Search results for: plant classification
4799 Sustainable Agriculture Practices Using Bacterial-mediated Alleviation of Salinity Stress in Crop Plants
Authors: Mohamed Trigui, Fatma Masmoudi, Imen Zouari
Abstract:
Massive utilizations of chemical fertilizer and chemical pesticides in agriculture sector to improve the farming productivity have created increasing environmental damages. Then, agriculture must become sustainable, focusing on production systems that respect the environment and help to reduce climate change. Isolation and microbial identification of new bacterial strains from naturally saline habitats and compost extracts could be a prominent way in pest management and crop production under saline conditions. In this study, potential mechanisms involved in plant growth promotion and suppressive activity against fungal diseases of a compost extract produced from poultry manure/olive husk compost and halotolerant and halophilic bacterial strains under saline stress were investigated. On the basis of the antimicrobial tests, different strains isolated from Sfax solar saltern (Tunisia) and from compost extracts were selected and tested for their plant growth promoting traits, such as siderophores production, nitrogen fixation, phosphate solubilization and the production of extracellular hydrolytic enzymes (protease and lipase) under in-vitro conditions. Among 450 isolated bacterial strains, 16 isolates showed potent antifungal activity against the tested plant pathogenic fungi. Their identification based on 16S rRNA gene sequence revealed they belonged to different species. Some of these strains were also characterized for their plant growth promoting capacities. Obtained results showed the ability of four strains belonging to Bacillus genesis to ameliorate germination rate and root elongation compared to the untreated positive controls. Combinatorial capacity of halotolerant bacteria with antimicrobial activity and plant growth promoting traits could be promising sources of interesting bioactive substances under saline stress.Keywords: abiotic stress, biofertilizer, biotic stress, compost extract, halobacteria, plant growth promoting (PGP), soil fertility
Procedia PDF Downloads 914798 Improving the Efficiency of Pelton Wheel and Cross-Flow Micro Hydro Power Plants
Authors: Loice K. Gudukeya, Charles Mbohwa
Abstract:
The research investigates hydropower plant efficiency with a view to improving the power output while keeping the overall project cost per kilowatt produced within an acceptable range. It reviews the commonly used Pelton and Cross-flow turbines which are employed in the region for micro-hydro power plants. Turbine parameters such as surface texture, material used and fabrication processes are dealt with the intention of increasing the efficiency by 20 to 25 percent for the micro hydro-power plants.Keywords: hydro, power plant, efficiency, manufacture
Procedia PDF Downloads 4304797 Treatment-Bed of Coal Fly Ash for Dyes and Pigments Industry
Authors: Mir Shahnawaz Jagirani, Aziza Aftab, Noorullah Soomro, Syed Farman Ali Shah, Kambiz Vafai
Abstract:
Utilization of indigenous adsorbent bed of power plant waste ash briquettes, a porous medium was used first time in Pakistan for low cost treatment facility for the toxic effluent of a dyes manufacturing plant effectively and economically. This could replace costly treatment facilities, such as reverse osmosis (RO) and the beds, containing imported and commercial grade expensive Granulated Activated Carbon (GAC).This bed was coupled with coagulants (Ferrous Sulphate and Lime) and found more effective. The coal fired ash (CFA) was collected from coal fired boilers of Lakhra Power Generation Company, Jamshoro, Pakistan. The use of this bed resolved the disposal and environmental issues and treated waste water of chemicals, dyes and pigment manufacturing plant. The bed reduced COD, color, turbidity and TSS remarkably. An adsorptive capacity and chemical behavior of fly ash bed was also studied. In coagulation treatment alone, elimination of COD by 32%, color by 48%, and turbidity by 50% and TSS by 51% respectively. When the bed was coupled with coagulants, it resulted an excessive removal of Color 88%, TSS 92%, COD 67% and Turbidity 89%. Its regeneration was also inexpensive and simple.Keywords: coal fly ash, spheres, dyes, wastewater
Procedia PDF Downloads 3514796 Suitable Indoor Plants for Green Office Development in Faculty of Science and Technology, Suan Sunandha Rajabhat University, Thailand
Authors: Tatsanawalai Utarasakul
Abstract:
Nowadays, green office principles are very broadly initiated in many offices, organizations, as well as in universities. The concepts of green office are composed of seven prominent issues. One of them, physical implementation, is to develop a pleasant atmosphere for staff in the faculty with selected optimum plant species for the office. 50 species from NASA research and other documents were studied for the selection criteria of plants which were appropriate for specific locations in order to reduce indoor air pollutants such as formaldehyde, benzene, and trichloroethylene. For the copy and examination preparation room in which particulate matter and volatile organic compounds can be found, some plants such as peace lily, gerbera daisy, and bamboo palm should be set, which are very effective in treating trichloroethylene. For common rooms and offices where formaldehyde can be found, which is generated from many building materials, bamboo palm, mother-in-law's tongue, peace lily, striped dracaena, cornstalk plant, golden pathos, and green spider plant should be set.Keywords: indoor plants, indoor air quality, phytoremediation, green office
Procedia PDF Downloads 4574795 Using the Smith-Waterman Algorithm to Extract Features in the Classification of Obesity Status
Authors: Rosa Figueroa, Christopher Flores
Abstract:
Text categorization is the problem of assigning a new document to a set of predetermined categories, on the basis of a training set of free-text data that contains documents whose category membership is known. To train a classification model, it is necessary to extract characteristics in the form of tokens that facilitate the learning and classification process. In text categorization, the feature extraction process involves the use of word sequences also known as N-grams. In general, it is expected that documents belonging to the same category share similar features. The Smith-Waterman (SW) algorithm is a dynamic programming algorithm that performs a local sequence alignment in order to determine similar regions between two strings or protein sequences. This work explores the use of SW algorithm as an alternative to feature extraction in text categorization. The dataset used for this purpose, contains 2,610 annotated documents with the classes Obese/Non-Obese. This dataset was represented in a matrix form using the Bag of Word approach. The score selected to represent the occurrence of the tokens in each document was the term frequency-inverse document frequency (TF-IDF). In order to extract features for classification, four experiments were conducted: the first experiment used SW to extract features, the second one used unigrams (single word), the third one used bigrams (two word sequence) and the last experiment used a combination of unigrams and bigrams to extract features for classification. To test the effectiveness of the extracted feature set for the four experiments, a Support Vector Machine (SVM) classifier was tuned using 20% of the dataset. The remaining 80% of the dataset together with 5-Fold Cross Validation were used to evaluate and compare the performance of the four experiments of feature extraction. Results from the tuning process suggest that SW performs better than the N-gram based feature extraction. These results were confirmed by using the remaining 80% of the dataset, where SW performed the best (accuracy = 97.10%, weighted average F-measure = 97.07%). The second best was obtained by the combination of unigrams-bigrams (accuracy = 96.04, weighted average F-measure = 95.97) closely followed by the bigrams (accuracy = 94.56%, weighted average F-measure = 94.46%) and finally unigrams (accuracy = 92.96%, weighted average F-measure = 92.90%).Keywords: comorbidities, machine learning, obesity, Smith-Waterman algorithm
Procedia PDF Downloads 2974794 A Novel Method for Face Detection
Authors: H. Abas Nejad, A. R. Teymoori
Abstract:
Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, etc. in the limited amount of training data. Moreover, processing each and every frame to classify emotions is not required, as the user stays neutral for the majority of the time in usual applications like video chat or photo album/web browsing. Detecting neutral state at an early stage, thereby bypassing those frames from emotion classification would save the computational power. In this work, we propose a light-weight neutral vs. emotion classification engine, which acts as a preprocessor to the traditional supervised emotion classification approaches. It dynamically learns neutral appearance at Key Emotion (KE) points using a textural statistical model, constructed by a set of reference neutral frames for each user. The proposed method is made robust to various types of user head motions by accounting for affine distortions based on a textural statistical model. Robustness to dynamic shift of KE points is achieved by evaluating the similarities on a subset of neighborhood patches around each KE point using the prior information regarding the directionality of specific facial action units acting on the respective KE point. The proposed method, as a result, improves ER accuracy and simultaneously reduces the computational complexity of ER system, as validated on multiple databases.Keywords: neutral vs. emotion classification, Constrained Local Model, procrustes analysis, Local Binary Pattern Histogram, statistical model
Procedia PDF Downloads 3384793 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals
Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer
Abstract:
Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).Keywords: diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography (VOG)
Procedia PDF Downloads 2594792 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources
Authors: Mustafa Alhamdi
Abstract:
Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification
Procedia PDF Downloads 1504791 Firefighting Means in Food Industries
Authors: Racim Rifaat Ferdjani, Zineddine Chetoui
Abstract:
The goal of our work is to provide a tool that helps control and ensures a global view of the means of firefighting (MLCI) in a food production plant (for example Hamoud Boualem plant). We divided the site into 4 zones, then we identified the firefighting means (MLCI) present in each zone, taking into account their type, weight, location, and fire class as well as their compliance with respect to the regulations in force while assigning them an alphanumeric reference which makes it possible to deduce everything. Thus, the use of a tool in the form of an Excel table was made concrete, and an average compliance rate of 45% was therefore obtained.Keywords: MLCI, firefighting means, Hamoud, Boualem
Procedia PDF Downloads 1244790 Environment Management Practices at Oil and Natural Gas Corporation Hazira Gas Processing Complex
Authors: Ashish Agarwal, Vaibhav Singh
Abstract:
Harmful emissions from oil and gas processing facilities have long remained a matter of concern for governments and environmentalists throughout the world. This paper analyses Oil and Natural Gas Corporation (ONGC) gas processing plant in Hazira, Gujarat, India. It is the largest gas-processing complex in the country designed to process 41MMSCMD sour natural gas & associated sour condensate. The complex, sprawling over an area of approximate 705 hectares is the mother plant for almost all industries at Hazira and enroute Hazira Bijapur Jagdishpur pipeline. Various sources of pollution from each unit starting from Gas Terminal to Dew Point Depression unit and Caustic Wash unit along the processing chain were examined with the help of different emission data obtained from ONGC. Pollution discharged to the environment was classified into Water, Air, Hazardous Waste and Solid (Non-Hazardous) Waste so as to analyze each one of them efficiently. To protect air environment, Sulphur recovery unit along with automatic ambient air quality monitoring stations, automatic stack monitoring stations among numerous practices were adopted. To protect water environment different effluent treatment plants were used with due emphasis on aquaculture of the nearby area. Hazira plant has obtained the authorization for handling and disposal of five types of hazardous waste. Most of the hazardous waste were sold to authorized recyclers and the rest was given to Gujarat Pollution Control Board authorized vendors. Non-Hazardous waste was also handled with an overall objective of zero negative impact on the environment. The effect of methods adopted is evident from emission data of the plant which was found to be well under Gujarat Pollution Control Board limits.Keywords: sulphur recovery unit, effluent treatment plant, hazardous waste, sour gas
Procedia PDF Downloads 2264789 6D Posture Estimation of Road Vehicles from Color Images
Authors: Yoshimoto Kurihara, Tad Gonsalves
Abstract:
Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.Keywords: 6D posture estimation, image recognition, deep learning, AlexNet
Procedia PDF Downloads 1554788 Cloning and Functional Analysis of NtPIN1a Promoter Under Various Abiotic Stresses in Nicotiana Tabacum
Authors: Zia Ullah, Muhammad Asim, Shi Sujuan, Rayyan Khan, Aaqib Shaheen, LIU Haobao
Abstract:
The plant-specific auxin efflux proteins PIN-FORMED (PIN) have been well depicted in many plant species for their essential roles in regulating the transport of auxins in several phases of plant growth. Little is known about the various functions of the PIN family genes in the Nicotiana tabacum (N. tabacum) species during plant growth. To define the expression pattern of the NtPIN1a gene under abiotic stresses and hormone treatment, transgenic tobacco with promoterNtPIN1a::GUS construct was employed. Comprehensive computational analyses of the NtPIN1a promoter confirmed the existence of common core promoter elements including CAAT-box, TATA-box, hormone, and abiotic stress-responsive elements such as ABRE, P-box, MYC, MYB, ARE, and GC-motifs. The transgenic plants with the promoter of NtPIN1a displayed a promising expression of β-glucuronidase (GUS) in germinating seeds, root tips, shoot-apex, and developing leaves under optimal conditions. While the differential expression of GUS in moderate salt, drought, low potassium stresses, and externally high auxin level at two different time points, suggested NtPIN1a played a key role in growth processes and the plants’ response to abiotic stresses. This analysis provides a foundation for more in-depth discoveries of the biological functions of NtPIN1a in Nicotiana species and this promoter may be employed in genetic engineering of other crops for enhanced stress tolerance.Keywords: tobacco, nicotiana tabacum, pin, promoter, GUS, abiotic stresses, auxin
Procedia PDF Downloads 954787 Bioengineering of a Plant System to Sustainably Remove Heavy Metals and to Harvest Rare Earth Elements (REEs) from Industrial Wastes
Authors: Edmaritz Hernandez-Pagan, Kanjana Laosuntisuk, Alex Harris, Allison Haynes, David Buitrago, Michael Kudenov, Colleen Doherty
Abstract:
Rare Earth Elements (REEs) are critical metals for modern electronics, green technologies, and defense systems. However, due to their dispersed nature in the Earth’s crust, frequent co-occurrence with radioactive materials, and similar chemical properties, acquiring and purifying REEs is costly and environmentally damaging, restricting access to these metals. Plants could serve as resources for bioengineering REE mining systems. Although there is limited information on how REEs affect plants at a cellular and molecular level, plants with high REE tolerance and hyperaccumulation have been identified. This dissertation aims to develop a plant-based system for harvesting REEs from industrial waste material with a focus on Acid Mine Drainage (AMD), a toxic coal mining product. The objectives are 1) to develop a non-destructive, in vivo detection method for REE detection in Phytolacca plants (REE hyperaccumulator) plants utilizing fluorescence spectroscopy and with a primary focus on dysprosium, 2) to characterize the uptake of REE and Heavy Metals in Phytolacca americana and Phytolacca acinosa (REE hyperaccumulator) in AMD for potential implementation in the plant-based system, 3) to implement the REE detection method to identify REE-binding proteins and peptides for potential enhancement of uptake and selectivity for targeted REEs in the plants implemented in the plant-based system. The candidates are known REE-binding peptides or proteins, orthologs of known metal-binding proteins from REE hyperaccumulator plants, and novel proteins and peptides identified by comparative plant transcriptomics. Lanmodulin, a high-affinity REE-binding protein from methylotrophic bacteria, is used as a benchmark for the REE-protein binding fluorescence assays and expression in A. thaliana to test for changes in REE plant tolerance and uptake.Keywords: phytomining, agromining, rare earth elements, pokeweed, phytolacca
Procedia PDF Downloads 154786 Phytosynthesized Iron Nanoparticles Elicited Growth and Biosynthesis of Steviol Glycosides in Invitro Stevia rebaudiana Plant Cultures
Authors: Amir Ali, Laura Yael Mendoza
Abstract:
The application of nanomaterials is becoming the most effective strategy of elicitation to produce a desirable level of plant biomass with complex medicinal compounds. This study was designed to check the influence of phytosynthesized iron nanoparticles (FeNPs) on physical growth characteristics, antioxidant status, and production of steviol glycosides of in vitro grown Stevia rebaudiana. Effect of different concentrations of iron nanoparticles replacement of iron sulfate in MS medium (stock solution) on invitro stevia plant growth following positive control (MS basal medium), negative control (iron sulfate devoid medium), iron sulfate devoid MS medium and supplemented with FeNPs at different concentrations (5.6 mg/L, 11.2 mg/L, 16.8 mg/L, 22.4 mg/L) was evaluated. The iron deficiency leads to a drastic reduction in plant growth. In contrast, applying FeNPs leads to improvement in plant height, leave diameter, improved leave morphology, etc., in a concentration-dependent manner. Furthermore, the stress caused by FeNPs at 16.8 mg/L in cultures produced higher levels of total phenolic content (3.7 ± 0.042 mg/g dry weight: DW) and total flavonoid content (1.9 ± 0.022 mg/g DW and antioxidant activity (78 ± 4.6%). In addition, plants grown in the presence of FeNPs at 22.4 mg/L resulted in higher enzymatic antioxidant activities (SOD = 3.5 ± 0.042 U/mg; POD = 2.6 ± 0.026 U/mg; CAT = 2.8 ± 0.034 U/mg and APx = 3.6 ± 0.043 U/ mg), respectively. Furthermore, exposure to a higher dose of FeNPs (22.4 mg/L) exhibited the maximum amount of stevioside (stevioside: 4.6 ± 0.058 mg/g (DW) and rebaudioside A: 4.9 ± 0.068 mg/g DW) as compared to other doses. The current investigation confirms the effectiveness of FeNPs in growth media. It offers a suitable prospect for commercially desirable production of S. rebaudiana biomass with higher sweet glycosides profiles in vitro.Keywords: cell culture, stevia, iron nanoparticles, antioxidants
Procedia PDF Downloads 964785 Urban Vegetative Planning for Ambient Ozone Pollution: An Eco-Management Approach
Authors: M. Anji Reddy, R. Uma Devi
Abstract:
Environmental planning for urban development is very much needed to reduce air pollution through the enhancement of vegetative cover in the cities like Hyderabad. This can be mainly based on the selection of appropriate native plant species as bioindicators to assess the impact of ambient Ozone. In the present study, tolerant species are suggested aimed to reduce the magnitude of ambient ozone concentrations which not only increase eco-friendly vegetation but also moderate air pollution. Hyderabad city is divided into 5 zones based on Land Use/Land Cover category further each zone divided into residential, traffic, industrial, and peri-urban areas. Highest ambient ozone levels are recorded in Industrial areas followed by traffic areas in the entire study area ( > 180 µg/m3). Biomonitoring of selected sixteen local urban plant species with the help of Air Pollution Tolerance Index (APTI) showed its susceptibility to air pollution. Statistical regression models in between the tolerant plant species and ambient ozone levels suggested five plant species namely Azardirachta indica A. Juss which have a high tolerant response to ambient ozone followed by Delonix regia Hook. along with Millingtonia hortensis L.f., Alestonia Scholaries L., and Samania saman Jacq. in the industrial and traffic areas of the study area to mitigate ambient Ozone pollution and also to improve urban greenery.Keywords: air pollution tolerance index, bio-indicators, eco-friendly vegetation, urban greenery
Procedia PDF Downloads 4544784 Gender Recognition with Deep Belief Networks
Authors: Xiaoqi Jia, Qing Zhu, Hao Zhang, Su Yang
Abstract:
A gender recognition system is able to tell the gender of the given person through a few of frontal facial images. An effective gender recognition approach enables to improve the performance of many other applications, including security monitoring, human-computer interaction, image or video retrieval and so on. In this paper, we present an effective method for gender classification task in frontal facial images based on deep belief networks (DBNs), which can pre-train model and improve accuracy a little bit. Our experiments have shown that the pre-training method with DBNs for gender classification task is feasible and achieves a little improvement of accuracy on FERET and CAS-PEAL-R1 facial datasets.Keywords: gender recognition, beep belief net-works, semi-supervised learning, greedy-layer wise RBMs
Procedia PDF Downloads 4524783 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification
Authors: Oumaima Khlifati, Khadija Baba
Abstract:
Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.Keywords: distress pavement, hyperparameters, automatic classification, deep learning
Procedia PDF Downloads 934782 The Asymmetric Proximal Support Vector Machine Based on Multitask Learning for Classification
Authors: Qing Wu, Fei-Yan Li, Heng-Chang Zhang
Abstract:
Multitask learning support vector machines (SVMs) have recently attracted increasing research attention. Given several related tasks, the single-task learning methods trains each task separately and ignore the inner cross-relationship among tasks. However, multitask learning can capture the correlation information among tasks and achieve better performance by training all tasks simultaneously. In addition, the asymmetric squared loss function can better improve the generalization ability of the models on the most asymmetric distributed data. In this paper, we first make two assumptions on the relatedness among tasks and propose two multitask learning proximal support vector machine algorithms, named MTL-a-PSVM and EMTL-a-PSVM, respectively. MTL-a-PSVM seeks a trade-off between the maximum expectile distance for each task model and the closeness of each task model to the general model. As an extension of the MTL-a-PSVM, EMTL-a-PSVM can select appropriate kernel functions for shared information and private information. Besides, two corresponding special cases named MTL-PSVM and EMTLPSVM are proposed by analyzing the asymmetric squared loss function, which can be easily implemented by solving linear systems. Experimental analysis of three classification datasets demonstrates the effectiveness and superiority of our proposed multitask learning algorithms.Keywords: multitask learning, asymmetric squared loss, EMTL-a-PSVM, classification
Procedia PDF Downloads 1334781 Metabolic Profiling of Populus trichocarpa Family 1 UDP-Glycosyltransferases
Authors: Patricia M. B. Saint-Vincent, Anna Furches, Stephanie Galanie, Erica Teixeira Prates, Piet Jones, Nancy Engle, David Kainer, Wellington Muchero, Daniel Jacobson, Timothy J. Tschaplinski
Abstract:
Uridine diphosphate-glycosyltransferases (UGTs) are enzymes that catalyze sugar transfer to a variety of plant metabolites. UGT substrates, which include plant secondary metabolites involved in lignification, demonstrate new activities and incorporation when glycosylated. Knowledge of UGT function, substrate specificity, and enzyme products is important for plant engineering efforts, especially related to increasing plant biomass through lignification. UGTs in Populus trichocarpa, a biofuel feedstock, and model woody plant, were selected from a pool of gene candidates using rapid prioritization strategies. A functional genomics workflow, consisting of a metabolite genome-wide association study (mGWAS), expression of synthetic codon-optimized genes, and high-throughput biochemical assays with mass spectrometry-based analysis, was developed for determining the substrates and products of previously-uncharacterized enzymes. A total of 40 UGTs from P. trichocarpa were profiled, and the biochemical assay results were compared to predicted mGWAS connections. Assay results confirmed seven of 11 leaf mGWAS associations and demonstrated varying levels of substrate specificity among candidate UGTs. P. trichocarpa UGT substrate processing confirms the role of these newly-characterized enzymes in lignan, flavonoid, and phytohormone metabolism, with potential implications for cell wall biosynthesis, nitrogen uptake, and biotic and abiotic stress responses.Keywords: Populus, metabolite-gene associations, GWAS, bio feedstocks, glycosyltransferase
Procedia PDF Downloads 1144780 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture
Authors: Thrivikraman Aswathi, S. Advaith
Abstract:
As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.Keywords: GAN, transformer, classification, multivariate time series
Procedia PDF Downloads 1304779 Blame Classification through N-Grams in E-Commerce Customer Reviews
Authors: Subhadeep Mandal, Sujoy Bhattacharya, Pabitra Mitra, Diya Guha Roy, Seema Bhattacharya
Abstract:
E-commerce firms allow customers to evaluate and review the things they buy as a positive or bad experience. The e-commerce transaction processes are made up of a variety of diverse organizations and activities that operate independently but are connected together to complete the transaction (from placing an order to the goods reaching the client). After a negative shopping experience, clients frequently disregard the critical assessment of these businesses and submit their feedback on an all-over basis, which benefits certain enterprises but is tedious for others. In this article, we solely dealt with negative reviews and attempted to distinguish between negative reviews where the e-commerce firm is explicitly blamed by customers for a bad purchasing experience and other negative reviews.Keywords: e-commerce, online shopping, customer reviews, customer behaviour, text analytics, n-grams classification
Procedia PDF Downloads 2574778 Rapid Soil Classification Using Computer Vision with Electrical Resistivity and Soil Strength
Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, P. L. Goh, Grace H. B. Foo, M. L. Leong
Abstract:
This paper presents the evaluation of various soil testing methods such as the four-probe soil electrical resistivity method and cone penetration test (CPT) that can complement a newly developed novel rapid soil classification scheme using computer vision, to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from the local construction industry are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labor-intensive. Thus, a rapid classification method is needed at the SGs. Four-probe soil electrical resistivity and CPT were evaluated for their feasibility as suitable additions to the computer vision system to further develop this innovative non-destructive and instantaneous classification method. The computer vision technique comprises soil image acquisition using an industrial-grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the following three items were targeted to be added onto the computer vision scheme: the apparent electrical resistivity of soil (ρ) measured using a set of four probes arranged in Wenner’s array, the soil strength measured using a modified mini cone penetrometer, and w measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay,” and a mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay” and are feasible as complementing methods to the computer vision system.Keywords: computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification
Procedia PDF Downloads 2394777 Benchmarking Bert-Based Low-Resource Language: Case Uzbek NLP Models
Authors: Jamshid Qodirov, Sirojiddin Komolov, Ravilov Mirahmad, Olimjon Mirzayev
Abstract:
Nowadays, natural language processing tools play a crucial role in our daily lives, including various techniques with text processing. There are very advanced models in modern languages, such as English, Russian etc. But, in some languages, such as Uzbek, the NLP models have been developed recently. Thus, there are only a few NLP models in Uzbek language. Moreover, there is no such work that could show which Uzbek NLP model behaves in different situations and when to use them. This work tries to close this gap and compares the Uzbek NLP models existing as of the time this article was written. The authors try to compare the NLP models in two different scenarios: sentiment analysis and sentence similarity, which are the implementations of the two most common problems in the industry: classification and similarity. Another outcome from this work is two datasets for classification and sentence similarity in Uzbek language that we generated ourselves and can be useful in both industry and academia as well.Keywords: NLP, benchmak, bert, vectorization
Procedia PDF Downloads 544776 Effects of Selected Plant-Derived Nutraceuticals on the Quality and Shelf-Life Stability of Frankfurter Type Sausages during Storage
Authors: Kazem Alirezalu, Javad Hesari, Zabihollah Nemati, Boukaga Farmani
Abstract:
The application of natural plant extracts which are rich in promising antioxidants and antimicrobial ingredients in the production of frankfurter-type sausages addresses consumer demands for healthier, more functional meat products. The effects of olive leaves, green tea and Urtica dioica L. extracts on physicochemical, microbiological and sensory characteristic of frankfurter-type sausage were investigated during 45 days of storage at 4 °C. The results revealed that pH and phenolic compounds decreased significantly (P < 0.05) in all samples during storage. Sausages containing 500 ppm green tea extract (1.78 mg/kg) showed the lowest TBARS values compared to olive leaves (2.01 mg/kg), Urtica dioica L. (2.26 mg/kg) extracts and control (2.74 mg/kg). Plant extracts significantly (P < 0.05) reduced the count of total mesophilic bacteria, yeast and mold by at least 2 log cycles (CFU/g) than those of control samples. Sensory characteristics of texture showed no difference (P > 0.05) between sausage samples, but sausage containing Urtica dioica L. extract had the highest score regarding flavor, freshness odor, and overall acceptability. Based on the results, sausage containing plant extracts could have a significant impact on antimicrobial activity, antioxidant capacity, sensory score, and shelf life stability of frankfurter-type sausage.Keywords: antimicrobial, antioxidant, frankfurter-type sausage, green tea, olive oil, shelf life, Urtica dioica L.
Procedia PDF Downloads 1904775 A Simple Colorimetric Assay for Paraquat Detection Using Negatively Charged Silver Nanopaticles
Authors: Weena Siangphro, Orawon Chailapakul, Kriangsak Songsrirote
Abstract:
A simple, rapid, sensitive, and economical method based on colorimetry for the determination of paraquat, a widely used herbicide, was developed. Citrate-coated silver nanoparticles (AgNPs) were synthesized as colorimetric probe. The mechanism of the assay is related to aggregation of negatively charged AgNPs induced by positively-charged paraquat resulting from coulombic attraction which causes the color change from deep greenish yellow to pale yellow upon the concentrations of paraquat. Silica gel was exploited as paraquat adsorbent for purification and pre-concentration prior to the direct determination with negatively charged AgNPs without elution step required. The validity of the proposed approach was evaluated by spiking standard paraquat in water and plant samples. Recoveries of paraquat in water samples were 93.6-95.4%, while those in plant samples were 86.6-89.5% by using the optimized extraction procedure. The absorbance of AgNPs at 400 nm was linearly related to the concentration of paraquat over the range of 0.05-50 mg/L with detection limits of 0.05 ppm for water samples, and 0.10 ppm for plant samples.Keywords: colorimetric assay, paraquat, silica gel, silver nanoparticles
Procedia PDF Downloads 2384774 Effect of Silver Nanoparticles on Seed Germination of Crop Plants
Authors: Zainab M. Almutairi, Amjad Alharbi
Abstract:
The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2, and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination.Keywords: citrullus lanatus, cucurbita pepo, seed germination, seedling growth, silver nanoparticles, zea mays
Procedia PDF Downloads 3084773 Transformer-Driven Multi-Category Classification for an Automated Academic Strand Recommendation Framework
Authors: Ma Cecilia Siva
Abstract:
This study introduces a Bidirectional Encoder Representations from Transformers (BERT)-based machine learning model aimed at improving educational counseling by automating the process of recommending academic strands for students. The framework is designed to streamline and enhance the strand selection process by analyzing students' profiles and suggesting suitable academic paths based on their interests, strengths, and goals. Data was gathered from a sample of 200 grade 10 students, which included personal essays and survey responses relevant to strand alignment. After thorough preprocessing, the text data was tokenized, label-encoded, and input into a fine-tuned BERT model set up for multi-label classification. The model was optimized for balanced accuracy and computational efficiency, featuring a multi-category classification layer with sigmoid activation for independent strand predictions. Performance metrics showed an F1 score of 88%, indicating a well-balanced model with precision at 80% and recall at 100%, demonstrating its effectiveness in providing reliable recommendations while reducing irrelevant strand suggestions. To facilitate practical use, the final deployment phase created a recommendation framework that processes new student data through the trained model and generates personalized academic strand suggestions. This automated recommendation system presents a scalable solution for academic guidance, potentially enhancing student satisfaction and alignment with educational objectives. The study's findings indicate that expanding the data set, integrating additional features, and refining the model iteratively could improve the framework's accuracy and broaden its applicability in various educational contexts.Keywords: tokenized, sigmoid activation, transformer, multi category classification
Procedia PDF Downloads 84772 Ultrasound/Microwave Assisted Extraction Recovery and Identification of Bioactive Compounds (Polyphenols) from Tarbush (Fluorensia cernua)
Authors: Marisol Rodriguez-Duarte, Aide Saenz-Galindo, Carolina Flores-Gallegos, Raul Rodriguez-Herrera, Juan Ascacio-Valdes
Abstract:
The plant known as tarbush (Fluorensia cernua) is a plant originating in northern Mexico, mainly in the states of Coahuila, Durango, San Luis Potosí, Zacatecas and Chihuahua. It is a branched shrub that belongs to the family Asteraceae, has oval leaves of 6 to 11 cm in length and also has small yellow flowers. In Mexico, the tarbush is a very appreciated plant because it has been used as a traditional medicinal agent, for the treatment of gastrointestinal diseases, skin infections and as a healing agent. This plant has been used mainly as an infusion. Due to its traditional use, the content and type of phytochemicals present in the plant are currently unknown and are responsible for its biological properties, so its recovery and identification is very important because the compounds that it contains have relevant applications in the field of food, pharmaceuticals and medicine. The objective of this work was to determine the best extraction condition of phytochemical compounds (mainly polyphenolic compounds) from the leaf using ultrasound/microwave assisted extraction (U/M-AE). To reach the objective, U/M-AE extractions were performed evaluating three mass/volume ratios (1:8, 1:12, 1:16), three ethanol/water solvent concentrations (0%, 30% and 70%), ultrasound extraction time of 20 min and 5 min at 70°C of microwave treatment. All experiments were performed using a fractional factorial experimental design. Once the best extraction condition was defined, the compounds were recovered by liquid column chromatography using Amberlite XAD-16, the polyphenolic fraction was recovered with ethanol and then evaporated. The recovered polyphenolic compounds were quantified by spectrophotometric techniques and identified by HPLC/ESI/MS. The results obtained showed that the best extraction condition of the compounds was using a mass/volume ratio of 1:8 and solvent ethanol/water concentration of 70%. The concentration obtained from polyphenolic compounds using this condition was 22.74 mg/g and finally, 16 compounds of polyphenolic origin were identified. The results obtained in this work allow us to postulate the Mexican plant known as tarbush as a relevant source of bioactive polyphenolic compounds of food, pharmaceutical and medicinal interest.Keywords: U/M-AE, tarbush, polyphenols, identification
Procedia PDF Downloads 1634771 The Analysis and Simulation of TRACE in the Ultimate Response Guideline for Chinshan BWR/4 Nuclear Power Plant
Authors: J. R. Wang, H. T. Lin, H. C. Chen, C. Shih, S. W. Chen, S. C. Chiang, C. C. Liu
Abstract:
In this research, TRACE model of Chinshan BWR/4 Nuclear Power Plant (NPP) has been developed for the simulation and analysis of Ultimate Response Guideline (URG). The main actions of URG are the depressurization and low pressure water injection of reactor and containment venting. This research focuses to verify the URG efficiency under Fukushima-like conditions. Trace analysis results show that the URG can keep the PCT below the criteria 1088.7 K under Fukushima-like conditions. It indicated that Chinshan NPP was safe.Keywords: BWR, trace, safety analysis, URG
Procedia PDF Downloads 6214770 Effect of Coaching Related Incompetency to Stand Trial on Symptom Validity Test: Robustness, Sensitivity, and Specificity
Authors: Natthawut Arin
Abstract:
In forensic contexts, competency to stand trial assessments are the most common referrals. The defendants may attempt to endorse psychopathology symptoms and feign incompetent. Coaching, which can be teaching them test-taking strategies to avoid detection of psychopathological symptoms feigning. Recently, the Symptom Validity Testings (SVTs) were created to detect feigning. Moreover, the works of the literature showed that the effects of coaching on SVTs may be more robust to the effects of coaching. Thai Symptom Validity Test (SVT-Th) was designed as SVTs which demonstrated adequate psychometric properties and ability to classify between feigners and honest responders. Thus, the current study to examine the utility as the robustness of SVT-Th in the detection of feigned psychopathology. Participants consisted of 120 were recruited from undergraduate courses in psychology, randomly assigned to one of three groups. The SVT-Th was administered to those three scenario-experimental groups: (a) Uncoached group were asked to respond honestly (n=40), (b) Symptom-coached without warning group were asked to feign psychiatric symptoms to gain incompetency to stand trial (n=40), while (c) Test-coached with warning group were asked to feign psychiatric symptoms to avoid test detection but being incompetency to stand trial (n=40). Group differences were analyzed using one-way ANOVAs. The result revealed an uncoached group (M = 4.23, SD.= 5.20) had significantly lower SVT-Th mean scores than those both coached groups (M =185.00, SD.= 72.88 and M = 132.10, SD.= 54.06, respectively). Classification rates were calculated to determine the classification accuracy. Result indicated that SVT-Th had overall classification accuracy rates of 96.67% with acceptable of 95% sensitivity and 100% specificity rates. Overall, the results of the present study indicate that the SVT-Th yielded high adequate indices of accuracy and these findings suggest that the SVT-Th is robustness against coaching.Keywords: incompetency to stand trial, coaching, robustness, classification accuracy
Procedia PDF Downloads 137