Search results for: multidrug resistance bacteria
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4515

Search results for: multidrug resistance bacteria

3705 Oleuropein Ameliorates Palmitate-Induced Insulin Resistance by Increasing GLUT4 Translocation through Activation of AMP-Activated Protein Kinase in Rat Soleus Muscles

Authors: Hakam Alkhateeb

Abstract:

Oleuropein, the main constituent of leaves and fruits of the olive tree, has been demonstrated to exert beneficial effects on parameters relevant to the normal homeostatic mechanisms of glucose regulation in rat skeletal muscle. However, the antidiabetic effect of oleuropein, to our knowledge, has not been examined. Therefore, in this study, we examined whether oleuropein ameliorated palmitate-induced insulin resistance in skeletal muscle. To examine this question, insulin resistance was rapidly induced by incubating (12h) soleus muscle with a high concentration of palmitate(2mM). Subsequently, we attempted to restore insulin sensitivity by incubating (12h) muscles with oleuropien (1.5mM), while maintaining high concentrations of palmitate. Palmitate treatment for 12 h reduced insulin-stimulated glucose transport, GLUT4 translocationandAS160 phosphorylation. Oleuropein treatment (12 h) fully restoredinsulin-stimulated glucose transport, GLUT4translocationandAS160 phosphorylation. Inhibition of PI3K phosphorylation with wortmannin (1µM)did not affect the oleuropein-induced improvements in insulin-stimulated glucose transport, GLUT4 translocation, and AS160 phosphorylation. These results suggested that the improvements in these parameters cannot account for activating PI3K pathway. Taken altogether, it appears that oleuropein, through activation of another pathway like activated protein kinase (AMPK), may provide a possible strategy by which they ameliorate palmitate-induced insulin resistance in skeletal muscles.

Keywords: AS160, diabetes, GLUT4, oleuropein

Procedia PDF Downloads 222
3704 Hydrodynamic Analysis on the Body of a Solar Autonomous Underwater Vehicle by Numerical Method

Authors: Mohammad Moonesun, Ehsan Asadi Asrami, Julia Bodnarchuk

Abstract:

In the case of Solar Autonomous Underwater Vehicle, which uses photovoltaic panels to provide its required power, due to limitation of energy, accurate estimation of resistance and energy has major sensitivity. In this work, hydrodynamic calculations by numerical method for a solar autonomous underwater vehicle equipped by two 50 W photovoltaic panels has been studied. To evaluate the required power and energy, hull hydrodynamic resistance in several velocities should be taken into account. To do this assessment, the ANSYS FLUENT 18 applied as Computational Fluid Dynamics (CFD) tool that solves Reynolds Average Navier Stokes (RANS) equations around AUV hull, and K-ω SST is used as turbulence model. To validate of solution method and modeling approach, the model of Myring submarine that it’s experimental data was available, is simulated. There is good agreement between numerical and experimental results. Also, these results showed that the K-ω SST Turbulence model is an ideal method to simulate the AUV motion in low velocities.

Keywords: underwater vehicle, hydrodynamic resistance, numerical modelling, CFD, RANS

Procedia PDF Downloads 205
3703 Oral Antibiotics in Trans-Rectal Prostate Biopsy and Its Efficacy to Reduce Infectious Complications: Systematic Review

Authors: Mohand Yaghi, O. Kehinde

Abstract:

Background: For the diagnosis of prostate cancer Trans-rectal prostate biopsy (TRPB) is used commonly, the procedure is associated with infective complications. There is evidence that antibiotics (ABx) decrease infective events after TRPB, but different regimens are used. Aim: To systematically review different regimens of prophylactic oral antibiotics in TRPB. Design: Medline, Embase, Clinical trials site, and Cochrane library were searched, experts were consulted about relevant studies. Randomized clinical trials (RCT) conducted in the last twenty years, which investigated different oral antibiotic regimens in TRPB, and compared their efficacy to reduce infectious complications were analyzed. Measurements: Primary outcomes were bacteriuria, urinary tract infection (UTI), fever, bacteremia, sepsis. Secondary outcomes were hospitalization rate, and the prevalence of ABx-resistant bacteria. Results: Nine trials were eligible with 3012 patients. Antibiotics prevented bacteriuria (3.5% vs. 9.88%), UTI (4.46% vs. 9.75%), and hospitalization (0.21% vs. 2.13%) significantly in comparison with placebo or no treatment. No significant difference was found in all outcomes of the review between the single dose regimen and the 3 days. The single dose regimen was as effective as the multiple dose except in Bacteriuria (6.75% vs. 3.25%), and the prevalence of ABx-resistant bacteria (1.57% vs. 0.27%). Quinolones reduced only UTI significantly in comparison with other antibiotics. Lastly, Ciprofloxacin is the best Quinolone to prevent UTI, and hospitalization. Conclusion: it is essential to prescribe prophylactic Antibiotics in TRPB. No conclusive evidence could be claimed about the superiority of the multiple or the 3 days regimens to the single dose regimen. Unexpectedly, ABx-resistant bacteria was identified more often in the single dose cohorts.

Keywords: infection, prostate cancer, sepsis, TRPB

Procedia PDF Downloads 368
3702 Intracellular Strategies for Gene Delivery into Mammalian Cells Using Bacteria as a Vector

Authors: Kumaran Narayanan, Andrew N. Osahor

Abstract:

E. coli has been engineered by our group and by others as a vector to deliver DNA into cultured human and animal cells. However, so far conditions to improve gene delivery using this vector have not been investigated, resulting in a major gap in our understanding of the requirements for this vector to function optimally. Our group recently published novel data showing that simple addition of the DNA transfection reagent Lipofectamine increased the efficiency of the E. coli vector by almost 3-fold, providing the first strong evidence that further optimization of bactofection is possible. This presentation will discuss advances that demonstrate the effects of several intracellular strategies that improve the efficiency of this vector. Conditions that promote endosomal escape of internalized bacteria to evade lysosomal destruction after entry in the cell, a known obstacle limiting this vector, are elucidated. Further, treatments that increase bacterial lysis so that the vector can release its transgene into the mammalian environment for expression will be discussed. These experiments will provide valuable new insight to advance this E. coli system as an important class of vector technology for genetic correction of human disease models in cells and whole animals.

Keywords: DNA, E. coli, gene expression, vector

Procedia PDF Downloads 358
3701 Application of Box-Behnken Response Surface Design for Optimization of Essential Oil Based Disinfectant on Mixed Species Biofilm

Authors: Anita Vidacs, Robert Rajko, Csaba Vagvolgyi, Judit Krisch

Abstract:

With the optimization of a new disinfectant the number of tests could be decreased and the cost of processing too. Good sanitizers are eco-friendly and allow no resistance evolvement of bacteria. The essential oils (EOs) are natural antimicrobials, and most of them have the Generally Recognized As Safe (GRAS) status. In our study, the effect of the EOs cinnamon, marjoram, and thyme was investigated against mixed species bacterial biofilms of Escherichia coli, Listeria monocytogenes, Pseudomonas putida, and Staphylococcus aureus. The optimal concentration of EOs, disinfection time and level of pH were evaluated with the aid of Response Surface Box-Behnken Design (RSD) on 1 day and 7 days old biofilms on metal, plastic, and wood surfaces. The variable factors were in the range of 1-3 times of minimum bactericide concentration (MBC); 10-110 minutes acting time and 4.5- 7.5 pH. The optimized EO disinfectant was compared to industrial used chemicals (HC-DPE, Hypo). The natural based disinfectants were applicable; the acting time was below 30 minutes. EOs were able to eliminate the biofilm from the used surfaces except from wood. The disinfection effect of the EO based natural solutions was in most cases equivalent or better compared to chemical sanitizers used in food industry.

Keywords: biofilm, Box-Behnken design, disinfectant, essential oil

Procedia PDF Downloads 219
3700 Varietal Behavior of Some Chickpea Genotypes to Wilt Disease Induced by Fusarium oxysporum f.sp. ciceris

Authors: Rouag N., Khalifa M. W., Bencheikh A., Abed H.

Abstract:

The behavior study of forty-two varieties and genotypes of chickpeas regarding root wilt disease induced by Fusarium oxysporum under the natural conditions of infection was conducted at the ITGC experimental station in Sétif. The infected plants of the different chickpea genotypes have shown multiple symptoms in the field caused by the local strain of Fusarium oxysporum f.sp.cecris belonging to race II of the pathogen. These symptoms ranged from lateral or partial wilting of some ramifications to total desiccation of the plant, sometimes combined with the very slow growth of symptomatic plants. The results of the search for sources of resistance to Fusarium wilt of chickpeas in the 42 genotypes tested revealed that in terms of infection rate, the presence of 7 groups and no genotype showed absolute resistance. While in terms of severity, the results revealed the presence of three homogeneous groups. The first group formed by the most resistant genotypes, in this case, Flip10-368C; Flip11-77C; Flip11-186C; Flip11-124C; Flip11-142C, Flip11-152C; Flip11-69C; Ghab 05; Flip11-159C; Flip11-90C; Flip10-357C and Flip11-37C while the second group is the FLIP genotype 10-382C which was found to be the most sensitive for the natural infection test. Thus, the genotypes of Cicer arietinum L., which have shown significant levels of resistance to Fusarium wilt, can be integrated into breeding and improvement programs.

Keywords: chickpea, Cicer arietinum, Fusarium oxysporum, genotype resistance

Procedia PDF Downloads 86
3699 From Primer Generation to Chromosome Identification: A Primer Generation Genotyping Method for Bacterial Identification and Typing

Authors: Wisam H. Benamer, Ehab A. Elfallah, Mohamed A. Elshaari, Farag A. Elshaari

Abstract:

A challenge for laboratories is to provide bacterial identification and antibiotic sensitivity results within a short time. Hence, advancement in the required technology is desirable to improve timing, accuracy and quality. Even with the current advances in methods used for both phenotypic and genotypic identification of bacteria the need is there to develop method(s) that enhance the outcome of bacteriology laboratories in accuracy and time. The hypothesis introduced here is based on the assumption that the chromosome of any bacteria contains unique sequences that can be used for its identification and typing. The outcome of a pilot study designed to test this hypothesis is reported in this manuscript. Methods: The complete chromosome sequences of several bacterial species were downloaded to use as search targets for unique sequences. Visual basic and SQL server (2014) were used to generate a complete set of 18-base long primers, a process started with reverse translation of randomly chosen 6 amino acids to limit the number of the generated primers. In addition, the software used to scan the downloaded chromosomes using the generated primers for similarities was designed, and the resulting hits were classified according to the number of similar chromosomal sequences, i.e., unique or otherwise. Results: All primers that had identical/similar sequences in the selected genome sequence(s) were classified according to the number of hits in the chromosomes search. Those that were identical to a single site on a single bacterial chromosome were referred to as unique. On the other hand, most generated primers sequences were identical to multiple sites on a single or multiple chromosomes. Following scanning, the generated primers were classified based on ability to differentiate between medically important bacterial and the initial results looks promising. Conclusion: A simple strategy that started by generating primers was introduced; the primers were used to screen bacterial genomes for match. Primer(s) that were uniquely identical to specific DNA sequence on a specific bacterial chromosome were selected. The identified unique sequence can be used in different molecular diagnostic techniques, possibly to identify bacteria. In addition, a single primer that can identify multiple sites in a single chromosome can be exploited for region or genome identification. Although genomes sequences draft of isolates of organism DNA enable high throughput primer design using alignment strategy, and this enhances diagnostic performance in comparison to traditional molecular assays. In this method the generated primers can be used to identify an organism before the draft sequence is completed. In addition, the generated primers can be used to build a bank for easy access of the primers that can be used to identify bacteria.

Keywords: bacteria chromosome, bacterial identification, sequence, primer generation

Procedia PDF Downloads 193
3698 Argon/Oxygen Plasma Surface Modification of Biopolymers for Improvement of Wettability and Wear Resistance

Authors: Binnur Sagbas

Abstract:

Artificial joint replacements such as total knee and total hip prosthesis have been applied to the patients who affected by osteoarthritis. Although different material combinations are used for these joints, biopolymers are most commonly preferred materials especially for acetabular cup and tibial component of hip and knee joints respectively. The main limitation that shortens the service life of these prostheses is wear. Wear is complicated phenomena and it must be considered with friction and lubrication. In this study, micro wave (MW) induced argon+oxygen plasma surface modification were applied on ultra-high molecular weight polyethylene (UHMWPE) and vitamin E blended UHMWPE (VE-UHMWPE) biopolymer surfaces to improve surface wettability and wear resistance of the surfaces. Contact angel measurement method was used for determination of wettability. Ball-on-disc wear test was applied under 25% bovine serum lubrication conditions. The results show that surface wettability and wear resistance of both material samples were increased by plasma surface modification.

Keywords: artificial joints, plasma surface modification, UHMWPE, vitamin E, wear

Procedia PDF Downloads 306
3697 Effects of Particle Size Distribution of Binders on the Performance of Slag-Limestone Ternary Cement

Authors: Zhuomin Zou, Thijs Van Landeghem, Elke Gruyaert

Abstract:

Using supplementary cementitious materials, such as blast-furnace slag and limestone, to replace cement clinker is a promising method to reduce the carbon emissions from cement production. To efficiently use slag and limestone, it is necessary to carefully select the particle size distribution (PSD) of the binders. This study investigated the effects of the PSD of binders on the performance of slag-limestone ternary cement. The Portland cement (PC) was prepared by grinding 95% clinker + 5% gypsum. Based on the PSD parameters of the binders, three types of ternary cements with a similar overall PSD were designed, i.e., NO.1 fine slag, medium PC, and coarse limestone; NO.2 fine limestone, medium PC, and coarse slag; NO.3. fine PC, medium slag, and coarse limestone. The binder contents in the ternary cements were (a) 50 % PC, 40 % slag, and 10 % limestone (called high cement group) or (b) 35 % PC, 55 % slag, and 10 % limestone (called low cement group). The pure PC and binary cement with 50% slag and 50% PC prepared with the same binders as the ternary cement were considered as reference cements. All these cements were used to investigate the mortar performance in terms of workability, strength at 2, 7, 28, and 90 days, carbonation resistance, and non-steady state chloride migration resistance at 28 and 56 days. Results show that blending medium PC with fine slag could exhibit comparable performance to blending fine PC with medium/coarse slag in binary cement. For the three ternary cements in the high cement group, ternary cement with fine limestone (NO.2) shows the lowest strength, carbonation, and chloride migration performance. Ternary cements with fine slag (NO.1) and with fine PC (NO.3) show the highest flexural strength at early and late ages, respectively. In addition, compared with ternary cement with fine PC (NO.3), ternary cement with fine slag (NO.1) has a similar carbonation resistance and a better chloride migration resistance. For the low cement group, three ternary cements have a similar flexural and compressive strength before 7 days. After 28 days, ternary cement with fine limestone (NO.2) shows the highest flexural strength while fine PC (NO.3) has the highest compressive strength. In addition, ternary cement with fine slag (NO.1) shows a better chloride migration resistance but a lower carbonation resistance compared with the other two ternary cements. Moreover, the durability performance of ternary cement with fine PC (NO.3) is better than that of fine limestone (NO.2).

Keywords: limestone, particle size distribution, slag, ternary cement

Procedia PDF Downloads 126
3696 The Impact of Efflux Pump Inhibitor on the Activity of Benzosiloxaboroles and Benzoxadiboroles against Gram-Negative Rods

Authors: Agnieszka E. Laudy, Karolina Stępien, Sergiusz Lulinski, Krzysztof Durka, Stefan Tyski

Abstract:

1,3-dihydro-1-hydroxy-2,1-benzoxaborole and its derivatives are a particularly interesting group of synthetic agents and were successfully employed in supramolecular chemistry medicine. The first important compounds, 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole and 5-chloro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole were identified as potent antifungal agents. In contrast, (S)-3-(aminomethyl)-7-(3-hydroxypropoxy)-1-hydroxy-1,3-dihydro-2,1-benzoxaborole hydrochloride is in the second phase of clinical trials as a drug for the treatment of Gram-negative bacterial infections of the Enterobacteriaceae family and Pseudomonas aeruginosa. Equally important and difficult task is to search for compounds active against Gram-negative bacilli, which have multi-drug-resistance efflux pumps actively removing many of the antibiotics from bacterial cells. We have examined whether halogen-substituted benzoxaborole-based derivatives and their analogues possess antibacterial activity and are substrates for multi-drug-resistance efflux pumps. The antibacterial activity of 1,3-dihydro-3-hydroxy-1,1-dimethyl-1,2,3-benzosiloxaborole and 10 halogen-substituted its derivatives, as well as 1,2-phenylenediboronic acid and 3 synthesised fluoro-substituted its analogs, were evaluated. The activity against the reference strains of Gram-positive (n=5) and Gram-negative bacteria (n=10) was screened by the disc-diffusion test (0.4 mg of tested compounds was applied onto paper disc). The minimal inhibitory concentration values and the minimal bactericidal concentration values were estimated according to The Clinical and Laboratory Standards Institute and The European Committee on Antimicrobial Susceptibility Testing recommendations. During the minimal inhibitory concentration values determination with or without phenylalanine-arginine beta-naphthylamide (50 mg/L) efflux pump inhibitor, the concentrations of tested compounds ranged 0.39-400 mg/L in the broth medium supplemented with 1 mM magnesium sulfate. Generally, the studied benzosiloxaboroles and benzoxadiboroles showed a higher activity against Gram-positive cocci than against Gram-negative rods. Moreover, benzosiloxaboroles have the higher activity than benzoxadiboroles compounds. In this study, we demonstrated that substitution (mono-, di- or tetra-) of 1,3-dihydro-3-hydroxy-1,1-dimethyl-1,2,3-benzosiloxaborole with halogen groups resulted in an increase in antimicrobial activity as compared to the parent substance. Interestingly, the 6,7-dichloro-substituted parent substance was found to be the most potent against Gram-positive cocci: Staphylococcus sp. (minimal inhibitory concentration 6.25 mg/L) and Enterococcus sp. (minimal inhibitory concentration 25 mg/L). On the other hand, mono- and dichloro-substituted compounds were the most actively removed by efflux pumps present in Gram-negative bacteria mainly from Enterobacteriaceae family. In the presence of efflux pump inhibitor the minimal inhibitory concentration values of chloro-substituted benzosiloxaboroles decreased from 400 mg/L to 3.12 mg/L. Of note, the highest increase in bacterial susceptibility to tested compounds in the presence of phenylalanine-arginine beta-naphthylamide was observed for 6-chloro-, 6,7-dichloro- and 6,7-difluoro-substituted benzosiloxaboroles. In the case of Escherichia coli, Enterobacter cloacae and P. aeruginosa strains at least a 32-fold decrease in the minimal inhibitory concentration values of these agents were observed. These data demonstrate structure-activity relationships of the tested derivatives and highlight the need for further search for benzoxaboroles and related compounds with significant antimicrobial properties. Moreover, the influence of phenylalanine-arginine beta-naphthylamide on the susceptibility of Gram-negative rods to studied benzosiloxaboroles indicate that some tested agents are substrates for efflux pumps in Gram-negative rods.

Keywords: antibacterial activity, benzosiloxaboroles, efflux pumps, phenylalanine-arginine beta-naphthylamide

Procedia PDF Downloads 271
3695 Effects of Glucogenic and Lipogenic Diets on Ruminal Microbiota and Metabolites in Vitro

Authors: Beihai Xiong, Dengke Hua, Wouter Hendriks, Wilbert Pellikaan

Abstract:

To improve the energy status of dairy cows in the early lactation, lots of jobs have been done on adjusting the starch to fiber ratio in the diet. As a complex ecosystem, the rumen contains a large population of microorganisms which plays a crucial role in feed degradation. Further study on the microbiota alterations and metabolic changes under different dietary energy sources is essential and valuable to better understand the function of the ruminal microorganisms and thereby to optimize the rumen function and enlarge feed efficiency. The present study will focus on the effects of two glucogenic diets (G: ground corn and corn silage; S: steam-flaked corn and corn silage) and a lipogenic diet (L: sugar beet pulp and alfalfa silage) on rumen fermentation, gas production, the ruminal microbiota and metabolome, and also their correlations in vitro. The gas production was recorded consistently, and the gas volume and producing rate at times 6, 12, 24, 48 h were calculated separately. The fermentation end-products were measured after fermenting for 48 h. The ruminal bacteria and archaea communities were determined by 16S RNA sequencing technique, the metabolome profile was tested through LC-MS methods. Compared to the diet G and S, the L diet had a lower dry matter digestibility, propionate production, and ammonia-nitrogen concentration. The two glucogenic diets performed worse in controlling methane and lactic acid production compared to the L diet. The S diet produced the greatest cumulative gas volume at any time points during incubation compared to the G and L diet. The metabolic analysis revealed that the lipid digestion was up-regulated by the diet L than other diets. On the subclass level, most metabolites belonging to the fatty acids and conjugates were higher, but most metabolites belonging to the amino acid, peptides, and analogs were lower in diet L than others. Differences in rumen fermentation characteristics were associated with (or resulting from) changes in the relative abundance of bacterial and archaeal genera. Most highly abundant bacteria were stable or slightly influenced by diets, while several amylolytic and cellulolytic bacteria were sensitive to the dietary changes. The L diet had a significantly higher number of cellulolytic bacteria, including the genera of Ruminococcus, Butyrivibrio, Eubacterium, Lachnospira, unclassified Lachnospiraceae, and unclassified Ruminococcaceae. The relative abundances of amylolytic bacteria genera including Selenomonas_1, Ruminobacter, and Succinivibrionaceae_UCG-002 were higher in diet G and S. These affected bacteria was also proved to have high associations with certain metabolites. The Selenomonas_1 and Succinivibrionaceae_UCG-002 may contribute to the higher propionate production in the diet G and S through enhancing the succinate pathway. The results indicated that the two glucogenic diets had a greater extent of gas production, a higher dry matter digestibility, and produced more propionate than diet L. The steam-flaked corn did not show a better performance on fermentation end-products than ground corn. This study has offered a deeper understanding of ruminal microbial functions which could assistant the improvement in rumen functions and thereby in the ruminant production.

Keywords: gas production, metabolome, microbiota, rumen fermentation

Procedia PDF Downloads 153
3694 Survival and Retention of the Probiotic Properties of Bacillus sp. Strains under Marine Stress Starvation Conditions and Their Potential Use as a Probiotic for Aquaculture Objectives

Authors: Abdelkarim Mahdhi, Fdhila Kais, Faouzi Lamari, Zeineb Hmila, Fathi Kamoun, Maria Ángeles Esteban, Amina Bakhrouf

Abstract:

Aquaculture is the world’s fastest growing food-production sector. However, one of the most serious problems regarding the culture of marine fishes is the mortality associated with pathogenic bacteria that occurs in the critical phases of larval development. Conventional approaches, such as the use of antimicrobial drugs to control diseases, have had limited success in the prevention or cure of aquatic diseases. Promising alternatives to antibiotics are probiotics, which are food supplements consisting of live microorganisms that benefit the host organism. In the search for more effective and environmentally friendly treatments with probionts against pathogenic species in shrimp larval culture, the probiotic properties of Bacillus strains isolated from Artemia culture such as antibacterial activity, adhesion, pathogenicity, toxicity and the effect of marine stress on viability and survival were investigated, as well as the changes occurring in their properties. Analyses showed that these bacteria corresponded to the genus Bacillus sp. Antagonism and adherence assays revealed that these strains have an inhibitory effect against pathogenic bacteria in vitro and in vivo conditions and are fairly adherent. Challenge tests performed with Artemia larvae provided evidence that the tested Bacillus strains were neither pathogenic nor toxic to the host. The tested strains maintained their viability and their probiotic properties during the period of study. The results suggest that the tested strains have suffered changes allowing them to survive in seawater in the absence of nutrients and outside their natural host, identifying them as potential probiotic candidates for Artemia culture.

Keywords: bacillus, probiotic, cell viability, stress response

Procedia PDF Downloads 386
3693 The Pressure Losses in the Model of Human Lungs

Authors: Michaela Chovancova, Pavel Niedoba

Abstract:

For the treatment of acute and chronic lung diseases it is preferred to deliver medicaments by inhalation. The drug is delivered directly to tracheobronchial tree. This way allows the given medicament to get directly into the place of action and it makes rapid onset of action and maximum efficiency. The transport of aerosol particles in the particular part of the lung is influenced by their size, anatomy of the lungs, breathing pattern and airway resistance. This article deals with calculation of airway resistance in the lung model of Horsfield. It solves the problem of determination of the pressure losses in bifurcation and thus defines the pressure drop at a given location in the bronchial tree. The obtained data will be used as boundary conditions for transport of aerosol particles in a central part of bronchial tree realized by Computational Fluid Dynamics (CFD) approach. The results obtained from CFD simulation will allow us to provide information on the required particle size and optimal inhalation technique for particle transport into particular part of the lung.

Keywords: human lungs, bronchial tree, pressure losses, airways resistance, flow, breathing

Procedia PDF Downloads 356
3692 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning

Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.

Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene

Procedia PDF Downloads 23
3691 Antimicrobial Functions of Some Spice Extracts Such as Sumac, Cumin, Black Pepper and Red Pepper on the Growth of Common Food-Borne Pathogens and Their Biogenic Amine Formation

Authors: Fatih Özogul, Esmeray Kuley Boga, Ferhat Kuley, Yesim Özogul

Abstract:

The impact of diethyl ether extract of spices (sumac, cumin, black pepper and red pepper) on growth of Staphylococcus aureus, Salmonella Paratyphi A, Klebsiella pneumoniae, Enterococcus faecalis, Camplylobacter jejuni, Aeromonas hydrophila, Pseudomonas aeruginosa and Yersinia enterocolitica and their biogenic amine production were investigated in tyrosine decarboxylase broth. Sumac extract generally had the highest activity to inhibit bacterial growth compared to other extracts, although antimicrobial effect of extracts used varied depending on bacterial strains. Sumac extract resulted in 3.34 and 2.54 log reduction for Y. enterocolitica and Camp. jejuni growth, whilst red pepper extract induced 0.65, 0.41 and 0.34 log reduction for growth of Y. enterocolitica, S. Paratyphi A and Staph. aureus, respectively. Spice extracts significantly inhibited ammonia production by bacteria (P < 0.05). Eleven and nine fold reduction on ammonia production by S. Paratyphi A and Staph. aureus were observed in the presence of sumac extract. Dopamine, agmatine, tyramine, serotonin and TMA were main amines produced by bacteria. Tyramine production by food-borne-pathogens was more than 10 mg/L, whereas histamine accumulated below 52 mg/L. The effect of spice extracts on biogenic amine production varied depending on amino acid decarboxylase broth, spice type, bacterial strains and specific amine, although cumin extract generally increased biogenic amine production by bacteria.

Keywords: antimicrobials, biogenic amines, food-borne pathogens, spice extracts

Procedia PDF Downloads 312
3690 Isolation, Characterization, and Antibacterial Evaluation of Antimicrobial Peptides and Derivatives from Fly Larvae Sarconesiopsis magellanica (Diptera: Calliphoridae)

Authors: A. Díaz-Roa, P. I. Silva Junior, F. J. Bello

Abstract:

Sarconesiopsis magellanica (Diptera: Calliphoridae) is a medically important necrophagous fly which is used for establishing the post-mortem interval. Dipterous maggots release diverse proteins and peptides contained in larval excretion and secretion (ES) products playing a key role in digestion. The most important mechanism for combating infection using larval therapy depends on larval ES. These larvae are protected against infection by a diverse spectrum of antimicrobial peptides (AMPs), one already known like lucifensin. Special interest in these peptides has also been aroused regarding understanding their role in wound healing since they degrade necrotic tissue and kill different bacteria during larval therapy. The action of larvae on wounds occurs through 3 mechanisms of action: removal of necrotic tissue, stimulation of granulation tissue, and antibacterial action of larval ES. Some components of the ES include calcium, urea, allantoin ammonium bicarbonate and reducing the viability of Gram positive and Gram negative bacteria. The Lucilia sericata fly larvae have been the most used, however, we need to evaluate new species that could potentially be similar or more effective than fly above. This study was thus aimed at identifying and characterizing S. magellanica AMPs contained in ES products for the first time and compared them with the common fly used L. sericata. These products were obtained from third-instar larvae taken from a previously established colony. For the first analysis, ES fractions were separate by Sep-Pak C18 disposable columns (first step). The material obtained was fractionated by RP-HPLC by using Júpiter C18 semi-preparative column. The products were then lyophilized and their antimicrobial activity was characterized by incubation with different bacterial strains. The first chromatographic analysis of ES from L. sericata gives 6 fractions with antimicrobial activity against Gram-positive bacteria Micrococus luteus, and 3 fractions with activity against Gram-negative bacteria Pseudomonae aeruginosa while the one from S. magellanica gaves 1 fraction against M. luteus and 4 against P. aeruginosa. Maybe one of these fractions could correspond to the peptide already known from L. sericata. These results show the first work for supporting further experiments aimed at validating S. magellanica use in larval therapy. We still need to search if we find some new molecules, by making mass spectrometry and ‘de novo sequencing’. Further studies are necessary to identify and characterize them to better understand their functioning.

Keywords: antimicrobial peptides, larval therapy, Lucilia sericata, Sarconesiopsis magellanica

Procedia PDF Downloads 367
3689 Fecal Prevalence, Serotype Distribution and Antimicrobial Resistance of Salmonella in Dairy Cattle in Central Ethiopia

Authors: Tadesse Eguale, Ephrem Engdawork, Wondwossen Gebreyes, Dainel Asrat, Hile Alemayehu, John Gunn

Abstract:

Salmonella is one of the major zoonotic pathogens affecting wide range of vertebrates and humans worldwide. Consumption of contaminated dairy products and contact with dairy cattle represent the common sources of non-typhoidal Salmonella infection in humans. Fecal samples were collected from 132 dairy herds in central Ethiopia and cultured for Salmonella to determine the prevalence, serotype distribution and antimicrobial susceptibility. Salmonella was recovered from the feces of at least one cattle in 10(7.6%) of the dairy farms. Out of 1193 fecal samples 30(2.5%) were positive for Salmonella. Large farm size, detection of diarrhea in one or more animals during sampling and keeping animals completely indoor compared to occasional grazing outside were associated with Salmonella positivity of the farms. Farm level prevalence of Salmonella was significantly higher in young animals below 6 months of age compared to other age groups(X2=10.24; p=0.04). Nine different serotypes were isolated. The four most frequently recovered serotypes were S. Typhimurium (23.3%),S. Saintpaul (20%) and S. Kentucky and S. Virchow (16.7%) each. All isolates were resistant or intermediately resistant to at least one of the 18 drugs tested. Twenty-six (86.7%), 20(66.7%), 18(60%), 16(53.3%) of the isolates were resistant to streptomycin, nitrofurantoin, sulfisoxazole and tetracycline respectively. Resistance to 2 drugs was detected in 93.3% of the isolates. Resistance to 3 or more drugs were detected in 21(70%) of the total isolates while multi-drug resistance (MDR) to 7 or more drugs were detected in 12 (40%) of the isolates. The rate of occurrence of MDR in Salmonella strains isolated from dairy farms in Addis Ababa was significantly higher than those isolated from farms outside of Addis Ababa((p= 0.009). The detection of high MDR in Salmonella isolates originating from dairy farms warrants the need for strict pathogen reduction strategy in dairy cattle and spread of these MDR strains to human population.

Keywords: salmonella, antimicrobial resistance, fecal prevalence

Procedia PDF Downloads 496
3688 Laboratory Evaluation of Rutting and Fatigue Damage Resistance of Asphalt Mixtures Modified with Carbon Nano Tubes

Authors: Ali Zain Ul Abadeen, Arshad Hussain

Abstract:

Roads are considered as the national capital, and huge developmental budget is spent on its construction, maintenance, and rehabilitation. Due to proliferating traffic volume, heavier loads and challenging environmental factors, the need for high-performance asphalt pavement is increased. In this research, the asphalt mixture was modified with carbon nanotubes ranging from 0.2% to 2% of binder to study the effect of CNT modification on rutting potential and fatigue life of asphalt mixtures. During this study, the conventional and modified asphalt mixture was subjected to a uni-axial dynamic creep test and dry Hamburg wheel tracking test to study rutting resistance. Fatigue behavior of asphalt mixture was studied using a four-point bending test apparatus. The plateau value of asphalt mixture was taken as a measure of fatigue performance according to the ratio of dissipated energy approach. Results of these experiments showed that CNT modified asphalt mixtures had reduced rut depth and increased rutting and fatigue resistance at higher percentages of carbon nanotubes.

Keywords: carbon nanotubes, fatigue, four point bending test, modified asphalt, rutting

Procedia PDF Downloads 144
3687 Construction of Microbial Fuel Cells from Local Benthic Zones

Authors: Maria Luiza D. Ramiento, Maria Lissette D. Lucas

Abstract:

Electricity is said to serve as the backbone of modern technology. Considering this, electricity consumption has dynamically grown due to the continuous demand. An alternative producer of energy concerning electricity must therefore be given focus. Microbial fuel cell wholly characterizes a new method of renewable energy recovery: the direct conversion of organic matter to electricity using bacteria. Electricity is produced as fuel or new food is given to the bacteria. The study concentrated in determining the feasibility of electricity production from local benthic zones. Microbial fuel cells were constructed to harvest the possible electricity and to test the presence of electricity producing microorganisms. Soil samples were gathered from Calumpang River, Palawan Mangrove Forest, Rosario River and Batangas Port. Eleven modules were constructed for the different trials of the soil samples. These modules were made of cathode and anode chambers connected by a salt bridge. For 85 days, the harvested voltage was measured daily. No parameter is added for the first 24 days. For the next 61 days, acetic acid was included in the first and second trials of the modules. Each of the trials of the soil samples gave a positive result in electricity production.There were electricity producing microbes in local benthic zones. It is observed that the higher the organic content of the soil sample, the higher the electricity harvested from it. It is recommended to identify the specific species of the electricity-producing microorganism present in the local benthic zone. Complement experiments are encouraged like determining the kind of soil particles to test its effect on the amount electricity that can be harvested. To pursue the development of microbial fuel cells by building a closed circuit in it is also suggested.

Keywords: microbial fuel cell, benthic zone, electricity, reduction-oxidation reaction, bacteria

Procedia PDF Downloads 400
3686 Potentiodynamic Polarization Behavior of Surface Mechanical Attrition Treated AA7075

Authors: Vaibhav Pandey, K. Chattopadhyay, N. C. Santhi Srinivas, Vakil Singh

Abstract:

Aluminium alloy 7075 consist of different intermetallic precipitate particles MgZn2, CuAl2, which result in heterogeneity of micro structure and influence the corrosion properties of the alloy. Artificial ageing was found to enhance the strength properties, but highly susceptible to stress-corrosion cracking. Various conventional surface modification techniques are developed for improving corrosion properties of aluminum alloys. This led to development of novel surface mechanical attrition treatment (SMAT) technique the so called ultrasonic shot peening which gives nano-grain structure at surface. In the present investigation the influence of surface mechanical attrition treatment on corrosion behavior of aluminum alloy 7075 was studied in 3.5wt% NaCl solution. Two different size of 1 mm and 3 mm steel balls are used as peening media and SMAT was carried out for different time intervals 5, 15 and 30 minutes. Surface nano-grains/nano-crystallization was observed after SMAT. The formation of nano-grain structure was observed for larger size balls with time of treatment and consequent increase in micro strain. As-SMATed sample with 1 mm balls exhibits better corrosion resistance as compared to that of un-SMATed sample. The enhancement in corrosion resistance may be due to formation of surface nano-grain structure which reduced the electron release rate. In contrast the samples treated with 3 mm balls showed very poor corrosion resistance. A decrease in corrosion resistance was observed with increase in the time of peening. The decrease in corrosion resistance in the shotpeened samples with larger diameter balls may due to increase in microstrain and defect density.

Keywords: aluminum alloy 7075, corrosion, SMAT, ultrasonic shot peening, surface nano-grains

Procedia PDF Downloads 447
3685 Isolation and Screening of Antagonistic Bacteria against Wheat Pathogenic Fungus Tilletia indica

Authors: Sugandha Asthana, Geetika Vajpayee, Pratibha Kumari, Shanthy Sundaram

Abstract:

An economically important disease of wheat in North Western region of India is Karnal Bunt caused by smut fungus Tilletia indica. This fungal pathogen spreads by air, soil and seed borne sporodia at the time of flowering, which ultimately leads to partial bunting of wheat kernels with fishy odor and taste to wheat flour. It has very serious effects due to quarantine measures which have to be applied for grain exports. Chemical fungicides such as mercurial compounds and Propiconazole applied to the control of Karnal bunt have been only partially successful. Considering the harmful effects of chemical fungicides on man as well as environment, many countries are developing biological control as the superior substitute to chemical control. Repeated use of fungicides can be responsible for the development of resistance in fungal pathogens against certain chemical compounds. The present investigation is based on the isolation and evaluation of antifungal properties of some isolated (from natural manure) and commercial bacterial strains against Tilletia indica. Total 23 bacterial isolates were obtained and antagonistic activity of all isolates and commercial bacterial strains (Bacillus subtilis MTCC8601, Bacillus pumilus MTCC 8743, Pseudomonas aeruginosa) were tested against T. indica by dual culture plate assay (pour plate and streak plate). Test for the production of antifungal volatile organic compounds (VOCs) by antagonistic bacteria was done by sealed plate method. Amongst all s1, s3, s5, and B. subtilis showed more than 80% inhibition. Production of extracellular hydrolytic enzymes such as protease, beta 1, 4 glucanase, HCN and ammonia was studied for confirmation of antifungal activity. s1, s3, s5 and B. subtilis were found to be the best for protease activity and s5 and B. subtilis for beta 1, 4 glucanase activity. Bacillus subtilis was significantly effective for HCN whereas s3, s5 and Bacillus subtilis for ammonia production. Isolates were identified as Pseudomonas aeruginosa (s1) and B. licheniformis (s3, s5) by various biochemical assays and confirmed by16s rRNA sequencing. Use of microorganisms or their secretions as biocontrol agents to avoid plant diseases is ecologically safe and may offer long term of protection to crop. The above study reports the promising effects of these strains in better pathogen free crop production and quality maintenance as well as prevention of the excessive use of synthetic fungicides.

Keywords: antagonistic, antifungal, biocontrol, Karnal bunt

Procedia PDF Downloads 283
3684 Antimicrobial, Antioxidant Activities and Phytochemical Screening of Five Species from Acacia Used in Sudanese Ethnomedicine

Authors: Hajir Abdllha, Alaa Mohamed, Khansa Almoniem, Naga Adam, Wdeea Alhaadi, Ahmed Elshikh, Ahmed Ali, Ismail Makuar, Anas Elnazeer, Nagat Elrofaei, Samir Abdoelftah, Monier Hemidan

Abstract:

The present study was designed to investigate antimicrobial, and antioxidant activities of five species from Acacia (Acacia albidia, Acacia mellifera, Acacia nubica, Acacia seyal var. seyal and Acacia tortilis). Phytochemical study was piloted to detect the bioactive compounds, which have been responsible from the biological activities. The ethanol, chloroform and acetone plant extracts were seasoned against standard bacteria strains of gram +ve bacteria Staphylococcus aureus (ATCC 25923), Gram -ve bacteria Pseudomonas aeruginosa (ATCC 27853) and standard fungi Candida albicans (ATCC 90028), using cup-plate method. The antioxidant activities were conducted via DPPH radical scavenging and metal chelating assays. Prospective activity against the five species was observed in acetone extract. Ethanol extract showed highest activities against Staphylococcus aureus, and Candida albicans. Potential antioxidant activity was presented by ethanol. Cholorophorm and acetone extracts via DPPH, the radical scavenging activities were found to be 91±0.03, 88±0.01 and 85±0.04 respectively. The results of phytochemical screening showed that all extracts of studied plant contain flavonoids, saponins, terpenoids, steroids, alkaloids, phenols and tannins. This study gives rise to antioxidant, antimicrobial properties of studied plant, and showed interesting correlation with the phytochemical constituents and biological activities.

Keywords: antimicrobial, antioxidant, Acacia albidia, Acacia mellifera, Acacia nubica, Acacia seyal var. seyal, Acacia tortilis

Procedia PDF Downloads 390
3683 Incidence and Molecular Mechanism of Human Pathogenic Bacterial Interaction with Phylloplane of Solanum lycopersicum

Authors: Indu Gaur, Neha Bhadauria, Shilpi Shilpi, Susmita Goswami, Prem D. Sharma, Prabir K. Paul

Abstract:

The concept of organic agriculture has been accepted as novelty in Indian society, but there is no data available on the human pathogens colonizing plant parts due to such practices. Also, the pattern and mechanism of their colonization need to be understood in order to devise possible strategies for their prevention. In the present study, human pathogenic bacteria were isolated from organically grown tomato plants and five of them were identified as Klebsiella pneumoniae, Enterobacter ludwigii, Serratia fonticola, Stenotrophomonas maltophilia and Chryseobacterium jejuense. Tomato plants were grown in controlled aseptic conditions with 25±1˚C, 70% humidity and 12 hour L/D photoperiod. Six weeks old plants were divided into 6 groups of 25 plants each and treated as follows: Group 1: K. pneumonia, Group 2: E. ludwigii, Group 3: S. fonticola, Group 4: S. maltophilia, Group 5: C. jejuense, Group 6: Sterile distilled water (control). The inoculums for all treatments were prepared by overnight growth with uniform concentration of 108 cells/ml. Leaf samples from above groups were collected at 0.5, 2, 4, 6 and 24 hours post inoculation for the colony forming unit counts (CFU/cm2 of leaf area) of individual pathogens using leaf impression method. These CFU counts were used for the in vivo colonization assay and adherence assay of individual pathogens. Also, resistance of these pathogens to at least 12 antibiotics was studied. Based on these findings S. fonticola was found to be most prominently colonizing the phylloplane of tomato and was further studied. Tomato plants grown in controlled aseptic conditions same as mentioned above were divided into 2 groups of 25 plants each and treated as follows: Group 1: S. fonticola, Group 2: Sterile distilled water (control). Leaf samples from above groups were collected at 0, 24, 48, 72 and 96 hours post inoculation and homogenized in suitable buffers for surface and cell wall protein isolation. Protein samples thus obtained were subjected to isocratic SDS-gel electrophoresis and analyzed. It was observed that presence of S. fonticola could induce the expression of at least 3 additional cell wall proteins at different time intervals. Surface proteins also showed variation in the expression pattern at different sampling intervals. Further identification of these proteins by MALDI-MS and bioinformatics tools revealed the gene(s) involved in the interaction of S. fonticola with tomato phylloplane.

Keywords: cell wall proteins, human pathogenic bacteria, phylloplane, solanum lycopersicum

Procedia PDF Downloads 228
3682 Biosecurity Control Systems in Two Phases for Poultry Farms

Authors: M. Peña Aguilar Juan, E. Nava Galván Claudia, Pastrana Palma Alberto

Abstract:

In this work was developed and implemented a thermal fogging disinfection system to counteract pathogens from poultry feces in agribusiness farms, to reduce mortality rates and increase biosafety in them. The control system consists of two phases for the conditioning of the farm during the sanitary break. In the first phase, viral and bacterial inactivation was performed by treating the stool dry cleaning, along with the development of a specialized product that foster the generation of temperatures above 55 °C in less than 24 hr, for virus inactivation. In the second phase, a process for disinfection by fogging was implemented, along with the development of a specialized disinfectant that guarantee no risk for the operators’ health or birds. As a result of this process, it was possible to minimize the level of mortality of chickens on farms from 12% to 5.49%, representing a reduction of 6.51% in the death rate, through the formula applied to the treatment of poultry litter based on oxidising agents used as antiseptics, hydrogen peroxide solutions, glacial acetic acid and EDTA in order to act on bacteria, viruses, micro bacteria and spores.

Keywords: innovation, triple helix, poultry farms, biosecurity

Procedia PDF Downloads 284
3681 A Systematic Review on Prevalence, Serotypes and Antibiotic Resistance of Salmonella in Ethiopia

Authors: Atsebaha Gebrekidan Kahsay, Tsehaye Asmelash, Enquebaher Kassaye

Abstract:

Background: Salmonella remains a global public health problem with a significant burden in sub-Saharan African countries. Human restricted cause of typhoid and paratyphoid fever are S. Typhi and S. Paratyphi, whereas S. Enteritidis and S. Typhimurium is the causative agent of invasive nontyphoidal diseases among humans and animals are their reservoir. The antibiotic resistance of Salmonella is another public health threat around the globe. To come up with full information about human and animal salmonellosis, we made a systematic review of the prevalence, serotypes, and antibiotic resistance of Salmonella in Ethiopia. Methods: This systematic review used Google Scholar and PubMed search engines to search articles from Ethiopia that were published in English in peer-reviewed international journals from 2010 to 2022. We used keywords to identify the intended research articles and used a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist to ensure the inclusion and exclusion criteria. Frequencies and percentages were analyzed using Microsoft Excel. Results: Two hundred seven published articles were searched, and 43 were selected for a systematic review, human (28) and animals (15). The prevalence of Salmonella in humans and animals was 434 (5.2%) and 641(10.1%), respectively. Fourteen serotypes were identified from animals, and S. Typhimurium was among the top five. Among the ciprofloxacin-resistant isolates in human studies, 16.7% was the highest, whereas, for ceftriaxone, 100% resistance was reported. Conclusions: The prevalence of Salmonella among diarrheic patients and food handlers (5.2%) was lower than the prevalence in food animals (10.1%). We did not find serotypes of Salmonella in human studies, although fourteen serotypes were included in food-animal studies, and S. Typhimurium was among the top five. Salmonella species from some human studies revealed a non-susceptibility to ceftriaxone. We recommend further study about invasive nontyphoidal Salmonella and predisposing factors among humans and animals in Ethiopia.

Keywords: antibiotic resistance, prevalence, systematic review, serotypes, Salmonella, Ethiopia

Procedia PDF Downloads 81
3680 Comparison of Bactec plus Blood Culture Media to BacT/Alert FAN plus Blood Culture Media for Identification of Bacterial Pathogens in Clinical Samples Containing Antibiotics

Authors: Recep Kesli, Huseyin Bilgin, Ela Tasdogan, Ercan Kurtipek

Abstract:

Aim: The aim of this study was to compare resin based Bactec plus aerobic/anaerobic blood culture bottles (Becton Dickinson, MD, USA) and polymeric beads based BacT/Alert FA/FN plus blood culture bottles (bioMerieux, NC, USA) in terms of microorganisms recovery rates and time to detection (TTD) in the patients receiving antibiotic treatment. Method: Blood culture samples were taken from the patients who admitted to the intensive care unit and received antibiotic treatment. Forty milliliters of blood from patients were equally distributed into four types of bottles: Bactec Plus aerobic, Bactec Plus anaerobic, BacT/Alert FA Plus, BacT/Alert FN Plus. Bactec Plus and BacT/Alert Plus media were compared to culture recovery rates and TTD. Results: Blood culture samples were collected from 382 patients hospitalized in the intensive care unit and 245 patients who were diagnosed as having bloodstream infections were included in the study. A total of 1528 Bactec Plus aerobic, Bactec Plus anaerobic, BacT/Alert FA Plus, BacT/Alert FN Plus blood culture bottles analyzed and 176, 144, 154, 126 bacteria or fungi were isolated, respectively. Gram-negative and gram-positive bacteria were significantly more frequently isolated in the resin-based Bactec Plus bottles than in the polymeric beads based BacT/Alert Plus bottles. The Bactec Plus and BacT/Alert Plus media recovery rates were similar for fungi and anaerobic bacteria. The mean TTDs in the Bactec Plus bottles were shorter than those in the BacT/Alert Plus bottles regardless of the microorganisms. Conclusion: The results of this study showed that resin-containing media is a reliable and time-saving tool for patients who are receiving antibiotic treatment due to sepsis in the intensive care unit.

Keywords: Bactec Plus, BacT/Alert Plus, blood culture, antibiotic

Procedia PDF Downloads 146
3679 Antimicrobial, Antioxidant Activities, and Phytochemical Screening of Five Species from Acacia Used in Sudanese Ethnomedicine

Authors: Hajir, B. Abdllha, , Alaa, I. Mohamed, Khansa, A. Almoniem, Naga, I. Adam, Wdeea, Alhaadi, Ahmed, A. Elshikh, Ahmed, J. Ali, Ismail, G. Makuar, Anas, M. Elnazeer, Nagat, A. Elrofaei, Samir, F. Abdoelftah, Monier, N. Hemidan

Abstract:

The present study was designed to investigate antimicrobial, and antioxidant activities of five species from Acacia (Acacia albidia, Acacia mellifera, Acacia nubica, Acacia seyal var.seyal and Acacia tortilis). Phytochemical study was piloted to detect the bioactive compounds, which have been responsible from the biological activities. The ethanol, chloroform and acetone plant extracts were seasoned against standard bacteria strains of gram +ve bacteria Staphylococcus aureus (ATCC 25923) ,Gram -ve bacteria Pseudomonas aeruginosa (ATCC 27853) and standard fungi Candida albicans (ATCC 90028), using cup-plate method. The antioxidant activities were conducted via DPPH radical scavenging and metal chelating assays. Prospective activity against the five species was observed in acetone extract. Ethanol extract showed highest activities against Staphylococcus aureus, and Candida albicans. Potential antioxidant activity was presented by ethanol. Cholorophorm and acetone extracts via DPPH, the radical scavenging activities were found to be 91±0.03, 88±0.01 and 85±0.04 respectively. The results of phytochemical screening showed that all extracts of studied plant contain flavonoids, saponins, terpenoids, steroids, alkaloids, phenols and tannins. This study give rise to antioxidant, antimicrobial properties of studied plant, and showed interesting correlation with the phytochemical constituents and biological activities.

Keywords: antimicrobial, Antioxidant, Acacia albidia, Acacia mellifera, acacia nubica, acacia seyal var.seyal, Acacia tortilis

Procedia PDF Downloads 553
3678 Antimicrobial Activity of a Single Wap Domain (SWD)-Containing Protein from Litopenaeus vannamei against Vibrio parahaemolyticus Acute Hepatopancreatic Necrosis Disease (AHPND)

Authors: Suchao Donpudsa, Suwattana Visetnan, Anchalee Tassanakajon, Vichien Rimphanitchayakit

Abstract:

The Single Wap Domain (SWD) is a type III crustin antimicrobial peptide whose function is to defense the host animal against the bacterial infection by means of antimicrobial and antiproteinase activities. A study of LvSWD from Litopenaeus vannamei is reported herein about its activities and function against bacteria, particularly the Vibrio parahaemolyticus AHPND (VPAHPND) that causes acute hepatopancreatic necrosis disease. The over-expressed mature recombinant (r)LvSWD exhibits antimicrobial activity against both Gram-positive and Gram-negative bacteria, especially VPAHPND. With four times the MIC of rLvSWD, the treated post larval shrimp infected by VPAHPND is able to survive longer with the 50% survival rate as long as 78 h as compared to 36 h of the infected shrimp without rLvSWD. To a certain extent, we have demonstrated that the rLvSWD can be applied to protect the post larval shrimp.

Keywords: crustin, Litopenaeus vannamei, Vibrio parahaemolyticus AHPND, antimicrobial activity

Procedia PDF Downloads 216
3677 Comparison of Different Methods of Microorganism's Identification from a Copper Mining in Pará, Brazil

Authors: Louise H. Gracioso, Marcela P.G. Baltazar, Ingrid R. Avanzi, Bruno Karolski, Luciana J. Gimenes, Claudio O. Nascimento, Elen A. Perpetuo

Abstract:

Introduction: Higher copper concentrations promote a selection pressure on organisms such as plants, fungi and bacteria, which allows surviving only the resistant organisms to the contaminated site. This selective pressure keeps only the organisms most resistant to a specific condition and subsequently increases their bioremediation potential. Despite the bacteria importance for biosphere maintenance, it is estimated that only a small fraction living microbial species has been described and characterized. Due to the molecular biology development, tools based on analysis 16S ribosomal RNA or another specific gene are making a new scenario for the characterization studies and identification of microorganisms in the environment. News identification of microorganisms methods have also emerged like Biotyper (MALDI / TOF), this method mass spectrometry is subject to the recognition of spectroscopic patterns of conserved and features proteins for different microbial species. In view of this, this study aimed to isolate bacteria resistant to copper present in a Copper Processing Area (Sossego Mine, Canaan, PA) and identifies them in two different methods: Recent (spectrometry mass) and conventional. This work aimed to use them for a future bioremediation of this Mining. Material and Methods: Samples were collected at fifteen different sites of five periods of times. Microorganisms were isolated from mining wastes by culture enrichment technique; this procedure was repeated 4 times. The isolates were inoculated into MJS medium containing different concentrations of chloride copper (1mM, 2.5mM, 5mM, 7.5mM and 10 mM) and incubated in plates for 72 h at 28 ºC. These isolates were subjected to mass spectrometry identification methods (Biotyper – MALDI/TOF) and 16S gene sequencing. Results: A total of 105 strains were isolated in this area, bacterial identification by mass spectrometry method (MALDI/TOF) achieved 74% agreement with the conventional identification method (16S), 31% have been unsuccessful in MALDI-TOF and 2% did not obtain identification sequence the 16S. These results show that Biotyper can be a very useful tool in the identification of bacteria isolated from environmental samples, since it has a better value for money (cheap and simple sample preparation and MALDI plates are reusable). Furthermore, this technique is more rentable because it saves time and has a high performance (the mass spectra are compared to the database and it takes less than 2 minutes per sample).

Keywords: copper mining area, bioremediation, microorganisms, identification, MALDI/TOF, RNA 16S

Procedia PDF Downloads 377
3676 Thermal Resistance Analysis of Flexible Composites Based on Al2O3 Aerogels

Authors: Jianzheng Wei, Duo Zhen, Zhihan Yang, Huifeng Tan

Abstract:

The deployable descent technology is a lightweight entry method using an inflatable heat shield. The heatshield consists of a pressurized core which is covered by different layers of thermal insulation and flexible ablative materials in order to protect against the thermal loads. In this paper, both aluminum and silicon-aluminum aerogels were prepared by freeze-drying method. The latter material has bigger specific surface area and nano-scale pores. Mullite fibers are used as the reinforcing fibers to prepare the aerogel matrix to improve composite flexibility. The flexible composite materials were performed as an insulation layer to an underlying aramid fabric by a thermal shock test at a heat flux density of 120 kW/m2 and uniaxial tensile test. These results show that the aramid fabric with untreated mullite fibers as the thermal protective layer is completely carbonized at the heat of about 60 s. The aramid fabric as a thermal resistance layer of the composite material still has good mechanical properties at the same heat condition.

Keywords: aerogel, aramid fabric, flexibility, thermal resistance

Procedia PDF Downloads 153