Search results for: player performance prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14641

Search results for: player performance prediction

13831 Corporate Governance and Firm Performance in the UAE

Authors: Bakr Ali Al-Gamrh, Ku Nor Izah B. Ku Ismail

Abstract:

We investigate the relationship between corporate governance, leverage, risk, and firm performance. We use a firm level panel that spans the period 2008 to 2012 of all listed firms on Abu Dhabi Stock Exchange and Dubai Financial Market. After constructing an index of corporate governance strength, we find a negative effect of corporate governance on firm performance. We, however, discover that corporate governance strength indirectly improves the negative influence of leverage on firm performance in normal times. On the contrary, the results completely reversed when there is a black swan event. Corporate governance strength plays a significantly negative role in moderating the relationship between leverage and firm performance during the financial crisis. We also reveal that corporate governance strength increases firms’ risk and deteriorates performance during crisis. Results provide evidence that corporate governance indirectly plays a completely different role in different time periods.

Keywords: corporate governance, firm performance, risk, leverage, the UAE

Procedia PDF Downloads 549
13830 Prediction of Heavy-Weight Impact Noise and Vibration of Floating Floor Using Modified Impact Spectrum

Authors: Ju-Hyung Kim, Dae-Ho Mun, Hong-Gun Park

Abstract:

When an impact is applied to a floating floor, noise and vibration response of high-frequency range is reduced effectively, while amplifies the response at low-frequency range. This means floating floor can make worse noise condition when heavy-weight impact is applied. The amplified response is the result of interaction between finishing layer (mortar plate) and concrete slab. Because an impact force is not directly delivered to concrete slab, the impact force waveform or spectrum can be changed. In this paper, the changed impact spectrum was derived from several floating floor vibration tests. Based on the measured data, numerical modeling can describe the floating floor response, especially at low-frequency range. As a result, heavy-weight impact noise can be predicted using modified impact spectrum.

Keywords: floating floor, heavy-weight impact, prediction, vibration

Procedia PDF Downloads 372
13829 Machines Hacking Humans: Performances Practices in Electronic Music during the 21st Century

Authors: Zimasa Siyasanga Gysman

Abstract:

This paper assesses the history of electronic music and its performance to illustrate that machines and technology have largely influenced how humans perform electronic music. The history of electronic music mainly focuses on the composition and production of electronic music with little to no attention paid to its performance by the majority of scholars in this field. Therefore, establishing a history of performance involves investigating what compositions of electronic music called for in the production of electronic music performance. This investigation into seminal works in the history of electronic music, therefore, illustrates the aesthetics of electronic music performance and the aesthetics established in the very beginnings of electronic music performance demonstrate the aesthetics of electronic music which are still prevalent today. The key aesthetics are the repurposing of technology and the hybridisation of technology. Performers take familiar technology (technology that society has become accustomed to using in daily life), not necessarily related to music or performance and use it as an instrument in their performances, such as a rotary dial telephone. Likewise, since the beginnings of electronic music, producers have always experimented with the latest technologies available to them in their compositions and performances. The spirit of performers of electronic music, therefore, revolves around repurposing familiar technologies and using them in new ways, whilst similarly experimenting with new technologies in their performances. This process of hybridisation plays a key role in the production and performance of electronic music in the twentieth century. Through various interviews with performers of electronic music, it is shown that these aesthetics are driving performance practices in the twenty-first century.

Keywords: body, hybridisation, performance, sound

Procedia PDF Downloads 161
13828 Sustainable Human Resource Management in the Hotel Industry: Assessing the Mediating Effect of Physiological Climate on Employee Performance

Authors: Mohammad Salameh Almasarweh

Abstract:

The primary aim of this research is to explore the mediating role of physiological climate in the relationship between green HRM practices (specifically, GHRM practices, GHRM recruitment, GHRM training, GHRM performance appraisal, and GHRM empowerment) and employee performance within the hotel industry. The study revealed that green HRM practices, encompassing green recruiting, green training, green performance evaluation, and green empowerment, exerted a statistically significant influence on employee performance. A quantitative method was employed for this research, focusing on hotel managers in Jordan as the study's population. Data were collected through a questionnaire distributed to a convenience sample of 300 managers from various hotels in Jordan. The results of the study align with prior research, supporting the notion that green HRM practices positively impact both employee performance and physiological climate. Furthermore, the findings of this study indicate that physiological climate acts as a mediating factor in the relationship between green HRM practices and employee performance in Jordanian hotels.

Keywords: GHRM practices, GHRM recruitment, GHRM training, GHRM performance appraisal, GHRM empowerment, employee’s performance, physiological climate

Procedia PDF Downloads 68
13827 Quantifying Fatigue during Periods of Intensified Competition in Professional Ice Hockey Players: Magnitude of Fatigue in Selected Markers

Authors: Eoin Kirwan, Christopher Nulty, Declan Browne

Abstract:

The professional ice hockey season consists of approximately 60 regular season games with periods of fixture congestion occurring several times in the average season. These periods of congestion provide limited time for recovery, exposing the athletes to the risk of competing whilst not fully recovered. Although a body of research is growing with respect to monitoring fatigue, particularly during periods of congested fixtures in team sports such as rugby and soccer, it has received little to no attention thus far in ice hockey athletes. Consequently, there is limited knowledge on monitoring tools that might effectively detect a fatigue response and the magnitude of fatigue that can accumulate when recovery is limited by competitive fixtures. The benefit of quantifying and establishing fatigue status is the ability to optimise training and provide pertinent information on player health, injury risk, availability and readiness. Some commonly used methods to assess fatigue and recovery status of athletes include the use of perceived fatigue and wellbeing questionnaires, tests of muscular force and ratings of perceive exertion (RPE). These measures are widely used in popular team sports such as soccer and rugby and show promise as assessments of fatigue and recovery status for ice hockey athletes. As part of a larger study, this study explored the magnitude of changes in adductor muscle strength after game play and throughout a period of fixture congestion and examined the relationship between internal game load and perceived wellbeing with adductor muscle strength. Methods 8 professional ice hockey players from a British Elite League club volunteered to participate (age = 29.3 ± 2.49 years, height = 186.15 ± 6.75 cm, body mass = 90.85 ± 8.64 kg). Prior to and after competitive games each player performed trials of the adductor squeeze test at 0˚ hip flexion with the lead investigator using hand-held dynamometry. Rate of perceived exertion was recorded for each game and from data of total ice time individual session RPE was calculated. After each game players completed a 5- point questionnaire to assess perceived wellbeing. Data was collected from six competitive games, 1 practice and 36 hours post the final game, over a 10 – day period. Results Pending final data collection in February Conclusions Pending final data collection in February.

Keywords: Conjested fixtures, fatigue monitoring, ice hockey, readiness

Procedia PDF Downloads 142
13826 Analysis of Performance Improvement Factors in Supply Chain Manufacturing Using Analytic Network Process and Kaizen

Authors: Juliza Hidayati, Yesie M. Sinuhaji, Sawarni Hasibuan

Abstract:

A company producing drinking water through many incompatibility issues that affect supply chain performance. The study was conducted to determine the factors that affect the performance of the supply chain and improve it. To obtain the dominant factors affecting the performance of the supply chain used Analytic Network Process, while to improve performance is done by using Kaizen. Factors affecting the performance of the supply chain to be a reference to identify the cause of the non-conformance. Results weighting using ANP indicates that the dominant factor affecting the level of performance is the precision of the number of shipments (15%), the ability of the fulfillment of the booking amount (12%), and the number of rejected products when signing (12%). Incompatibility of the factors that affect the performance of the supply chain are identified, so that found the root cause of the problem is most dominant. Based on the weight of Risk Priority Number (RPN) gained the most dominant root cause of the problem, namely the poorly maintained engine, the engine worked for three shifts, machine parts that are not contained in the plant. Improvements then performed using the Kaizen method of systematic and sustainable.

Keywords: analytic network process, booking amount, risk priority number, supply chain performance

Procedia PDF Downloads 294
13825 Queueing Modeling of M/G/1 Fault Tolerant System with Threshold Recovery and Imperfect Coverage

Authors: Madhu Jain, Rakesh Kumar Meena

Abstract:

This paper investigates a finite M/G/1 fault tolerant multi-component machining system. The system incorporates the features such as standby support, threshold recovery and imperfect coverage make the study closer to real time systems. The performance prediction of M/G/1 fault tolerant system is carried out using recursive approach by treating remaining service time as a supplementary variable. The numerical results are presented to illustrate the computational tractability of analytical results by taking three different service time distributions viz. exponential, 3-stage Erlang and deterministic. Moreover, the cost function is constructed to determine the optimal choice of system descriptors to upgrading the system.

Keywords: fault tolerant, machine repair, threshold recovery policy, imperfect coverage, supplementary variable technique

Procedia PDF Downloads 292
13824 Predicting and Obtaining New Solvates of Curcumin, Demethoxycurcumin and Bisdemethoxycurcumin Based on the Ccdc Statistical Tools and Hansen Solubility Parameters

Authors: J. Ticona Chambi, E. A. De Almeida, C. A. Andrade Raymundo Gaiotto, A. M. Do Espírito Santo, L. Infantes, S. L. Cuffini

Abstract:

The solubility of active pharmaceutical ingredients (APIs) is challenging for the pharmaceutical industry. The new multicomponent crystalline forms as cocrystal and solvates present an opportunity to improve the solubility of APIs. Commonly, the procedure to obtain multicomponent crystalline forms of a drug starts by screening the drug molecule with the different coformers/solvents. However, it is necessary to develop methods to obtain multicomponent forms in an efficient way and with the least possible environmental impact. The Hansen Solubility Parameters (HSPs) is considered a tool to obtain theoretical knowledge of the solubility of the target compound in the chosen solvent. H-Bond Propensity (HBP), Molecular Complementarity (MC), Coordination Values (CV) are tools used for statistical prediction of cocrystals developed by the Cambridge Crystallographic Data Center (CCDC). The HSPs and the CCDC tools are based on inter- and intra-molecular interactions. The curcumin (Cur), target molecule, is commonly used as an anti‐inflammatory. The demethoxycurcumin (Demcur) and bisdemethoxycurcumin (Bisdcur) are natural analogues of Cur from turmeric. Those target molecules have differences in their solubilities. In this way, the work aimed to analyze and compare different tools for multicomponent forms prediction (solvates) of Cur, Demcur and Biscur. The HSP values were calculated for Cur, Demcur, and Biscur using the chemical group contribution methods and the statistical optimization from experimental data. The HSPmol software was used. From the HSPs of the target molecules and fifty solvents (listed in the HSP books), the relative energy difference (RED) was determined. The probability of the target molecules would be interacting with the solvent molecule was determined using the CCDC tools. A dataset of fifty molecules of different organic solvents was ranked for each prediction method and by a consensus ranking of different combinations: HSP, CV, HBP and MC values. Based on the prediction, 15 solvents were selected as Dimethyl Sulfoxide (DMSO), Tetrahydrofuran (THF), Acetonitrile (ACN), 1,4-Dioxane (DOX) and others. In a starting analysis, the slow evaporation technique from 50°C at room temperature and 4°C was used to obtain solvates. The single crystals were collected by using a Bruker D8 Venture diffractometer, detector Photon100. The data processing and crystal structure determination were performed using APEX3 and Olex2-1.5 software. According to the results, the HSPs (theoretical and optimized) and the Hansen solubility sphere for Cur, Demcur and Biscur were obtained. With respect to prediction analyses, a way to evaluate the predicting method was through the ranking and the consensus ranking position of solvates already reported in the literature. It was observed that the combination of HSP-CV obtained the best results when compared to the other methods. Furthermore, as a result of solvent selected, six new solvates, Cur-DOX, Cur-DMSO, Bicur-DOX, Bircur-THF, Demcur-DOX, Demcur-ACN and a new Biscur hydrate, were obtained. Crystal structures were determined for Cur-DOX, Biscur-DOX, Demcur-DOX and Bicur-Water. Moreover, the unit-cell parameter information for Cur-DMSO, Biscur-THF and Demcur-ACN were obtained. The preliminary results showed that the prediction method is showing a promising strategy to evaluate the possibility of forming multicomponent. It is currently working on obtaining multicomponent single crystals.

Keywords: curcumin, HSPs, prediction, solvates, solubility

Procedia PDF Downloads 63
13823 Measurement of Operational and Environmental Performance of the Coal-Fired Power Plants in India by Using Data Envelopment Analysis

Authors: Vijay Kumar Bajpai, Sudhir Kumar Singh

Abstract:

In this study, the performance analyses of the twenty five coal-fired power plants (CFPPs) used for electricity generation are carried out through various data envelopment analysis (DEA) models. Three efficiency indices are defined and pursued. During the calculation of the operational performance, energy and non-energy variables are used as input, and net electricity produced is used as desired output. CO2 emitted to the environment is used as the undesired output in the computation of the pure environmental performance while in Model-3 CO2 emissions is considered as detrimental input in the calculation of operational and environmental performance. Empirical results show that most of the plants are operating in increasing returns to scale region and Mettur plant is efficient one with regards to energy use and environment. The result also indicates that the undesirable output effect is insignificant in the research sample. The present study will provide clues to plant operators towards raising the operational and environmental performance of CFPPs.

Keywords: coal fired power plants, environmental performance, data envelopment analysis, operational performance

Procedia PDF Downloads 455
13822 A Proposal of Advanced Key Performance Indicators for Assessing Six Performances of Construction Projects

Authors: Wi Sung Yoo, Seung Woo Lee, Youn Kyoung Hur, Sung Hwan Kim

Abstract:

Large-scale construction projects are continuously increasing, and the need for tools to monitor and evaluate the project success is emphasized. At the construction industry level, there are limitations in deriving performance evaluation factors that reflect the diversity of construction sites and systems that can objectively evaluate and manage performance. Additionally, there are difficulties in integrating structured and unstructured data generated at construction sites and deriving improvements. In this study, we propose the Key Performance Indicators (KPIs) to enable performance evaluation that reflects the increased diversity of construction sites and the unstructured data generated, and present a model for measuring performance by the derived indicators. The comprehensive performance of a unit construction site is assessed based on 6 areas (Time, Cost, Quality, Safety, Environment, Productivity) and 26 indicators. We collect performance indicator information from 30 construction sites that meet legal standards and have been successfully performed. And We apply data augmentation and optimization techniques into establishing measurement standards for each indicator. In other words, the KPI for construction site performance evaluation presented in this study provides standards for evaluating performance in six areas using institutional requirement data and document data. This can be expanded to establish a performance evaluation system considering the scale and type of construction project. Also, they are expected to be used as a comprehensive indicator of the construction industry and used as basic data for tracking competitiveness at the national level and establishing policies.

Keywords: key performance indicator, performance measurement, structured and unstructured data, data augmentation

Procedia PDF Downloads 42
13821 Prediction of Nonlinear Torsional Behavior of High Strength RC Beams

Authors: Woo-Young Jung, Minho Kwon

Abstract:

Seismic design criteria based on performance of structures have recently been adopted by practicing engineers in response to destructive earthquakes. A simple but efficient structural-analysis tool capable of predicting both the strength and ductility is needed to analyze reinforced concrete (RC) structures under such event. A three-dimensional lattice model is developed in this study to analyze torsions in high-strength RC members. Optimization techniques for determining optimal variables in each lattice model are introduced. Pure torsion tests of RC members are performed to validate the proposed model. Correlation studies between the numerical and experimental results confirm that the proposed model is well capable of representing salient features of the experimental results.

Keywords: torsion, non-linear analysis, three-dimensional lattice, high-strength concrete

Procedia PDF Downloads 351
13820 Prediction of in situ Permeability for Limestone Rock Using Rock Quality Designation Index

Authors: Ahmed T. Farid, Muhammed Rizwan

Abstract:

Geotechnical study for evaluating soil or rock permeability is a highly important parameter. Permeability values for rock formations are more difficult for determination than soil formation as it is an effect of the rock quality and its fracture values. In this research, the prediction of in situ permeability of limestone rock formations was predicted. The limestone rock permeability was evaluated using Lugeon tests (in-situ packer permeability). Different sites which spread all over the Riyadh region of Saudi Arabia were chosen to conduct our study of predicting the in-situ permeability of limestone rock. Correlations were deducted between the values of in-situ permeability of the limestone rock with the value of the rock quality designation (RQD) calculated during the execution of the boreholes of the study areas. The study was performed for different ranges of RQD values measured during drilling of the sites boreholes. The developed correlations are recommended for the onsite determination of the in-situ permeability of limestone rock only. For the other sedimentary formations of rock, more studies are needed for predicting the actual correlations related to each type.

Keywords: In situ, packer, permeability, rock, quality

Procedia PDF Downloads 372
13819 Using Historical Data for Stock Prediction

Authors: Sofia Stoica

Abstract:

In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices in the past five years of ten major tech companies – Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We experimented with a variety of models– a linear regressor model, K nearest Neighbors (KNN), a sequential neural network – and algorithms - Multiplicative Weight Update, and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.

Keywords: finance, machine learning, opening price, stock market

Procedia PDF Downloads 189
13818 A Tool for Assessing Performance and Structural Quality of Business Process

Authors: Mariem Kchaou, Wiem Khlif, Faiez Gargouri

Abstract:

Modeling business processes is an essential task when evaluating, improving, or documenting existing business processes. To be efficient in such tasks, a business process model (BPM) must have high structural quality and high performance. Evidently, evaluating the performance of a business process model is a necessary step to reduce time, cost, while assessing the structural quality aims to improve the understandability and the modifiability of the BPMN model. To achieve these objectives, a set of structural and performance measures have been proposed. Since the diversity of measures, we propose a framework that integrates both structural and performance aspects for classifying them. Our measure classification is based on business process model perspectives (e.g., informational, functional, organizational, behavioral, and temporal), and the elements (activity, event, actor, etc.) involved in computing the measures. Then, we implement this framework in a tool assisting the structural quality and the performance of a business process. The tool helps the designers to select an appropriate subset of measures associated with the corresponding perspective and to calculate and interpret their values in order to improve the structural quality and the performance of the model.

Keywords: performance, structural quality, perspectives, tool, classification framework, measures

Procedia PDF Downloads 156
13817 Development of Terrorist Threat Prediction Model in Indonesia by Using Bayesian Network

Authors: Hilya Mudrika Arini, Nur Aini Masruroh, Budi Hartono

Abstract:

There are more than 20 terrorist threats from 2002 to 2012 in Indonesia. Despite of this fact, preventive solution through studies in the field of national security in Indonesia has not been conducted comprehensively. This study aims to provide a preventive solution by developing prediction model of the terrorist threat in Indonesia by using Bayesian network. There are eight stages to build the model, started from literature review, build and verify Bayesian belief network to what-if scenario. In order to build the model, four experts from different perspectives are utilized. This study finds several significant findings. First, news and the readiness of terrorist group are the most influent factor. Second, according to several scenarios of the news portion, it can be concluded that the higher positive news proportion, the higher probability of terrorist threat will occur. Therefore, the preventive solution to reduce the terrorist threat in Indonesia based on the model is by keeping the positive news portion to a maximum of 38%.

Keywords: Bayesian network, decision analysis, national security system, text mining

Procedia PDF Downloads 392
13816 Banking Performance and Political Economy: Using ARDL Model

Authors: Marwen Ghouil, Jamel Eddine Mkadmi

Abstract:

Banking performance is the pillar and goal of all banking activity and its impact on economic policy. First, researchers defined the principles for assessing and modeling bank performance, and then theories and models explaining bank performance were developed. The importance of credit as a means of financing businesses in most developing countries has led to questions about the effects of financial liberalisation on increased banking competition. In Tunisia, as in many other countries, the liberalization of financial services in general and of banks' activities has not ceased to evolve. The objective of this paper is to examine the determinants of banking performance for 8 Tunisian banks and their impact on economic policy during the Arab Spring. We used cointegration analysis and the ARDL Panel model, explaining using total assets, bank credits, guarantees, and bank size as performance drivers. The correlation analysis shows that there is a positive correlation relationship between total assets, bank credits, guarantees, and bank size and bank performance. Long-term empirical results show that bank loans, guarantees, bank size, and total assets have a positive and significant impact on bank performance. This means that bank credits, guarantees, bank size, and total assets are very important determinants of bank performance in Tunisia.

Keywords: bank performance, economic policy, finance, economic

Procedia PDF Downloads 134
13815 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan

Abstract:

Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: decision trees, neural network, myocardial infarction, Data Mining

Procedia PDF Downloads 429
13814 Development of a Fire Analysis Drone for Smoke Toxicity Measurement for Fire Prediction and Management

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

This research presents the design and creation of a drone gas analyser, aimed at addressing the need for independent data collection and analysis of gas emissions during large-scale fires, particularly wasteland fires. The analyser drone, comprising a lightweight gas analysis system attached to a remote-controlled drone, enables the real-time assessment of smoke toxicity and the monitoring of gases released into the atmosphere during such incidents. The key components of the analyser unit included two gas line inlets connected to glass wool filters, a pump with regulated flow controlled by a mass flow controller, and electrochemical cells for detecting nitrogen oxides, hydrogen cyanide, and oxygen levels. Additionally, a non-dispersive infrared (NDIR) analyser is employed to monitor carbon monoxide (CO), carbon dioxide (CO₂), and hydrocarbon concentrations. Thermocouples can be attached to the analyser to monitor temperature, as well as McCaffrey probes combined with pressure transducers to monitor air velocity and wind direction. These additions allow for monitoring of the large fire and can be used for predictions of fire spread. The innovative system not only provides crucial data for assessing smoke toxicity but also contributes to fire prediction and management. The remote-controlled drone's mobility allows for safe and efficient data collection in proximity to the fire source, reducing the need for human exposure to hazardous conditions. The data obtained from the gas analyser unit facilitates informed decision-making by emergency responders, aiding in the protection of both human health and the environment. This abstract highlights the successful development of a drone gas analyser, illustrating its potential for enhancing smoke toxicity analysis and fire prediction capabilities. The integration of this technology into fire management strategies offers a promising solution for addressing the challenges associated with wildfires and other large-scale fire incidents. The project's methodology and results contribute to the growing body of knowledge in the field of environmental monitoring and safety, emphasizing the practical utility of drones for critical applications.

Keywords: fire prediction, drone, smoke toxicity, analyser, fire management

Procedia PDF Downloads 89
13813 The Impact of Change Management on Employee Satisfaction and Engagement

Authors: Ju-Chun Chien

Abstract:

The main purpose of this study was to figure out employees’ attitudes toward the new performance appraisal program and to examine whether three different types of appraisal processes differentially affected job satisfaction and employee engagement. The second purpose of this study was to investigate the relationship between performance appraisal reform, job satisfaction, and employee engagement. A large polyester and textile corporation had 2046 non-operational employees in February 2014. The valid participants were 1474 (72.04%) in this study. Data analysis included descriptive statistics, one-way ANOVA, one-way MANOVA, Pearson correlation, Content Validity Index, the exploratory factor analysis, and reliability analysis. The general results showed that employees who received the new performance appraisal program viewed the program more positively and showed more job satisfaction than those who did not. In particular, the implementation effects of this new performance appraisal program were most highly rated by employees who used the KPI to evaluate their job performance. Moreover, employees’ attitudes toward the new performance appraisal program were positively related to their job satisfaction and work engagement. On the other hand, most employees regarded themselves as engaged workers. To sum up, the HR department of this company has made an effective contribution to performance appraisal reforms.

Keywords: change management, employee engagement, job satisfaction, performance appraisal reform

Procedia PDF Downloads 332
13812 The Prognostic Prediction Value of Positive Lymph Nodes Numbers for the Hypopharyngeal Squamous Cell Carcinoma

Authors: Wendu Pang, Yaxin Luo, Junhong Li, Yu Zhao, Danni Cheng, Yufang Rao, Minzi Mao, Ke Qiu, Yijun Dong, Fei Chen, Jun Liu, Jian Zou, Haiyang Wang, Wei Xu, Jianjun Ren

Abstract:

We aimed to compare the prognostic prediction value of positive lymph node number (PLNN) to the American Joint Committee on Cancer (AJCC) tumor, lymph node, and metastasis (TNM) staging system for patients with hypopharyngeal squamous cell carcinoma (HPSCC). A total of 826 patients with HPSCC from the Surveillance, Epidemiology, and End Results database (2004–2015) were identified and split into two independent cohorts: training (n=461) and validation (n=365). Univariate and multivariate Cox regression analyses were used to evaluate the prognostic effects of PLNN in patients with HPSCC. We further applied six Cox regression models to compare the survival predictive values of the PLNN and AJCC TNM staging system. PLNN showed a significant association with overall survival (OS) and cancer-specific survival (CSS) (P < 0.001) in both univariate and multivariable analyses, and was divided into three groups (PLNN 0, PLNN 1-5, and PLNN>5). In the training cohort, multivariate analysis revealed that the increased PLNN of HPSCC gave rise to significantly poor OS and CSS after adjusting for age, sex, tumor size, and cancer stage; this trend was also verified by the validation cohort. Additionally, the survival model incorporating a composite of PLNN and TNM classification (C-index, 0.705, 0.734) performed better than the PLNN and AJCC TNM models. PLNN can serve as a powerful survival predictor for patients with HPSCC and is a surrogate supplement for cancer staging systems.

Keywords: hypopharyngeal squamous cell carcinoma, positive lymph nodes number, prognosis, prediction models, survival predictive values

Procedia PDF Downloads 154
13811 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness

Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers

Abstract:

The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).

Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning

Procedia PDF Downloads 286
13810 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning

Authors: Pei Yi Lin

Abstract:

Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.

Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model

Procedia PDF Downloads 75
13809 Estimation of Functional Response Model by Supervised Functional Principal Component Analysis

Authors: Hyon I. Paek, Sang Rim Kim, Hyon A. Ryu

Abstract:

In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised functional principal component analysis method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method.

Keywords: supervised, functional principal component analysis, functional response, functional linear regression

Procedia PDF Downloads 75
13808 Wind Turbine Wake Prediction and Validation under a Stably-Stratified Atmospheric Boundary Layer

Authors: Yilei Song, Linlin Tian, Ning Zhao

Abstract:

Turbulence energetics and structures in the wake of large-scale wind turbines under the stably-stratified atmospheric boundary layer (SABL) can be complicated due to the presence of low-level jets (LLJs), a region of higher wind speeds than the geostrophic wind speed. With a modified one-k-equation, eddy viscosity model specified for atmospheric flows as the sub-grid scale (SGS) model, a realistic atmospheric state of the stable ABL is well reproduced by large-eddy simulation (LES) techniques. Corresponding to the precursor stably stratification, the detailed wake properties of a standard 5-MW wind turbine represented as an actuator line model are provided. An engineering model is proposed for wake prediction based on the simulation statistics and gets validated. Results confirm that the proposed wake model can provide good predictions for wind turbines under the SABL.

Keywords: large-eddy simulation, stably-stratified atmospheric boundary layer, wake model, wind turbine wake

Procedia PDF Downloads 174
13807 Proposing an Optimal Pattern for Evaluating the Performance of the Staff Management of the Water and Sewage Organization in Western Azerbaijan Province, Iran

Authors: Tohid Eskandarzadeh, Nader Bahlouli, Turaj Behnam, Azra Jafarzadeh

Abstract:

The purpose of the study reported in this paper was to propose an optimal pattern to evaluate the staff management performance of the water and sewage organization. The performance prism-model was used to evaluate the following significant dimensions of performance: organizational strategies, organizational processes, organization capabilities, stakeholders’ partnership and satisfaction. In the present study, a standard, valid and reliable questionnaire was used to obtain data about the five dimensions of the performance prism model. 169 sample respondents were used for responding the questionnaire who were selected from the staff of water and waste-water organization in western Azerbaijan, Iran. Also, Alpha coefficient was used to check the reliability of the data-collection instrument which was measured to be beyond 0.7. The obtained data were statistically analyzed by means of SPSS version 18. The results obtained from the data analysis indicated that the performance of the staff management of the water and waste-water organization in western Azerbaijan was acceptable in terms of organizational strategies, organizational process, stakeholders’ partnership and satisfaction. Nevertheless, it was found that the performance of the staff management with respect to organizational abilities was average. Indeed, the researchers drew the conclusion that the current performance of the staff management in this organization in western Azerbaijan was less than ideal performance.

Keywords: performance evaluation, performance prism model, water, waste-water organization

Procedia PDF Downloads 328
13806 Thermal Performance of Radial Heat Sinks for LED Applications

Authors: Jongchul Park, Chan Byon

Abstract:

In this study, the thermal performance of radial heat sinks for LED applications is investigated numerically and experimentally. The effect of geometrical parameters such as inner radius, fin height, fin length, and fin spacing, as well as the Elenbaas number, is considered. In addition, the effects of augmentation of concentric ring, perforation, and duct are extensively explored in order to enhance the thermal performance of conventional radial heat sink. The results indicate that the Elenbaas number and the fin radius have a significant effect on the thermal performance of the heat sink. The concentric ring affects the performance much, but the degree of affection is highly dependent on the orientation. The perforation always brings about higher thermal performance. The duct can effectively prevent the bypass of the natural convection flow, which in turn reduces the thermal resistance of the radial heat sink significantly.

Keywords: heat transfer, radial heat sink, LED, Elenbaas

Procedia PDF Downloads 404
13805 Managing High-Performance Virtual Teams

Authors: Mehdi Rezai, Asghar Zamani

Abstract:

Virtual teams are a reality in today’s fast-paced world. With the possibility of commonly using common resources, an increase of inter-organizational projects, cooperation, outsourcing, and the increase in the number of people who work remotely or flexitime, an extensive and active presence of high-performance teams is a must. Virtual teams are a challenge by themselves. Their members remove the barriers of cultures, time regions and organizations, and they often communicate through electronic devices over considerable distances. Firstly, we examine the management of virtual teams by considering different issues such as cultural and personal diversities, communications and arrangement issues. Then we will examine individuals, processes and the existing tools in a team. The main challenge is managing high-performance virtual teams. First of all, we must examine the concept of performance. Then, we must focus on teams and the best methods of managing them. Constant improvement of performance, together with precisely regulating every individual’s method of working, increases the levels of performance in the course of time. High-performance teams exploit every issue as an opportunity for achieving high performance. And we know that doing projects with high performance is among every organization or team’s objectives. Performance could be measured using many criteria, among which carrying out projects in time, the satisfaction of stakeholders, and not exceeding budgets could be named. Elements such as clear objectives, clearly-defined roles and responsibilities, effective communications, and commitment to collaboration are essential to a team’s effectiveness. Finally, we will examine roles, systems, processes and will carry out a cause-and-effect analysis of different criteria in improving a team’s performance.

Keywords: virtual teams, performance, management, process, improvement, effectiveness

Procedia PDF Downloads 148
13804 Board of Directors Gender Diversity, Board Committees and Financial Performance: Evidence from Nigeria

Authors: Aliyu Aminu Baba, Yahaya Danjuma, Ahmad Sule Liman-Katagum

Abstract:

This paper examines the effects of the board of directors’ diversity on firm performance. We investigate the relationship between the number of women directors on the board and important board committees and financial performance measured as return on assets. Our statistical analysis supports the theoretical position of the effect diversity on financial performance. These studies enhanced the previous studies on the board of director’s gender diversity, board committees, and its impacts on firm financial performance. The study uses data from eighteen (18) Nigerian commercial banks. The study finds that banks with a higher number of females directors on board and board committees have higher Earning per share(EPS)) and Return on Assets (ROA). It also finds that some banks did not even have a single female on its corporate board. Evidence imply that decisions concerning the appointment of women to corporate boards should be on criteria and financial performance. It is recommended that banks can enhance their financial performance by having more female directors on their corporate board.

Keywords: board of directors, gender diversity, board committees, financial performance

Procedia PDF Downloads 323
13803 Monocular Depth Estimation Benchmarking with Thermal Dataset

Authors: Ali Akyar, Osman Serdar Gedik

Abstract:

Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction.

Keywords: monocular depth estimation, thermal dataset, benchmarking, vision transformers

Procedia PDF Downloads 32
13802 Container Chaos: The Impact of a Casual Game on Learning and Behavior

Authors: Lori L. Scarlatos, Ryan Courtney

Abstract:

This paper explores the impact that playing a casual game can have on a player's learning and subsequent behavior. A casual mobile game, Container Chaos, was created to teach undergraduate students about the carbon footprint of various disposable beverage containers. Learning was tested with a short quiz, and behavior was tested by observing which beverage containers players choose when offered a drink and a snack. The game was tested multiple times, under a variety of different circumstances. Findings of these tests indicate that, with extended play over time, players can learn new information and sometimes even change their behavior as a result. This has implications for how other casual games can be used to teach concepts and possibly modify behavior.

Keywords: behavior, carbon footprint, casual games, environmental impact, material sciences

Procedia PDF Downloads 160