Search results for: polyethylene film
729 'I Broke the Line Back to the Ancient Ones': Rethinking Intersectional Theory through Wounded Histories in Once Were Warriors (1994) and Whale Rider (2002).
Authors: Kerry Mackereth
Abstract:
Kimberle Crenshaw’s theory of intersectionality has become immensely influential in the fields of women’s and gender studies. However, intersectionality’s widespread use among feminist scholars and activists has been accompanied by critiques of its reliance upon subject categorization. These critiques are of particular import when connected to Wendy Brown’s characterization of identity politics as static 'wounded attachments'. Together, these critiques show how the gridlock model proposed by intersectionality’s primary metaphor, the traffic accident at the intersection, is useful for identifying discrimination but not for remembering historical injustices or imagining feminist and anti-racist resistance. Through the lens of New Zealand Maori film, focusing upon Once Were Warriors (1994) and Whale Rider (2002), this article examines how wounded histories need not be passively reproduced by contemporaneously oppressed groups. Instead, the metaphor of the traffic intersection should be complemented by the metaphor of the wound. Against Brown’s characterization of wounded attachments as negative, static identities, Gloria Anzaldua’s account of the borderland between the United States and Mexico as “una herida abierta”, an open wound, offers an alternative reading of the wound. Through Anzaldua’s and Hortense Spillers’ political thought, the wound is reconceptualized as not only a site of suffering but also as a regenerative space. The coexistence of deterioration and regeneration at the site of the wound underpins the narrative arc of both Once Were Warriors and Whale Rider. In both films, the respective child protagonists attempt to reconcile the pain of wounded histories with the imagination of cultural regeneration. The metaphor of the wound thus serves as an alternative theoretical resource for mapping experiences of oppression, one that enriches feminist theory by balancing the remembrance of historical grievance with the forging of hopeful political projects.Keywords: gender theory, historical grievance, intersectionality, New Zealand film, postcolonialism
Procedia PDF Downloads 251728 Developing a Thermo-Sensitive Conductive Stretchable Film to Allow Cell Sheet Harvest after Mechanical and Electrical Treatments
Authors: Wei-Wen Hu, Yong-Zhi Zhong
Abstract:
Depositing conductive polypyrrole (PPy) onto elastic polydimethylsiloxane (PDMS) substrate can obtain a highly stretchable conductive film, which can be used to construct a bioreactor to cyclically stretch and electrically stimulate surface cells. However, how to completely harvest these stimulated muscle tissue to repair damaged muscle is a challenge. To address this concern, N-isopropylacrylamide (NIPAAm), a monomer of temperature-sensitive polymer, was added during the polymerization of pyrrole on PDMS so that the resulting P(Py-co-NIPAAm)/PDMS should own both conductivity and thermo-sensitivity. Therefore, cells after stimulation can be completely harvested as cell sheets by reducing temperature. Mouse skeletal myoblast, C2C12 cells, were applied to examine our hypothesis. In electrical stimulation, C2C12 cells on P(Py-co-NIPAAm)/PDMS demonstrated the best myo-differentiation under the electric field of 1 V/cm. Regarding cyclic stretching, the strain equal to or higher than 9% can highly align C2C12 perpendicular to the stretching direction. The Western blotting experiments demonstrated that the cell sheets harvested by cooling reserved more extracellular matrix (ECM) than cells collected by the traditional trypsin digestion method. Immunostaining of myosin heavy chain protein (MHC) indicated that both mechanical and electrical stimuli effectively increased the number of myotubes and the differentiation ratio, and the myotubes can be aligned by cyclic stretching. Stimulated cell sheets can be harvested by cooling, and the alignment of myotubes was still maintained. These results suggested that the deposition of P(Py-co-NIPAAm) on PDMS can be applied to harvest intact cell sheets after cyclic stretching and electrical stimulation, which increased the feasibility of bioreactor for the application of tissue engineering and regenerative medicine.Keywords: bioreactor, cell sheet, conductive polymer, cyclic stretching, electrical stimulation, muscle tissue engineering, myogenesis, thermosensitive hydrophobicity
Procedia PDF Downloads 95727 The Effect of Mgo and Rubber Nanofillers on Electrical Treeing Characteristic of XLPE Based Nanocomposites
Authors: Nur Amira nor Arifin, Tashia Marie Anthony, Mohd Ruzlin Mokhtar, Huzainie Shafi Abd Halim
Abstract:
Cross-linked polyethylene (XLPE) material is being used as the cable insulation for the past decades due to its higher working temperature of 90 ˚C and some other advantages. However, the use of XLPE as an insulating material for underground distribution cables may have subjected to the unforeseeable weather and uncontrollable environmental condition. These unfavorable condition when combine with high electric field may lead to the initiation and growth of water tree in XLPE insulation. There are several studies on numerous nanofillers incorporate into polymer matrix to hinder the growth of tree propagation. Hence, in this study aims to investigate the effect of MgO and rubber nanofillers at different concentration on the electrical tree of XLPE. The nanofillers and XLPE were mixed and later extruded. After extrusion, the material were then fabricated into the desired shape for experimental purposes. The result shows that the electrical tree propagation of XLPE filled with optimize concentration of nanofillers were much slower compared to pure XLPE. In this paper, the effect of nanofillers towards electrical treeing characteristic will be discussed.Keywords: electrical trees, nanofillers, polymer nanocomposites, XLPE
Procedia PDF Downloads 139726 Argon/Oxygen Plasma Surface Modification of Biopolymers for Improvement of Wettability and Wear Resistance
Authors: Binnur Sagbas
Abstract:
Artificial joint replacements such as total knee and total hip prosthesis have been applied to the patients who affected by osteoarthritis. Although different material combinations are used for these joints, biopolymers are most commonly preferred materials especially for acetabular cup and tibial component of hip and knee joints respectively. The main limitation that shortens the service life of these prostheses is wear. Wear is complicated phenomena and it must be considered with friction and lubrication. In this study, micro wave (MW) induced argon+oxygen plasma surface modification were applied on ultra-high molecular weight polyethylene (UHMWPE) and vitamin E blended UHMWPE (VE-UHMWPE) biopolymer surfaces to improve surface wettability and wear resistance of the surfaces. Contact angel measurement method was used for determination of wettability. Ball-on-disc wear test was applied under 25% bovine serum lubrication conditions. The results show that surface wettability and wear resistance of both material samples were increased by plasma surface modification.Keywords: artificial joints, plasma surface modification, UHMWPE, vitamin E, wear
Procedia PDF Downloads 306725 Development of Thermo-Regulating Fabric Using Microcapsules of Phase Change Material
Authors: D. Benmoussa, H. Hannache, O. Cherkaoui
Abstract:
In textiles, the major interest in microencapsulation is currently in the application of durable fragrances, skin softeners, phase-change materials, antimicrobial agents and drug delivery systems onto textile materials. In our research “Polyethylene Glycol” was applied as phase change material and it was encapsulated in polymethacrylic acid (PMA) by radical polymerization in suspension of methacrylic acid in presence of N,N'-methylenebisacrylamide (MBAM) as crosslinking agent. Thereafter the obtained microcapsule was modified by amidation with ethylenediamine as a spacer molecule. At the end of this spacer trichlorotriazine reactive group was fixed. Microcapsules were grafted onto cotton textile substrate. The surface morphologies of the microencapsulated phase change materials (micro PCMs) were studied by scanning electron microscopy (SEM). Thermal properties, thermal reliabilities and thermal stabilities of the as-prepared micro PCMs were investigated by differential scanning calorimetry (DSC) and thermogravmetric analysis (TGA). The results obtained show the obtaining microcapsules with a mean diameter of 10 µm and the resistance of the microcapsules is demonstrated by thermal analysis.Keywords: energy storage, microencapsulation, phase-change materials, thermogravmetric analysis (TGA)
Procedia PDF Downloads 675724 Ternary Organic Blend for Semitransparent Solar Cells with Enhanced Short Circuit Current Density
Authors: Mohammed Makha, Jakob Heier, Frank Nüesch, Roland Hany
Abstract:
Organic solar cells (OSCs) have made rapid progress and currently achieve power conversion efficiencies (PCE) of over 10%. OSCs have several merits over other direct light-to-electricity generating cells and can be processed at low cost from solution on flexible substrates over large areas. Moreover, combining organic semiconductors with transparent and conductive electrodes allows for the fabrication of semitransparent OSCs (SM-OSCs). For SM-OSCs the challenge is to achieve a high average visible transmission (AVT) while maintaining a high short circuit current (Jsc). Typically, Jsc of SM-OSCs is smaller than when using an opaque metal top electrode. This is because the non-absorbed light during the first transit through the active layer and the transparent electrode is forward-transmitted out of the device. Recently, OSCs using a ternary blend of organic materials have received attention. This strategy was pursued to extend the light harvesting over the visible range. However, it is a general challenge to manipulate the performance of ternary OSCs in a predictable way, because many key factors affect the charge generation and extraction in ternary solar cells. Consequently, the device performance is affected by the compatibility between the blend components and the resulting film morphology, the energy levels and bandgaps, the concentration of the guest material and its location in the active layer. In this work, we report on a solvent-free lamination process for the fabrication of efficient and semitransparent ternary blend OSCs. The ternary blend was composed of PC70BM and the electron donors PBDTTT-C and an NIR cyanine absorbing dye (Cy7T). Using an opaque metal top electrode, a PCE of 6% was achieved for the optimized binary polymer: fullerene blend (AVT = 56%). However, the PCE dropped to ~2% when decreasing (to 30 nm) the active film thickness to increase the AVT value (75%). Therefore we resorted to the ternary blend and measured for non-transparent cells a PCE of 5.5% when using an active polymer: dye: fullerene (0.7: 0.3: 1.5 wt:wt:wt) film of 95 nm thickness (AVT = 65% when omitting the top electrode). In a second step, the optimized ternary blend was used of the fabrication of SM-OSCs. We used a plastic/metal substrate with a light transmission of over 90% as a transparent electrode that was applied via a lamination process. The interfacial layer between the active layer and the top electrode was optimized in order to improve the charge collection and the contact with the laminated top electrode. We demonstrated a PCE of 3% with AVT of 51%. The parameter space for ternary OSCs is large and it is difficult to find the best concentration ratios by trial and error. A rational approach for device optimization is the construction of a ternary blend phase diagram. We discuss our attempts to construct such a phase diagram for the PBDTTT-C: Cy7T: PC70BM system via a combination of using selective Cy7T selective solvents and atomic force microscopy. From the ternary diagram suitable morphologies for efficient light-to-current conversion can be identified. We compare experimental OSC data with these predictions.Keywords: organic photovoltaics, ternary phase diagram, ternary organic solar cells, transparent solar cell, lamination
Procedia PDF Downloads 263723 Phosphoproteomic Analysis of the Response of Rice Leaves to Chitosan under Drought Stress
Authors: Narumon Phaonakrop, Janthima Jaresitthikunchai, Sittiruk Roytrakul, Wasinee Pongprayoon
Abstract:
Chitosan has been proposed as a natural polymer, and it is derived from chitin. The objective of this research was to determine the growth promoting responses induced by chitosan at the molecular physiology level in Khao Dawk Mali 105 (KDML 105) rice (Oryza sativa L.) seedlings under drought stress by adding of 2% polyethylene glycol 4000 (PEG4000) to the nutrient solution and after removal of the drought stress (re-water). Oligomeric chitosan at 40 ppm could enhance shoot fresh weight and shoot dry weight during drought stress and re-water. After 7 days of drought stress and re-water, significant increases in chlorophyll a and chlorophyll b contents in KDML 105 cultivar were observed. The 749 phosphoproteins in rice leaf treated with chitosan could be resolved by phosphoprotein enrichment, tryptic digestion and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. They can be classified into 10 groups. Proteins involved in the metabolic process and biological regulation were upregulated in response to chitosan during drought stress. This work will help us to understand protein phosphorylation relating to chitosan response during drought stress in aromatic rice seedlings.Keywords: Chitosan, drought, phosphoproteome, rice
Procedia PDF Downloads 163722 N-Heptane as Model Molecule for Cracking Catalyst Evaluation to Improve the Yield of Ethylene and Propylene
Authors: Tony K. Joseph, Balasubramanian Vathilingam, Stephane Morin
Abstract:
Currently, the refiners around the world are more focused on improving the yield of light olefins (propylene and ethylene) as both of them are very prominent raw materials to produce wide spectrum of polymeric materials such as polyethylene and polypropylene. Henceforth, it is desirable to increase the yield of light olefins via selective cracking of heavy oil fractions. In this study, zeolite grown on SiC was used as the catalyst to do model cracking reaction of n-heptane. The catalytic cracking of n-heptane was performed in a fixed bed reactor (12 mm i.d.) at three different temperatures (425, 450 and 475 °C) and at atmospheric pressure. A carrier gas (N₂) was mixed with n-heptane with ratio of 90:10 (N₂:n-heptane), and the gaseous mixture was introduced into the fixed bed reactor. Various flow rate of reactants was tested to increase the yield of ethylene and propylene. For the comparison purpose, commercial zeolite was also tested in addition to Zeolite on SiC. The products were analyzed using an Agilent gas chromatograph (GC-9860) equipped with flame ionization detector (FID). The GC is connected online with the reactor and all the cracking tests were successfully reproduced. The entire catalytic evaluation results will be presented during the conference.Keywords: cracking, catalyst, evaluation, ethylene, heptane, propylene
Procedia PDF Downloads 136721 Thorium-Doped PbS Thin Films for Radiation Damage Studies
Authors: Michael Shandalov, Tzvi Templeman, Michael Schmidt, Itzhak Kelson, Eyal Yahel
Abstract:
We present a new method to produce a model system for the study of radiation damage in non-radioactive materials. The method is based on homogeneously incorporating 228Th ions in PbS thin films using a small volume chemical bath deposition (CBD) technique. The common way to alloy metals with radioactive elements is by melting pure elements, which requires considerable amounts of radioactive material with its safety consequences such as high sample activity. Controlled doping of the thin films with (very) small amounts (100-200ppm) of radioactive elements such as thorium is expected to provide a unique path for studying radiation damage in materials due to decay processes without the need of sealed enclosure. As a first stage, we developed CBD process for controlled doping of PbS thin films (~100 nm thick) with the stable isotope (t1/2~106 years), 232Th. Next, we developed CBD process for controlled doping of PbS thin films with active 228Th isotope. This was achieved by altering deposition parameters such as temperature, pH, reagent concentrations and time. The 228Th-doped films were characterized using X-ray diffraction, which indicated a single phase material. Film morphology and thickness were determined using scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) mapping in the analytical transmission electron microscope (A-TEM), X-ray photoelectron spectroscopy (XPS) depth profiles and autoradiography indicated that the Th ions were homogeneously distributed throughout the films, suggesting Pb substitution by Th ions in the crystal lattice. The properties of the PbS (228Th) film activity were investigated by using alpha-spectroscopy and gamma spectroscopy. The resulting films are applicable for isochronal annealing of resistivity measurements and currently under investigation. This work shows promise as a model system for the analysis of dilute defect systems in semiconductor thin films.Keywords: thin films, doping, radiation damage, chemical bath deposition
Procedia PDF Downloads 393720 Development of Ketorolac Tromethamine Encapsulated Stealth Liposomes: Pharmacokinetics and Bio Distribution
Authors: Yasmin Begum Mohammed
Abstract:
Ketorolac tromethamine (KTM) is a non-steroidal anti-inflammatory drug with a potent analgesic and anti-inflammatory activity due to prostaglandin related inhibitory effect of drug. It is a non-selective cyclo-oxygenase inhibitor. The drug is currently used orally and intramuscularly in multiple divided doses, clinically for the management arthritis, cancer pain, post-surgical pain, and in the treatment of migraine pain. KTM has short biological half-life of 4 to 6 hours, which necessitates frequent dosing to retain the action. The frequent occurrence of gastrointestinal bleeding, perforation, peptic ulceration, and renal failure lead to the development of other drug delivery strategies for the appropriate delivery of KTM. The ideal solution would be to target the drug only to the cells or tissues affected by the disease. Drug targeting could be achieved effectively by liposomes that are biocompatible and biodegradable. The aim of the study was to develop a parenteral liposome formulation of KTM with improved efficacy while reducing side effects by targeting the inflammation due to arthritis. PEG-anchored (stealth) and non-PEG-anchored liposomes were prepared by thin film hydration technique followed by extrusion cycle and characterized for in vitro and in vivo. Stealth liposomes (SLs) exhibited increase in percent encapsulation efficiency (94%) and 52% percent of drug retention during release studies in 24 h with good stability for a period of 1 month at -20°C and 4°C. SLs showed about maximum 55% of edema inhibition with significant analgesic effect. SLs produced marked differences over those of non-SL formulations with an increase in area under plasma concentration time curve, t₁/₂, mean residence time, and reduced clearance. 0.3% of the drug was detected in arthritic induced paw with significantly reduced drug localization in liver, spleen, and kidney for SLs when compared to other conventional liposomes. Thus SLs help to increase the therapeutic efficacy of KTM by increasing the targeting potential at the inflammatory region.Keywords: biodistribution, ketorolac tromethamine, stealth liposomes, thin film hydration technique
Procedia PDF Downloads 295719 Determination of Elasticity Constants of Isotropic Thin Films Using Impulse Excitation Technique
Authors: M. F. Slim, A. Alhussein, F. Sanchette, M. François
Abstract:
Thin films are widely used in various applications to enhance the surface properties and characteristics of materials. They are used in many domains such as: biomedical, automotive, aeronautics, military, electronics and energy. Depending on the elaboration technique, the elastic behavior of thin films may be different from this of bulk materials. This dependence on the elaboration techniques and their parameters makes the control of the elasticity constants of coated components necessary. Our work is focused on the characterization of the elasticity constants of isotropic thin films by means of Impulse Excitation Techniques. The tests rely on the measurement of the sample resonance frequency before and after deposition. In this work, a finite element model was performed with ABAQUS software. This model was then compared with the analytical approaches used to determine the Young’s and shear moduli. The best model to determine the film Young’s modulus was identified and a relation allowing the determination of the shear modulus of thin films of any thickness was developed. In order to confirm the model experimentally, Tungsten films were deposited on glass substrates by DC magnetron sputtering of a 99.99% purity tungsten target. The choice of tungsten was done because it is well known that its elastic behavior at crystal scale is ideally isotropic. The macroscopic elasticity constants, Young’s and shear moduli and Poisson’s ratio of the deposited film were determined by means of Impulse Excitation Technique. The Young’s modulus obtained from IET was compared with measurements by the nano-indentation technique. We did not observe any significant difference and the value is in accordance with the one reported in the literature. This work presents a new methodology on the determination of the elasticity constants of thin films using Impulse Excitation Technique. A formulation allowing the determination of the shear modulus of a coating, whatever the thickness, was developed and used to determine the macroscopic elasticity constants of tungsten films. The developed model was validated numerically and experimentally.Keywords: characterization, coating, dynamical resonant method, Poisson's ratio, PVD, shear modulus, Young's modulus
Procedia PDF Downloads 363718 Production of Neutrons by High Intensity Picosecond Laser Interacting with Thick Solid Target at XingGuangIII
Authors: Xi Yuan, Xuebin Zhu, Bojun Li
Abstract:
This work describes the experiment to produce high-intensity pulsed neutron beams on XingGuangIII laser facility. The high-intensity laser is utilized to drive protons and deuterons, which hit a thick solid target to produce neutrons. The pulse duration of the laser used in the experiment is about 0.8 ps, and the laser energy is around 100 J. Protons and deuterons are accelerated from a 10-μm-thick deuterated polyethylene (CD₂) foil and diagnosed by a Thomson parabola ion-spectrometer. The energy spectrum of neutrons generated via ⁷Li(d,n) and ⁷Li(p,n) reaction when proton and deuteron beams hit a 5-mm-thick LiF target is measured by a scintillator-based time-of-flight spectrometer. Results from the neuron measurements show that the maximum neutron energy is about 12.5 MeV and the neutron yield is up to 2×10⁹/pulse. The high-intensity pulsed neutron beams demonstrated in this work can provide a valuable neutron source for material research, fast neutron induced fission research, and so on.Keywords: picosecond laser driven, fast neutron, time-of-flight spectrometry, XinggungIII
Procedia PDF Downloads 165717 Bio Based Agro Textiles
Authors: K. Sakthivel
Abstract:
With the continuous increase in population worldwide, stress increased among agricultural peoples, so it is necessary to increase the yield of agro-products. But it is not possible to meet fully with the traditionally adopted ways of using pesticides and herbicides. Today, agriculture and horticulture has realized the need of tomorrow and opting for various technologies to get higher overall yield, quality agro-products. Most of today’s synthetic polymers are produced from petrochemical bi-products and are not biodegradable. Persistent polymers generate significant sources of environmental pollution, harming wildlife when they are disposed in nature. The disposal of non degradable plastic bags adversely affects human and wild life. Moreover incineration of plastic waste presents environmental issues as well, since it yields toxic emissions. Material incineration is also limited due to the difficulties to find accurate and economically viable outlets. In addition plastic recycling shows a negative eco balance due to the necessity in nearly all cases to wash the plastic waste as well as the energy consumption during the recycling process phases. As plastics represent a large part of the waste collection at the local regional and national levels institutions are aware of the significant savings that compostable or biodegradable materials would generate. Polylactic acid (PLA), which is one of the most important biocompatible polyesters that are derived from annually renewable biomass such as corn and wheat, has attracted much attention for automotive parts and also can be applied in agro textiles. The manufacturing method of PLA is the ring-opening polymerization of the dimeric cyclic ester of lactic acid, lactide. For the stereo complex PLA, we developed by the four unit processes, fermentation, separation, lactide conversion, and polymerization. Then the polymer is converted into mulching film and applied in agriculture field. PLA agro textiles have better tensile strength, tearing strength and with stand from UV rays than polyester agro textile and polypropylene-based products.Keywords: biodegradation, environment, mulching film, PLA, technical textiles
Procedia PDF Downloads 386716 New Coating Materials Based on Mixtures of Shellac and Pectin for Pharmaceutical Products
Authors: M. Kumpugdee-Vollrath, M. Tabatabaeifar, M. Helmis
Abstract:
Shellac is a natural polyester resin secreted by insects. Pectins are natural, non-toxic and water-soluble polysaccharides extracted from the peels of citrus fruits or the leftovers of apples. Both polymers are allowed for the use in the pharmaceutical industry and as a food additive. SSB Aquagold® is the aqueous solution of shellac and can be used for a coating process as an enteric or controlled drug release polymer. In this study, tablets containing 10 mg methylene blue as a model drug were prepared with a rotary press. Those tablets were coated with mixtures of shellac and one of the pectin different types (i.e. CU 201, CU 501, CU 701 and CU 020) mostly in a 2:1 ratio or with pure shellac in a small scale fluidized bed apparatus. A stable, simple and reproducible three-stage coating process was successfully developed. The drug contents of the coated tablets were determined using UV-VIS spectrophotometer. The characterization of the surface and the film thickness were performed with the scanning electron microscopy (SEM) and the light microscopy. Release studies were performed in a dissolution apparatus with a basket. Most of the formulations were enteric coated. The dissolution profiles showed a delayed or sustained release with a lagtime of at least 4 h. Dissolution profiles of coated tablets with pure shellac had a very long lagtime ranging from 13 to 17.5 h and the slopes were quite high. The duration of the lagtime and the slope of the dissolution profiles could be adjusted by adding the proper type of pectin to the shellac formulation and by variation of the coating amount. In order to apply a coating formulation as a colon delivery system, the prepared film should be resistant against gastric fluid for at least 2 h and against intestinal fluid for 4-6 h. The required delay time was gained with most of the shellac-pectin polymer mixtures. The release profiles were fitted with the modified model of the Korsmeyer-Peppas equation and the Hixson-Crowell model. A correlation coefficient (R²) > 0.99 was obtained by Korsmeyer-Peppas equation.Keywords: shellac, pectin, coating, fluidized bed, release, colon delivery system, kinetic, SEM, methylene blue
Procedia PDF Downloads 407715 Oily Sludge Bioremediation Pilot Plant Project, Nigeria
Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John
Abstract:
Brass terminal, one of the several crude oil and petroleum products storage/handling facilities in the Niger Delta was built in the 1980s. Activities at this site, over the years, released crude oil into this 3 m-deep, 1500 m-long canal lying adjacent to the terminal with oil floating on it and its sediment heavily polluted. To ensure effective clean-up, three major activities were planned: Site characterization, bioremediation pilot plant construction and testing and full-scale bioremediation of contaminated sediment/bank soil by land farming. The canal was delineated into 12 lots and each characterized, with reference to the floating oily phase, contaminated sediment and canal bank soil. As a result of site characterization, a pilot plant for on-site bioremediation was designed and a treatment basin constructed for carrying out pilot bioremediation test. Following a designed sampling protocol, samples from this pilot plant were collected for analysis at two laboratories as a quality assurance/quality control check. Results showed that Brass Canal upstream is contaminated with dark, thick and viscous oily film with characteristic hydrocarbon smell while downstream, thin oily film interspersed with water were observed. Sediments were observed to be dark with mixture of brownish sandy soil with TPH ranging from 17,800 mg/kg in Lot 1 to 88,500 mg/kg in Lot 12 samples. Brass Canal bank soil was observed to be sandy from ground surface to 3m, below ground surface (bgs) it was silty-sandy and brownish while subsurface soil (4-10m bgs) was sandy-clayey and whitish/grayish with typical hydrocarbon smell. Preliminary results obtained so far have been very promising but were proprietary. This project is considered, to the best of technical literature knowledge, the first large-scale on-site bioremediation project in the Niger Delta region, Nigeria.Keywords: bioremediation, contaminated sediment, land farming, oily sludge, oil terminal
Procedia PDF Downloads 453714 Modeling of Polyethylene Particle Size Distribution in Fluidized Bed Reactors
Authors: R. Marandi, H. Shahrir, T. Nejad Ghaffar Borhani, M. Kamaruddin
Abstract:
In the present study, a steady state population balance model was developed to predict the polymer particle size distribution (PSD) in ethylene gas phase fluidized bed olefin polymerization reactors. The multilayer polymeric flow model (MPFM) was used to calculate the growth rate of a single polymer particle under intra-heat and mass transfer resistance. The industrial plant data were used to calculate the growth rate of polymer particle and the polymer PSD. Numerical simulations carried out to describe the influence of effective monomer diffusion coefficient, polymerization rate and initial catalyst size on the catalyst particle growth and final polymer PSD. The results present that the intra-heat and mass limitation is important for the ethylene polymerization, the growth rate of particle and the polymer PSD in the fluidized bed reactor. The effect of the agglomeration on the PSD is also considered. The result presents that the polymer particle size distribution becomes broader as the agglomeration exits.Keywords: population balance, olefin polymerization, fluidized bed reactor, particle size distribution, agglomeration
Procedia PDF Downloads 332713 Flame Spread along Fuel Cylinders in High Pressures
Authors: Yanli Zhao, Jian Chen, Shouxiang Lu
Abstract:
Flame spread over solid fuels in high pressure situations such as nuclear containment shells and hyperbaric oxygen chamber has potential to result in catastrophic disaster, thus requiring best knowledge. This paper reveals experimentally the flame spread behaviors over fuel cylinders in high pressures. The fuel used in this study is polyethylene and polymethyl methacrylate cylinders with 4mm diameter. Ambient gas is fixed as air and total pressures are varied from naturally normal pressure (100kPa) to elevated pressure (400kPa). Flame appearance, burning rate and flame spread were investigated experimentally and theoretically. Results show that high pressure significantly affects the flame appearance, which is as the pressure increases, flame color changes from luminous yellow to orange and the orange part extends down towards the base of flame. Besides, the average flame width and height, and the burning rate are proved to increase with increasing pressure. What is more, flame spread rates become higher as pressure increases due to the enhancement of heat transfer from flame to solid surface in elevated pressure by performing a simplified heat balance analysis.Keywords: cylinder fuel, flame spread, heat transfer, high pressure
Procedia PDF Downloads 378712 Development of Wide Bandgap Semiconductor Based Particle Detector
Authors: Rupa Jeena, Pankaj Chetry, Pradeep Sarin
Abstract:
The study of fundamental particles and the forces governing them has always remained an attractive field of theoretical study to pursue. With the advancement and development of new technologies and instruments, it is possible now to perform particle physics experiments on a large scale for the validation of theoretical predictions. These experiments are generally carried out in a highly intense beam environment. This, in turn, requires the development of a detector prototype possessing properties like radiation tolerance, thermal stability, and fast timing response. Semiconductors like Silicon, Germanium, Diamond, and Gallium Nitride (GaN) have been widely used for particle detection applications. Silicon and germanium being narrow bandgap semiconductors, require pre-cooling to suppress the effect of noise by thermally generated intrinsic charge carriers. The application of diamond in large-scale experiments is rare owing to its high cost of fabrication, while GaN is one of the most extensively explored potential candidates. But we are aiming to introduce another wide bandgap semiconductor in this active area of research by considering all the requirements. We have made an attempt by utilizing the wide bandgap of rutile Titanium dioxide (TiO2) and other properties to use it for particle detection purposes. The thermal evaporation-oxidation (in PID furnace) technique is used for the deposition of the film, and the Metal Semiconductor Metal (MSM) electrical contacts are made using Titanium+Gold (Ti+Au) (20/80nm). The characterization comprising X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Ultraviolet (UV)-Visible spectroscopy, and Laser Raman Spectroscopy (LRS) has been performed on the film to get detailed information about surface morphology. On the other hand, electrical characterizations like Current Voltage (IV) measurement in dark and light and test with laser are performed to have a better understanding of the working of the detector prototype. All these preliminary tests of the detector will be presented.Keywords: particle detector, rutile titanium dioxide, thermal evaporation, wide bandgap semiconductors
Procedia PDF Downloads 79711 Cu₂(ZnSn)(S)₄ Electrodeposition from a Single Bath for Photovoltaic Applications
Authors: Mahfouz Saeed
Abstract:
Cu₂(ZnSn)(S)₄ (CTZS) offers potential advantages over CuInGaSe₂ (CIGS) as solar thin film because to its higher band gap. Preparing such photovoltaic materials by electrochemical techniques is particularly attractive due to the lower processing cost and the high throughput of such techniques. Several recent publications report CTZS electroplating; however, the electrochemical process still facing serious challenges such as a sulfur atomic ration which is about 50% of the total alloy. We introduce in this work an improved electrolyte composition which enables the direct electrodeposition of CTZS from a single bath. The electrolyte is significantly more dilute in comparison to common baths described in the literature. The bath composition we introduce is: 0.0032 M CuSO₄, 0.0021 M ZnSO₄, 0.0303 M SnCl₂, 0.0038 M Na₂S₂O₃, and 0.3 mM Na₂S₂O3. PHydrion is applied to buffer the electrolyte to pH=2, and 0.7 M LiCl is applied as supporting electrolyte. Electrochemical process was carried at a rotating disk electrode which provides quantitative characterization of the flow (room temperature). Comprehensive electrochemical behavior study at different electrode rotation rates are provided. The effects of agitation on atomic composition of the deposit and its adhesion to the molybdenum back contact are discussed. The post treatment annealing was conducted under sulfur atmosphere with no need for metals addition from the gas phase during annealing. The potential which produced the desired atomic ratio of CTZS at -0.82 V/NHE. Smooth deposit, with uniform composition across the sample surface and depth was obtained at 500 rpm rotation speed. Final sulfur atomic ratio was adjusted to 50.2% in order to have the desired atomic ration. The final composition was investigated using Energy-dispersive X-ray spectroscopy technique (EDS). XRD technique used to analyze CTZS crystallography and thickness. Complete and functional CTZS PV devices were fabricated by depositing all the required layers in the correct order and the desired optical properties. Acknowledgments: Case Western Reserve University for the technical help and for using their instruments.Keywords: photovoltaic, CTZS, thin film, electrochemical
Procedia PDF Downloads 240710 Analysis of Artificial Hip Joint Using Finite Element Method
Authors: Syed Zameer, Mohamed Haneef
Abstract:
Hip joint plays very important role in human beings as it takes up the whole body forces generated due to various activities. These loads are repetitive and fluctuating depending on the activities such as standing, sitting, jogging, stair casing, climbing, etc. which may lead to failure of Hip joint. Hip joint modification and replacement are common in old aged persons as well as younger persons. In this research study static and Fatigue analysis of Hip joint model was carried out using finite element software ANSYS. Stress distribution obtained from result of static analysis, material properties and S-N curve data of fabricated Ultra High molecular weight polyethylene / 50 wt% short E glass fibres + 40 wt% TiO2 Polymer matrix composites specimens were used to estimate fatigue life of Hip joint using stiffness Degradation model for polymer matrix composites. The stress distribution obtained from static analysis was found to be within the acceptable range.The factor of safety calculated from linear Palmgren linear damage rule is less than one, which indicates the component is safe under the design.Keywords: hip joint, polymer matrix composite, static analysis, fatigue analysis, stress life approach
Procedia PDF Downloads 356709 Monocrystalline Silicon Surface Passivation by Porous Silicon
Authors: Mohamed Ben Rabha
Abstract:
In this paper, we report on the effect of porous silicon (PS) treatment on the surface passivation of monocrystalline silicon (c-Si). PS film with a thickness of 80 nm was deposited by stain etching. It was demonstrated that PS coating is a very interesting solution for surface passivation. The level of surface passivation is determined by techniques based on photoconductance and FTIR. As a results, the effective minority carrier lifetime increase from 2 µs to 7 µs at ∆n=1015 cm-3 and the reflectivity reduce from 28 % to about 7 % after PS coating.Keywords: porous silicon, effective minority carrier lifetime, reflectivity
Procedia PDF Downloads 445708 Aristotle University of Thessaloniki
Authors: Ail Akbar Emamverdian, Neriman Özada, Atabak Rahimzadeh Ilkhchi, Zahra Emamverdian
Abstract:
The reverse shoulder prosthesis is an innovative procedure design to treat of (GH) joint problems with severe rotator cuff deficiency. The original reverse shoulder prosthesis was invented by France surgery in1985 and has been in clinical use in the United States in 2004. These prostheses consist of baseplate that attached to the glenoid, in order to hold a spherical component, and humeral part consist of polyethylene insert which is flat. This prosthesis is the ‘reverse’ configuration. The indications for the reverse prosthesis are: (1) treating failed hemi arthroplasty with irrecoverable rotator cuff tears, (2) relief of painful arthritis associated with cuff tear arthropathy, (3) instauration after tumor resection, (4) pseudo paralysis because of irrecoverable rotator cuff tears (5) some fractures of the shoulder which reverse shoulder prostheses is only the option for treatment. This prosthesis resulting in relief of pain and decreasing the range of motion in above indications. However, this prosthesis and its applications such as notching of the scapula, dislocation of the prosthesis parts and acromial stress fractures. In this article the reverse shoulder prostheses, indication has been reviewed. This study can make clear aspect of reverse shoulder prosthesis that can help to find some solution in future.Keywords: prostheses, complications, reverse shoulder prosthesis, indications
Procedia PDF Downloads 278707 Material Characterization of Medical Grade Woven Bio-Fabric for Use in ABAQUS *FABRIC Material Model
Authors: Lewis Wallace, William Dempster, David Nash, Alexandros Boukis, Craig Maclean
Abstract:
This paper, through traditional test methods and close adherence to international standards, presents a characterization study of a woven Polyethylene Terephthalate (PET). Testing is undergone in the axial, shear, and out-of-plane (bend) directions, and the results are fitted to the *FABRIC material model with ABAQUS FEA. The non-linear behaviors of the fabric in the axial and shear directions and behaviors on the macro scale are explored at the meso scale level. The medical grade bio-fabric is tested in untreated and heat-treated forms, and deviations are closely analyzed at the micro, meso, and macro scales to determine the effects of the process. The heat-treatment process was found to increase the stiffness of the fabric during axial and bending stiffness testing but had a negligible effect on the shear response. The ability of *FABRIC to capture behaviors unique to fabric deformation is discussed, whereby the unique phenomenological input can accurately represent the experimentally derived inputs.Keywords: experimental techniques, FEA modelling, materials characterization, post-processing techniques
Procedia PDF Downloads 95706 Multifunctional Bismuth-Based Nanoparticles as Theranostic Agent for Imaging and Radiation Therapy
Authors: Azimeh Rajaee, Lingyun Zhao, Shi Wang, Yaqiang Liu
Abstract:
In recent years many studies have been focused on bismuth-based nanoparticles as radiosensitizer and contrast agent in radiation therapy and imaging due to the high atomic number (Z = 82), high photoelectric absorption, low cost, and low toxicity. This study aims to introduce a new multifunctional bismuth-based nanoparticle as a theranostic agent for radiotherapy, computed tomography (CT) and magnetic resonance imaging (MRI). We synthesized bismuth ferrite (BFO, BiFeO3) nanoparticles by sol-gel method and surface of the nanoparticles were modified by Polyethylene glycol (PEG). After proved biocompatibility of the nanoparticles, the ability of them as contract agent in Computed tomography (CT) and magnetic resonance imaging (MRI) was investigated. The relaxation time rate (R2) in MRI and Hounsfield unit (HU) in CT imaging were increased with the concentration of the nanoparticles. Moreover, the effect of nanoparticles on dose enhancement in low energy was investigated by clonogenic assay. According to clonogenic assay, sensitizer enhancement ratios (SERs) were obtained as 1.35 and 1.76 for nanoparticle concentrations of 0.05 mg/ml and 0.1 mg/ml, respectively. In conclusion, our experimental results demonstrate that the multifunctional nanoparticles have the ability to employ as multimodal imaging and therapy to enhance theranostic efficacy.Keywords: molecular imaging, nanomedicine, radiotherapy, theranostics
Procedia PDF Downloads 316705 Star Images Constructed Based on Kramer vs. Kramer
Authors: Huailei Wen
Abstract:
The Kramers vs. Kramers (1979) is a film that comprehensively examines the role and status of women under the traditional secular vision, where women have become subordinate to the patriarchal society and family. Through the construction of the protagonist Joanna's dissatisfaction with the social and ethical status quo, her struggle to subvert the existing status of women, and her return to her own self, the story comprehensively reflects the difficult journey of women, represented by Joanna, to subvert the stereotypes and return to their own selves in the specific historical context of the time, revealing the self-value of Joanna's phenomenon to modern women.Keywords: star image, feminism, Kramers vs. Kramers, Hollywood
Procedia PDF Downloads 109704 Target Drug Delivery of Pamidronate Nanoparticles for Enhancing Osteoblastic Activity in Osteoporosis
Authors: Purnima Rawat, Divya Vohora, Sarika Gupta, Farhan J. Ahmad, Sushama Talegaonkar
Abstract:
Nanoparticles (NPs) that target bone tissue were developed using PLGA–mPEG (poly(lactic-co-glycolic-acid)–polyethylene glycol) diblock copolymers by using pamidronate as a bone-targeting moieties. These NPs are expected to enable the transport of hydrophilic drugs. The NP was prepared by in situ polymerization method, and their in- vitro characteristics were evaluated using dynamic light scattering, transmission electron microscopy (TEM) and in phosphate-buffered solution. The bone targeting potential of the NP was also evaluated on in-vitro pre-osteoblast MCT3E1 cell line using ALP activity, degree of mineralization and RT-PCR assay. The average particle size of the NP was 101.6 ± 3.7nm, zeta potential values were negative (-25±0.34mV) of the formulations and the entrapment efficiency was 93± 3.1 % obtained. The moiety of the PLGA–mPEG–pamidronate NPs exhibited the best apatite mineral binding ability in-vitro MCT3E1 pre-osteoblast cell line. Our results suggested that the developed nanoparticles may use as a delivery system for Pamidronate in bone repair and regeneration, warranting further evaluation of the treatment of bone disease.Keywords: nanoparticle, pamidronate, in-situ polymerization, osteoblast
Procedia PDF Downloads 482703 Examining the Dubbing Strategies Used in the Egyptian Dubbed Version of Mulan (1998)
Authors: Shaza Melies, Saadeya Salem, Seham Kareh
Abstract:
Cartoon films are multisemiotic as various modes integrate in the production of meaning. This study aims to examine the cultural and linguistic specific references in the Egyptian dubbed cartoon film Mulan. The study examines the translation strategies implemented in the Egyptian dubbed version of Mulan to meet the cultural preferences of the audience. The study reached the following findings: Using the traditional translation strategies does not deliver the intended meaning of the source text and causes loss in the intended humor. As a result, the findings showed that in the dubbed version, translators tend to omit, change, or add information to the target text to be accepted by the audience. The contrastive analysis of the Mulan (English and dubbed versions) proves the connotations that the dubbing has taken to be accepted by the target audience. Cartoon films are multisemiotic as various modes integrate in the production of meaning. This study aims to examine the cultural and linguistic specific references in the Egyptian dubbed cartoon film Mulan. The study examines the translation strategies implemented in the Egyptian dubbed version of Mulan to meet the cultural preferences of the audience. The study reached the following findings: Using the traditional translation strategies does not deliver the intended meaning of the source text and causes loss in the intended humor. As a result, the findings showed that in the dubbed version, translators tend to omit, change, or add information to the target text to be accepted by the audience. The contrastive analysis of the Mulan (English and dubbed versions) proves the connotations that the dubbing has taken to be accepted by the target audience.Keywords: domestication, dubbing, Mulan, translation theories
Procedia PDF Downloads 136702 Effect of Fabrication Errors on High Frequency Filter Circuits
Authors: Wesam Ali
Abstract:
This paper provides useful guidelines to the circuit designers on the magnitude of fabrication errors in multilayer millimeter-wave components that are acceptable and presents data not previously reported in the literature. A particularly significant error that was quantified was that of skew between conductors on different layers, where it was found that a skew angle of only 0.1° resulted in very significant changes in bandwidth and insertion loss. The work was supported by a detailed investigation on a 35GHz, multilayer edge-coupled band-pass filter, which was fabricated on alumina substrates using photoimageable thick film process.Keywords: fabrication errors, multilayer, high frequency band, photoimagable technology
Procedia PDF Downloads 472701 The Use of Nano-Crystalline Starch in Probiotic Yogurt and Its Effects on the Physicochemical and Biological Properties
Authors: Ali Seirafi
Abstract:
The purpose of this study was to investigate the effect and application of starch nanocrystals on physicochemical and microbial properties in the industrial production of probiotic yogurt. In this study, probiotic yoghurt was manufactured by industrial method with the optimization and control of the technological factors affecting the probabilistic biomass, using probiotic bacteria Lactobacillus acidophilus and Bifidobacterium bifidum with commonly used yogurt primers. Afterwards, the effects of different levels of fat (1.3%, 2.5 and 4%), as well as the effects of various perbiotic compounds include starch nanocrystals (0.5%, 1 and 1.5%), galactolegalosaccharide (0.5% 1 and 1.5%) and fructooligosaccharide (0.5%, 1 and 1.5%) were evaluated. In addition, the effect of packaging (polyethylene and glass) was studied, while the effect of pH changes and final acidity were studied at each stage. In this research, all experiments were performed in 3 replications and the results were analyzed in a completely randomized design with SAS version 9.1 software. The results of this study showed that the addition of starch nanocrystal compounds as well as the use of glass packaging had the most positive effects on the survival of Lactobacillus acidophilus bacteria and the addition of nano-crystals and the increase in the cooling rate of the product, had the most positive effects on the survival of bacteria Bifidobacterium bifidum.Keywords: Bifidobacterium bifidum, Lactobacillus acidophilus, prebiotics, probiotic yogurt
Procedia PDF Downloads 160700 Comparative Studies on Thin Film of ZnO Deposited by Spray Pyrolysis and Sputtering Technique
Authors: Musa Momoh, A. U. Moreh, A. M. Bayawa, Sanusi Abdullahi, I. Atiku
Abstract:
In this study, thin films of ZnO were synthesized by two techniques namely RF sputtering and spray pyrolysis. The films were deposited on corning glass. The primary materials used are 99.99% pure. The optical and structural properties of the samples were studied. It has been noted that the samples deposited by Spray pyrolysis have and average transmittance, refractive index and extinction coefficient as 80-90%, 1.33-1.44 and 13.11-27.52 respectively. Those deposited by sputtering method are 34-80%, 1.51-1.52 and 3.15-3.28. The XRD patterns of the samples show that they are polycrystalline.Keywords: zinc oxide, spray pyrolysis, rf sputtering, optical properties, electrical properties
Procedia PDF Downloads 266