investigate the impact of AI-driven Health Communication and media reportage on health outcomes in rural areas in Ghana. AI-driven health communications is the use of artificial intelligence (AI) technologies to design, deliver, and evaluate health messages, interventions, and campaigns. The study's findings will contribute to the development of effective health communication strategies, addressing the significant health disparities in rural areas in Ghana.

Keywords: AI Driven Health Communication, Media Reporting, Rural Areas, Communication Channels

Procedia PDF Downloads 25
11874 Don't Just Guess and Slip: Estimating Bayesian Knowledge Tracing Parameters When Observations Are Scant

Authors: Michael Smalenberger

Abstract:

Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate and even exceed some benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. A common facet of many ITS is their use of Bayesian Knowledge Tracing (BKT) to estimate parameters necessary for the implementation of the artificial intelligence component, and for the probability of mastery of a knowledge component relevant to the ITS. While various techniques exist to estimate these parameters and probability of mastery, none directly and reliably ask the user to self-assess these. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course for which detailed transaction-level observations were recorded, and users were also routinely asked direct questions that would lead to such a self-assessment. Comparisons were made between these self-assessed values and those obtained using commonly used estimation techniques. Our findings show that such self-assessments are particularly relevant at the early stages of ITS usage while transaction level data are scant. Once a user’s transaction level data become available after sufficient ITS usage, these can replace the self-assessments in order to eliminate the identifiability problem in BKT. We discuss how these findings are relevant to the number of exercises necessary to lead to mastery of a knowledge component, the associated implications on learning curves, and its relevance to instruction time.

Keywords: Bayesian Knowledge Tracing, Intelligent Tutoring System, in vivo study, parameter estimation

Procedia PDF Downloads 172