Search results for: metallic foam cooling
856 Synergistic Effect between Titanium Oxide and Silver Nanoparticles in Polymeric Binary Systems
Authors: Raquel C. A. G. Mota, Livia R. Menezes, Emerson O. da Silva
Abstract:
Both silver nanoparticles and titanium dioxide have been extensively used in tissue engineering since they’ve been approved by the Food and Drug Administration (FDA), and present a bactericide effect when added to a polymeric matrix. In this work, the focus is on fabricating binary systems with both nanoparticles so that the synergistic effect can be investigated. The systems were tested by Nuclear Magnetic Resonance (NMR), Thermogravimetric Analysis (TGA), Fourier-Transformed Infrared (FTIR), and Differential Scanning Calorimetry (DSC), and X-ray Diffraction (XRD), and had both their bioactivity and bactericide effect tested. The binary systems presented different properties than the individual systems, enhancing both the thermal and biological properties as was to be expected. The crystallinity was also affected, as indicated by the finding of the DSC and XDR techniques, and the NMR showed a good dispersion of both nanoparticles in the polymer matrix. These findings indicate the potential of combining TiO₂ and silver nanoparticles in biomedicine.Keywords: metallic nanoparticles, nanotechnology, polymer nanocomposites, polymer science
Procedia PDF Downloads 134855 Nature of a Supercritical Mesophase
Authors: Hamza Javar Magnier, Leslie V. Woodcock
Abstract:
It has been reported that at temperatures above the critical there is no “continuity of liquid and gas”, as originally hypothesized by van der Waals. Rather, both gas and liquid phases, with characteristic properties as such, extend to supercritical temperatures. Each phase is bounded by the locus of a percolation transition, i.e. a higher-order thermodynamic phase change associated with percolation of gas clusters in a large void, or liquid interstitial vacancies in a large cluster. Between these two-phase bounds, it is reported there exists a mesophase that resembles an otherwise homogeneous dispersion of gas micro-bubbles in liquid (foam) and a dispersion of liquid micro-droplets in gas (mist). Such a colloidal-like state of a pure one-component fluid represents a hitherto unchartered equilibrium state of matter besides pure solid, liquid or gas. Here we provide compelling evidence, from molecular dynamics (MD) simulations, for the existence of this supercritical mesophase and its colloidal nature. We report preliminary results of computer simulations for a model fluid using a simplistic representation of atoms or molecules, i.e. a hard-core repulsion with an attraction so short that the atoms are referred to as “adhesive spheres”. Molecular clusters, and hence percolation transitions, are unambiguously defined. Graphics of color-coded clusters show colloidal characteristics of the supercritical mesophase.Keywords: critical phenomena, mesophase, supercritical, square-well, critical parameters
Procedia PDF Downloads 426854 Depth to Basement Determination Sculpting of a Magnetic Mineral Using Magnetic Survey
Authors: A. Ikusika, O. I. Poppola
Abstract:
This study was carried out to delineate possible structures that may favour the accumulation of tantalite, a magnetic mineral. A ground based technique was employed using proton precision magnetometer G-856 AX. A total of ten geophysical traverses were established in the study area. The acquired magnetic field data were corrected for drift. The trend analysis was adopted to remove the regional gradient from the observed data and the resulting results were presented as profiles. Quantitative interpretation only was adopted to obtain the depth to basement using Peter half slope method. From the geological setting of the area and the information obtained from the magnetic survey, a conclusion can be made that the study area is underlain by a rock unit of accumulated minerals. It is therefore suspected that the overburden is relatively thin within the study area and the metallic minerals are in disseminated quantity and at a shallow depth.Keywords: basement, drift, magnetic field data, tantalite, traverses
Procedia PDF Downloads 475853 Modelling of Filters CO2 (Carbondioxide) and CO (Carbonmonoxide) Portable in Motor Vehicle's Exhaust with Absorbent Chitosan
Authors: Yuandanis Wahyu Salam, Irfi Panrepi, Nuraeni
Abstract:
The increased of greenhouse gases, that is CO2 (carbondioxide) in atmosphere induce the rising of earth’s surface average temperature. One of the largest contributors to greenhouse gases is motor vehicles. Smoke which is emitted by motor’s exhaust containing gases such as CO2 (carbondioxide) and CO (carbon monoxide). Chemically, chitosan is cellulose like plant fiber that has the ability to bind like absorbant foam. Chitosan is a natural antacid (absorb toxins), when chitosan is spread over the surface of water, chitosan is able to absorb fats, oils, heavy metals, and other toxic substances. Judging from the nature of chitosan is able to absorb various toxic substances, it is expected that chitosan is also able to filter out gas emission from the motor vehicles. This study designing a carbondioxide filter in the exhaust of motor vehicles using chitosan as its absorbant. It aims to filter out gases in the exhaust so that CO2 and CO can be reducted before emitted by exhaust. Form of this reseach is study of literature and applied with experimental research of tool manufacture. Data collected through documentary studies by studying books, magazines, thesis, search on the internet as well as the relevant reference. This study will produce a filters which has main function to filter out CO2 and CO emissions that generated by vehicle’s exhaust and can be used as portable.Keywords: filter, carbon, carbondioxide, exhaust, chitosan
Procedia PDF Downloads 351852 Probabilistic Study of Impact Threat to Civil Aircraft and Realistic Impact Energy
Authors: Ye Zhang, Chuanjun Liu
Abstract:
In-service aircraft is exposed to different types of threaten, e.g. bird strike, ground vehicle impact, and run-way debris, or even lightning strike, etc. To satisfy the aircraft damage tolerance design requirements, the designer has to understand the threatening level for different types of the aircraft structures, either metallic or composite. Exposing to low-velocity impacts may produce very serious internal damages such as delaminations and matrix cracks without leaving visible mark onto the impacted surfaces for composite structures. This internal damage can cause significant reduction in the load carrying capacity of structures. The semi-probabilistic method provides a practical and proper approximation to establish the impact-threat based energy cut-off level for the damage tolerance evaluation of the aircraft components. Thus, the probabilistic distribution of impact threat and the realistic impact energy level cut-offs are the essential establishments required for the certification of aircraft composite structures. A new survey of impact threat to civil aircraft in-service has recently been carried out based on field records concerning around 500 civil aircrafts (mainly single aisles) and more than 4.8 million flight hours. In total 1,006 damages caused by low-velocity impact events had been screened out from more than 8,000 records including impact dents, scratches, corrosions, delaminations, cracks etc. The impact threat dependency on the location of the aircraft structures and structural configuration was analyzed. Although the survey was mainly focusing on the metallic structures, the resulting low-energy impact data are believed likely representative to general civil aircraft, since the service environments and the maintenance operations are independent of the materials of the structures. The probability of impact damage occurrence (Po) and impact energy exceedance (Pe) are the two key parameters for describing the statistic distribution of impact threat. With the impact damage events from the survey, Po can be estimated as 2.1x10-4 per flight hour. Concerning the calculation of Pe, a numerical model was developed using the commercial FEA software ABAQUS to backward estimate the impact energy based on the visible damage characteristics. The relationship between the visible dent depth and impact energy was established and validated by drop-weight impact experiments. Based on survey results, Pe was calculated and assumed having a log-linear relationship versus the impact energy. As the product of two aforementioned probabilities, Po and Pe, it is reasonable and conservative to assume Pa=PoxPe=10-5, which indicates that the low-velocity impact events are similarly likely as the Limit Load events. Combing Pa with two probabilities Po and Pe obtained based on the field survey, the cutoff level of realistic impact energy was estimated and valued as 34 J. In summary, a new survey was recently done on field records of civil aircraft to investigate the probabilistic distribution of impact threat. Based on the data, two probabilities, Po and Pe, were obtained. Considering a conservative assumption of Pa, the cutoff energy level for the realistic impact energy has been determined, which provides potential applicability in damage tolerance certification of future civil aircraft.Keywords: composite structure, damage tolerance, impact threat, probabilistic
Procedia PDF Downloads 308851 Effects of Arcing in Air on the Microstructure, Morphology and Photoelectric Work Function of Ag-Ni (60/40) Contact Materials
Authors: Mohamed Akbi, Aissa Bouchou
Abstract:
The present work aims to throw light on the effects of arcing in air on the surface state of contact pastilles made of silver-nickel Ag-Ni (60/40). Also, the photoelectric emission from these electrical contacts has been investigated in the spectral range of 196-256 nm. In order to study the effects of arcing on the EWF, the metallic samples were subjected to electrical arcs in air, at atmospheric pressure and room temperature, after that, they have been introduced into the vacuum chamber of an experimental UHV set-up for EWF measurements. Both Fowler method of isothermal curves and linearized Fowler plots were used for the measurement of the EWF by the photoelectric effect. It has been found that the EWF varies with the number of applied arcs. Thus, after 500 arcs in air, the observed EWF increasing is probably due to progressive inclusion of oxide on alloy surface. Microscopic examination is necessary to get better understandings on EWF of silver alloys, for both virgin and arced electrical contacts.Keywords: Ag-Ni contact materials, arcing effects, electron work function, Fowler methods, photoemission
Procedia PDF Downloads 385850 Studies on Corrosion Resistant Composite Coating for Metallic Surfaces
Authors: Navneetinder Singh, Harprabhjot Singh, Harpreet Singh, Supreet Singh
Abstract:
Many materials are known to mankind that is widely used for synthesis of corrosion resistant hydrophobic coatings. In the current work, novel hydrophobic composite was synthesized by mixing polytetrafluoroethylene (PTFE) and 20 weight% ceria particles followed by sintering. This composite had same hydrophobic behavior as PTFE. Moreover, composite showed better scratch resistance than virgin PTFE. Pits of plasma sprayed Ni₃Al coating were exploited to hold PTFE composite on the substrate as Superni-75 alloy surface through sintering process. Plasma sprayed surface showed good adhesion with the composite coating during scratch test. Potentiodynamic corrosion test showed 100 fold decreases in corrosion rate of coated sample this may be attributed to inert and hydrophobic nature of PTFE and ceria.Keywords: polytetrafluoroethylene, PTFE, ceria, coating, corrosion
Procedia PDF Downloads 383849 Light-Scattering Characteristics of Ordered Arrays Nobel Metal Nanoparticles
Authors: Yassine Ait-El-Aoud, Michael Okomoto, Andrew M. Luce, Alkim Akyurtlu, Richard M. Osgood III
Abstract:
Light scattering of metal nanoparticles (NPs) has a unique, and technologically important effect on enhancing light absorption in substrates because most of the light scatters into the substrate near the localized plasmon resonance of the NPs. The optical response, such as the resonant frequency and forward- and backward-scattering, can be tuned to trap light over a certain spectral region by adjusting the nanoparticle material size, shape, aggregation state, Metallic vs. insulating state, as well as local environmental conditions. In this work, we examined the light scattering characteristics of ordered arrays of metal nanoparticles and the light trapping, in order to enhance absorption, by measuring the forward- and backward-scattering using a UV/VIS/NIR spectrophotometer. Samples were fabricated using the popular self-assembly process method: dip coating, combined with nanosphere lithography.Keywords: dip coating, light-scattering, metal nanoparticles, nanosphere lithography
Procedia PDF Downloads 328848 Modelling and Management of Vegetal Pest Based On Case of Xylella Fastidiosa in Alicante
Authors: Maria Teresa Signes Pont, Jose Juan Cortes Plana
Abstract:
Our proposal provides suitable modelling to the spread of plant pest and particularly to the propagation of Xylella fastidiosa in the almond trees. We compared the impact of temperature and humidity on the propagation of Xylella fastidiosa in various subspecies. Comparison between Balearic Islands and Alicante (Spain). Most sharpshooter and spittlebug species showed peaks in population density during the month of higher mean temperature and relative humidity (April-October), except for the splittlebug Clastoptera sp.1, whose adult population peaked from September-October (late summer and early autumn). The critical season is from when they hatch from the eggs until they are in the pre-reproductive season (January -April) to expand. We focused on winters in the egg state, which normally hatches in early March. The nymphs secrete a foam (mucilage) in which they live and that protects them from natural enemies of temperature changes and prevents dry as long as the humidity is above 75%. The interaction between the life cycles of vectors and vegetation influences the food preferences of vectors and is responsible for the general seasonal shift of the population from vegetation to trees and vice versa, In addition to the temperature maps, we have observed humidity as it affects the spread of the pest Xylella fastidiosa (Xf).Keywords: xylella fastidiosa, almod tree, temperature, humidity, environmental model
Procedia PDF Downloads 175847 Computer-Assisted Management of Building Climate and Microgrid with Model Predictive Control
Authors: Vinko Lešić, Mario Vašak, Anita Martinčević, Marko Gulin, Antonio Starčić, Hrvoje Novak
Abstract:
With 40% of total world energy consumption, building systems are developing into technically complex large energy consumers suitable for application of sophisticated power management approaches to largely increase the energy efficiency and even make them active energy market participants. Centralized control system of building heating and cooling managed by economically-optimal model predictive control shows promising results with estimated 30% of energy efficiency increase. The research is focused on implementation of such a method on a case study performed on two floors of our faculty building with corresponding sensors wireless data acquisition, remote heating/cooling units and central climate controller. Building walls are mathematically modeled with corresponding material types, surface shapes and sizes. Models are then exploited to predict thermal characteristics and changes in different building zones. Exterior influences such as environmental conditions and weather forecast, people behavior and comfort demands are all taken into account for deriving price-optimal climate control. Finally, a DC microgrid with photovoltaics, wind turbine, supercapacitor, batteries and fuel cell stacks is added to make the building a unit capable of active participation in a price-varying energy market. Computational burden of applying model predictive control on such a complex system is relaxed through a hierarchical decomposition of the microgrid and climate control, where the former is designed as higher hierarchical level with pre-calculated price-optimal power flows control, and latter is designed as lower level control responsible to ensure thermal comfort and exploit the optimal supply conditions enabled by microgrid energy flows management. Such an approach is expected to enable the inclusion of more complex building subsystems into consideration in order to further increase the energy efficiency.Keywords: price-optimal building climate control, Microgrid power flow optimisation, hierarchical model predictive control, energy efficient buildings, energy market participation
Procedia PDF Downloads 465846 Study on the Suppression of Hydrogen Generation by Aluminum-Containing Waste Incineration Ash and Water
Authors: Hideyuki Onodera, Ryoji Imai, Masahiro Sakai
Abstract:
Explosions have occurred in incineration plants in conveyors, ash pits, and other locations. The cause of such explosions is thought to be the reaction of metallic aluminum contained in the ash with water used to cool the ash and prevent scattering, resulting in the generation of hydrogen. Given this background, conveyors and other equipment have been damaged by explosions, which has hindered the stable operation of incineration plants. In addition, workers may be injured by equipment explosions, creating an unsafe situation. To remedy these problems, it is necessary to devise a way to prevent hydrogen explosions from occurring. To overcome this problem, we conducted a hydrogen generation reaction experiment using simulated incinerator ash powder containing aluminum, calcium oxide, and water and confirmed that conditions exist to stop the hydrogen generation reaction. The results of this research may contribute to the suppression of hydrogen explosions at incineration plants.Keywords: waste incinerated ash, aluminum, water, hydrogen, suppression of hydrogen generation, incineration plant
Procedia PDF Downloads 29845 Predictability of Thermal Response in Housing: A Case Study in Australia, Adelaide
Authors: Mina Rouhollahi, J. Boland
Abstract:
Changes in cities’ heat balance due to rapid urbanization and the urban heat island (UHI) have increased energy demands for space cooling and have resulted in uncomfortable living conditions for urban residents. Climate resilience and comfortable living spaces can be addressed through well-designed urban development. The sustainable housing can be more effective in controlling high levels of urban heat. In Australia, to mitigate the effects of UHIs and summer heat waves, one solution to sustainable housing has been the trend to compact housing design and the construction of energy efficient dwellings. This paper analyses whether current housing configurations and orientations are effective in avoiding increased demands for air conditioning and having an energy efficient residential neighborhood. A significant amount of energy is consumed to ensure thermal comfort in houses. This paper reports on the modelling of heat transfer within the homes using the measurements of radiation, convection and conduction between exterior/interior wall surfaces and outdoor/indoor environment respectively. The simulation was tested on selected 7.5-star energy efficient houses constructed of typical material elements and insulation in Adelaide, Australia. The chosen design dwellings were analyzed in extremely hot weather through one year. The data were obtained via a thermal circuit to accurately model the fundamental heat transfer mechanisms on both boundaries of the house and through the multi-layered wall configurations. The formulation of the Lumped capacitance model was considered in discrete time steps by adopting a non-linear model method. The simulation results focused on the effects of orientation of the solar radiation on the dynamic thermal characteristics of the houses orientations. A high star rating did not necessarily coincide with a decrease in peak demands for cooling. A more effective approach to avoid increasing the demands for air conditioning and energy may be to integrate solar–climatic data to evaluate the performance of energy efficient houses.Keywords: energy-efficient residential building, heat transfer, neighborhood orientation, solar–climatic data
Procedia PDF Downloads 133844 Thermal Analysis of Adsorption Refrigeration System Using Silicagel–Methanol Pair
Authors: Palash Soni, Vivek Kumar Gaba, Shubhankar Bhowmick, Bidyut Mazumdar
Abstract:
Refrigeration technology is a fast developing field at the present era since it has very wide application in both domestic and industrial areas. It started from the usage of simple ice coolers to store food stuffs to the present sophisticated cold storages along with other air conditioning system. A variety of techniques are used to bring down the temperature below the ambient. Adsorption refrigeration technology is a novel, advanced and promising technique developed in the past few decades. It gained attention due to its attractive property of exploiting unlimited natural sources like solar energy, geothermal energy or even waste heat recovery from plants or from the exhaust of locomotives to fulfill its energy need. This will reduce the exploitation of non-renewable resources and hence reduce pollution too. This work is aimed to develop a model for a solar adsorption refrigeration system and to simulate the same for different operating conditions. In this system, the mechanical compressor is replaced by a thermal compressor. The thermal compressor uses renewable energy such as solar energy and geothermal energy which makes it useful for those areas where electricity is not available. Refrigerants normally in use like chlorofluorocarbon/perfluorocarbon have harmful effects like ozone depletion and greenhouse warming. It is another advantage of adsorption systems that it can replace these refrigerants with less harmful natural refrigerants like water, methanol, ammonia, etc. Thus the double benefit of reduction in energy consumption and pollution can be achieved. A thermodynamic model was developed for the proposed adsorber, and a universal MATLAB code was used to simulate the model. Simulations were carried out for a different operating condition for the silicagel-methanol working pair. Various graphs are plotted between regeneration temperature, adsorption capacities, the coefficient of performance, desorption rate, specific cooling power, adsorption/desorption times and mass. The results proved that adsorption system could be installed successfully for refrigeration purpose as it has saving in terms of power and reduction in carbon emission even though the efficiency is comparatively less as compared to conventional systems. The model was tested for its compliance in a cold storage refrigeration with a cooling load of 12 TR.Keywords: adsorption, refrigeration, renewable energy, silicagel-methanol
Procedia PDF Downloads 206843 Intelligent Materials and Functional Aspects of Shape Memory Alloys
Authors: Osman Adiguzel
Abstract:
Shape-memory alloys are a new class of functional materials with a peculiar property known as shape memory effect. These alloys return to a previously defined shape on heating after deformation in low temperature product phase region and take place in a class of functional materials due to this property. The origin of this phenomenon lies in the fact that the material changes its internal crystalline structure with changing temperature. Shape memory effect is based on martensitic transitions, which govern the remarkable changes in internal crystalline structure of materials. Martensitic transformation, which is a solid state phase transformation, occurs in thermal manner in material on cooling from high temperature parent phase region. This transformation is governed by changes in the crystalline structure of the material. Shape memory alloys cycle between original and deformed shapes in bulk level on heating and cooling, and can be used as a thermal actuator or temperature-sensitive elements due to this property. Martensitic transformations usually occur with the cooperative movement of atoms by means of lattice invariant shears. The ordered parent phase structures turn into twinned structures with this movement in crystallographic manner in thermal induced case. The twinned martensites turn into the twinned or oriented martensite by stressing the material at low temperature martensitic phase condition. The detwinned martensite turns into the parent phase structure on first heating, first cycle, and parent phase structures turn into the twinned and detwinned structures respectively in irreversible and reversible memory cases. On the other hand, shape memory materials are very important and useful in many interdisciplinary fields such as medicine, pharmacy, bioengineering, metallurgy and many engineering fields. The choice of material as well as actuator and sensor to combine it with the host structure is very essential to develop main materials and structures. Copper based alloys exhibit this property in metastable beta-phase region, which has bcc-based structures at high temperature parent phase field, and these structures martensitically turn into layered complex structures with lattice twinning following two ordered reactions on cooling. Martensitic transition occurs as self-accommodated martensite with inhomogeneous shears, lattice invariant shears which occur in two opposite directions, <110 > -type directions on the {110}-type plane of austenite matrix which is basal plane of martensite. This kind of shear can be called as {110}<110> -type mode and gives rise to the formation of layered structures, like 3R, 9R or 18R depending on the stacking sequences on the close-packed planes of the ordered lattice. In the present contribution, x-ray diffraction and transmission electron microscopy (TEM) studies were carried out on two copper based alloys which have the chemical compositions in weight; Cu-26.1%Zn 4%Al and Cu-11%Al-6%Mn. X-ray diffraction profiles and electron diffraction patterns reveal that both alloys exhibit super lattice reflections inherited from parent phase due to the displacive character of martensitic transformation. X-ray diffractograms taken in a long time interval show that locations and intensities of diffraction peaks change with the aging time at room temperature. In particular, some of the successive peak pairs providing a special relation between Miller indices come close each other.Keywords: Shape memory effect, martensite, twinning, detwinning, self-accommodation, layered structures
Procedia PDF Downloads 426842 An Investigation of Vegetable Oils as Potential Insulating Liquid
Authors: Celal Kocatepe, Eyup Taslak, Celal Fadil Kumru, Oktay Arikan
Abstract:
While choosing insulating oil, characteristic features such as thermal cooling, endurance, efficiency and being environment-friendly should be considered. Mineral oils are referred as petroleum-based oil. In this study, vegetable oils investigated as an alternative insulating liquid to mineral oil. Dissipation factor, breakdown voltage, relative dielectric constant and resistivity changes with the frequency and voltage of mineral, rapeseed and nut oils were measured. Experimental studies were performed according to ASTM D924 and IEC 60156 standards.Keywords: breakdown voltage, dielectric dissipation factor, mineral oil, vegetable oils
Procedia PDF Downloads 694841 Aerosol Radiative Forcing Over Indian Subcontinent for 2000-2021 Using Satellite Observations
Authors: Shreya Srivastava, Sushovan Ghosh, Sagnik Dey
Abstract:
Aerosols directly affect Earth’s radiation budget by scattering and absorbing incoming solar radiation and outgoing terrestrial radiation. While the uncertainty in aerosol radiative forcing (ARF) has decreased over the years, it is still higher than that of greenhouse gas forcing, particularly in the South Asian region, due to high heterogeneity in their chemical properties. Understanding the Spatio-temporal heterogeneity of aerosol composition is critical in improving climate prediction. Studies using satellite data, in-situ and aircraft measurements, and models have investigated the Spatio-temporal variability of aerosol characteristics. In this study, we have taken aerosol data from Multi-angle Imaging Spectro-Radiometer (MISR) level-2 version 23 aerosol products retrieved at 4.4 km and radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 21 years (2000-2021) over the Indian subcontinent. MISR aerosol product includes size and shapes segregated aerosol optical depth (AOD), Angstrom exponent (AE), and single scattering albedo (SSA). Additionally, 74 aerosol mixtures are included in version 23 data that is used for aerosol speciation. We have seasonally mapped aerosol optical and microphysical properties from MISR for India at quarter degrees resolution. Results show strong Spatio-temporal variability, with a constant higher value of AOD for the Indo-Gangetic Plain (IGP). The contribution of small-size particles is higher throughout the year, spatially during winter months. SSA is found to be overestimated where absorbing particles are present. The climatological map of short wave (SW) ARF at the top of the atmosphere (TOA) shows a strong cooling except in only a few places (values ranging from +2.5o to -22.5o). Cooling due to aerosols is higher in the absence of clouds. Higher negative values of ARF are found over the IGP region, given the high aerosol concentration above the region. Surface ARF values are everywhere negative for our study domain, with higher values in clear conditions. The results strongly correlate with AOD from MISR and ARF from CERES.Keywords: aerosol Radiative forcing (ARF), aerosol composition, single scattering albedo (SSA), CERES
Procedia PDF Downloads 54840 Electronic and Magnetic Properties of the Dy₀.₀₆₂₅Y₀.₉₃₇₅ FeO₃ and Dy₀.₁₂₅ Y₀.₈₇₅ FeO₃ Perovskites
Authors: Sari Aouatef, Larabi Amina
Abstract:
First-principles calculations within density functional theory based are used to investigate the influence of doped rare earth elements on some properties of perovskite systems Dy₀.₀₆₂₅Y₀.₉₃₇₅FeO₃ and Dy₀.₁₂₅ Y₀.₈₇₅ FeO₃. The electronic and magnetic properties are studied by means of the full-potential linearized augmented plane wave method with Vasp code. The calculated densities of states presented in this work identify the semiconducting behavior for Dy₀.₁₂₅ Y₀.₈₇₅ FeO₃, and the semi-metallic behavior for Dy₀.₀₆₂₅Y₀.₉₃₇₅ FeO₃. Besides, to investigate magnetic properties of several compounds, four magnetic configurations are considered (ferromagnetic (FM), antiferromagnetic type A (A-AFM), antiferromagnetic type C (C-AFM) and antiferromagnetic type G (G-AFM). By doping the Dy element, the system shows different changes in the magnetic order and electronic structure. It is found that Dy₀.₀₆₂₅Y₀.₉₃₇₅ FeO₃ exhibits the strongest magnetic change corresponding to the transition to the ferromagnetic order with the largest magnetic moment of 4.997.Keywords: DFT, Perovskites, multiferroic, magnetic properties
Procedia PDF Downloads 142839 Aerosol Direct Radiative Forcing Over the Indian Subcontinent: A Comparative Analysis from the Satellite Observation and Radiative Transfer Model
Authors: Shreya Srivastava, Sagnik Dey
Abstract:
Aerosol direct radiative forcing (ADRF) refers to the alteration of the Earth's energy balance from the scattering and absorption of solar radiation by aerosol particles. India experiences substantial ADRF due to high aerosol loading from various sources. These aerosols' radiative impact depends on their physical characteristics (such as size, shape, and composition) and atmospheric distribution. Quantifying ADRF is crucial for understanding aerosols’ impact on the regional climate and the Earth's radiative budget. In this study, we have taken radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 22 years (2000-2021) over the Indian subcontinent. Except for a few locations, the short-wave DARF exhibits aerosol cooling at the TOA (values ranging from +2.5 W/m2 to -22.5W/m2). Cooling due to aerosols is more pronounced in the absence of clouds. Being an aerosol hotspot, higher negative ADRF is observed over the Indo-Gangetic Plain (IGP). Aerosol Forcing Efficiency (AFE) shows a decreasing seasonal trend in winter (DJF) over the entire study region while an increasing trend over IGP and western south India during the post-monsoon season (SON) in clear-sky conditions. Analysing atmospheric heating and AOD trends, we found that only the aerosol loading is not governing the change in atmospheric heating but also the aerosol composition and/or their vertical profile. We used a Multi-angle Imaging Spectro-Radiometer (MISR) Level-2 Version 23 aerosol products to look into aerosol composition. MISR incorporates 74 aerosol mixtures in its retrieval algorithm based on size, shape, and absorbing properties. This aerosol mixture information was used for analysing long-term changes in aerosol composition and dominating aerosol species corresponding to the aerosol forcing value. Further, ADRF derived from this method is compared with around 35 studies across India, where a plane parallel Radiative transfer model was used, and the model inputs were taken from the OPAC (Optical Properties of Aerosols and Clouds) utilizing only limited aerosol parameter measurements. The result shows a large overestimation of TOA warming by the latter (i.e., Model-based method).Keywords: aerosol radiative forcing (ARF), aerosol composition, MISR, CERES, SBDART
Procedia PDF Downloads 54838 Silicon Surface Treatment Effect on the Structural, Optical, and Optoelectronic Properties for Solar Cell Applications
Authors: Lotfi Hedi Khezami, Mohamed Ben Rabha, N. Sboui, Mounir Gaidi, B. Bessais
Abstract:
Metal-nano particle-assisted Chemical Etching is an extraordinary developed wet etching method of producing uniform semiconductor nano structure (nano wires) from patterned metallic film on crystalline silicon surface. The metal films facilitate the etching in HF and H2O2 solution and produce silicon nanowires (SiNWs). Creation of different SiNWs morphologies by changing the etching time and its effects on optical and opto electronic properties was investigated. Combination effect of formed SiNWs and stain etching treatment in acid (HF/HNO3/H2O) solution on the surface morphology of Si wafers as well as on the optical and opto electronic properties are presented in this paper.Keywords: stain etching, porous silicon, silicon nanowires, reflectivity, lifetime, solar cells
Procedia PDF Downloads 448837 Gambusia an Excellent Indicator of Metals Stress
Abstract:
The activity of acetylcholinesterase (AChE) was studied in freshwater fish exposed to two heavy metals lead and cadmium. Measurements were made after short exposures (4 and 7 days) at concentrations of 1, 5, and 7μg/L cadmium and 1.25, 2.25, and 5 mg/L of lead. Cadmium induced no significant increases in activity of AChE in the gills for the lowest dose. Except significant inhibition on 7 days. In muscle of Gambusia, under stress of metallic lead, the activity increases compared to the control are noted at 4 days of treatment and inhibitions to 7 days of exposure. The analysis of variance (time, treatment) indicates only a very significant time effect (p<0.05), and as for cadmium, a significant body effect (p<0.01) is recorded. This small fish sedentary, colonizing particularly quiet environments, polluted, can only be the ideal bioindicator of contamination and bioaccumulation of metals. The presence of lead and cadmium in the bodies of fish is a risk factor not only for the lives of these aquatic species, but also for the man who is the top predator at the end of the food chain.Keywords: biomarkers, bioindicator, environmenlal health, metals
Procedia PDF Downloads 498836 Physical Aspects of Shape Memory and Reversibility in Shape Memory Alloys
Authors: Osman Adiguzel
Abstract:
Shape memory alloys take place in a class of smart materials by exhibiting a peculiar property called the shape memory effect. This property is characterized by the recoverability of two certain shapes of material at different temperatures. These materials are often called smart materials due to their functionality and their capacity of responding to changes in the environment. Shape memory materials are used as shape memory devices in many interdisciplinary fields such as medicine, bioengineering, metallurgy, building industry and many engineering fields. The shape memory effect is performed thermally by heating and cooling after first cooling and stressing treatments, and this behavior is called thermoelasticity. This effect is based on martensitic transformations characterized by changes in the crystal structure of the material. The shape memory effect is the result of successive thermally and stress-induced martensitic transformations. Shape memory alloys exhibit thermoelasticity and superelasticity by means of deformation in the low-temperature product phase and high-temperature parent phase region, respectively. Superelasticity is performed by stressing and releasing the material in the parent phase region. Loading and unloading paths are different in the stress-strain diagram, and the cycling loop reveals energy dissipation. The strain energy is stored after releasing, and these alloys are mainly used as deformation absorbent materials in control of civil structures subjected to seismic events, due to the absorbance of strain energy during any disaster or earthquake. Thermal-induced martensitic transformation occurs thermally on cooling, along with lattice twinning with cooperative movements of atoms by means of lattice invariant shears, and ordered parent phase structures turn into twinned martensite structures, and twinned structures turn into the detwinned structures by means of stress-induced martensitic transformation by stressing the material in the martensitic condition. Thermal induced transformation occurs with the cooperative movements of atoms in two opposite directions, <110 > -type directions on the {110} - type planes of austenite matrix which is the basal plane of martensite. Copper-based alloys exhibit this property in the metastable β-phase region, which has bcc-based structures at high-temperature parent phase field. Lattice invariant shear and twinning is not uniform in copper-based ternary alloys and gives rise to the formation of complex layered structures, depending on the stacking sequences on the close-packed planes of the ordered parent phase lattice. In the present contribution, x-ray diffraction and transmission electron microscopy (TEM) studies were carried out on two copper-based CuAlMn and CuZnAl alloys. X-ray diffraction profiles and electron diffraction patterns reveal that both alloys exhibit superlattice reflections inherited from the parent phase due to the displacive character of martensitic transformation. X-ray diffractograms taken in a long time interval show that diffraction angles and intensities of diffraction peaks change with the aging duration at room temperature. In particular, some of the successive peak pairs providing a special relation between Miller indices come close to each other. This result refers to the rearrangement of atoms in a diffusive manner.Keywords: shape memory effect, martensitic transformation, reversibility, superelasticity, twinning, detwinning
Procedia PDF Downloads 181835 Synthesis of Silver Nanoparticles by Different Types of Plants
Authors: Khamael Abualnaja, Hala M. Abo-Dief
Abstract:
Silver nanoparticles (AgNPs) are the subject of important recent interest, present in a large range of applications such as electronics, catalysis, chemistry, energy, and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, we describe an effective and environmental-friendly technique of green synthesis of silver nanoparticles. Silver nanoparticles (AgNPs) synthesized using silver nitrate solution and the extract of mint, basil, orange peel and Tangerines peel which used as reducing agents. Silver Nanoparticles were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and UV–Vis absorption spectroscopy. SEM analysis showed the average particle size of mint, basil, orange peel, Tangerines peel are 30, 20, 12, 10 nm respectively. This is for the first time that any plant extract was used for the synthesis of nanoparticles.Keywords: silver nanoparticles, green synthesis, scanning electron microscopy, plants
Procedia PDF Downloads 258834 Stabilizing of Lithium-Solid-Electrolyte Interfaces by Atomic Layer Deposition Prepared Nano-Interlayers for a Model All-Solid-State Battery
Authors: Rainer Goetz, Zahra Ahaliabadeh, Princess S. Llanos, Aliaksandr S. Bandarenka, Tanja Kallio
Abstract:
In order to understand the electrochemistry of all-solid-state batteries (ASSBs), the use of electrochemical equivalent circuits with a physical meaning is essential. A model battery is needed whose characterization is independent of the influence of the complex battery assembly. Lithium-Ion Conducting Glass-Ceramic (LICGC), a model solid electrolyte, is chosen for its stability in the air, but on the other hand, it is also well-known for its instability against metallic lithium upon direct contact. Hence, as a first step towards a model ASSB, the interface between lithium and the solid electrolyte (SE) is stabilized with thin (5 nm and 10 nm) coatings of titanium oxide (TO) and lithium titanium oxide (LTO). Impedance data shows that both materials are able to protect the SE surface from rapid degradation due to reducing lithium and, therefore, can serve as a protective interlayer on the anode side of a model ASSB.Keywords: all-solid-state battery, lithium anode, solid electrolytes, interlayers
Procedia PDF Downloads 115833 Precise Electrochemical Metal Recovery from Emerging Waste Streams
Authors: Wei Jin
Abstract:
Efficient and selective metal recovery from emerging solid waste, such as spent lithium batteries, electronic waste and SCR catalysts, is of great importance from both environmental and resource considerations. In order to overcome the bottlenecks of long flow-sheet and severe secondary pollution in conventional processes, the rational design of 2-electron oxygen reduction reaction (ORR) and capacitive deionization (CDI) nanomaterials were developed for the precise electrochemical metal recovery. It has been demonstrated that the modified carbon nanomaterials can be employed as 2e ORR to produce H2O2 in aqueous solution, in which the metal can be leached out from the solid waste as ions. Moreover, the multi-component metallic solution can be electrochemically extracted with good efficiency and selectivity with the nanoporous aerogel. Each system presents stable performance for long-term operation and can be used in industrial solid waste treatment. This study provides a materials-oriented, cleaner metal recovery approach for strategic metal resources sustainability.Keywords: electrochemistry, metal recovery, waste steams, nanomaterials
Procedia PDF Downloads 10832 Thermal Management of a Compact Electronic Device Subjected to Different Harsh Operating Conditions
Authors: Murat Parlak, Muhammed Çağlar Malyemez
Abstract:
In a harsh environment, it is crucialtoinvestigatethethermal problem systematically implement a reliableandeffectivecoolingtechniqueformilitaryequipment. In this study, an electronicaldevice has been designed to fit different boundary conditions. Manyfinalternatives can be possiblesolutionsforthethermal problem. Therefore, it is an important step to define an easyproduciblefindesignand a low power fan selection for the optimum unit-design satisfying IP68. The equipment is planned to serve at 71C environment conditions and it also can be screwedto a cold plate at +85C. In both conditions, it is intendedtousethesamechassiswithoutanymodifications. To optimize such a ruggeddevice, all CFD analysis has been done withAnsysFluent 2021®. Afterstudyingpinfins, it is seenthatthesurfacearea is not enough, hencethefin-type is changed to a straightrectangulartypewithforcedconvectioncooling. Finally, a verycompactproductthat can serve in a harsh environment is obtained.Keywords: electronic cooling, harsh environment, forced convection, compact design
Procedia PDF Downloads 179831 Electronic Structure and Optical Properties of YNi₄Si-Type GdNi₅: A Coulomb Corrected Local-Spin Density Approximation Study
Authors: Sapan Mohan Saini
Abstract:
In this work, we report the calculations on the electronic and optical properties of YNi₄Si-type GdNi₅ compound. Calculations are performed using the full-potential augmented plane wave (FPLAPW) method in the framework of density functional theory (DFT). The Coulomb corrected local-spin density approximation (LSDA+U) in the self-interaction correction (SIC) has been used for exchange-correlation potential. Spin polarised calculations of band structure show that several bands cross the Fermi level (EF) reflect the metallic character. Analysis of density of states (DOS) demonstrates that spin up Gd-f states lie around 7.5 eV below EF and spin down Gd-f lie around 4.5 eV above EF. We found Ni-3d states mainly contribute to DOS from -5.0 eV to the EF. Our calculated results of optical conductivity agree well with the experimental data.Keywords: electronic structure, optical properties, FPLAPW method, YNi₄Si-type GdNi₅
Procedia PDF Downloads 172830 Structural and Electronic Properties of Cd0.75V0.25S Alloy
Authors: H. Baltache, M. El Amine. Monir, R. Khenata, D. Rached, T. Seddik
Abstract:
The first principles calculations based on the density functional theory (DFT) by using the full-potential linearized augmented plane wave (FP-LAPW) method within the generalized gradient approximation (GGA) in order to investigate the structural and electronic properties of Cd1-xVxS alloy at x = 0.25 in zincblende structure. For the structural properties, we have calculated the equilibrium lattice parameters, such as lattice constant, bulk modulus and first pressure derivatives of the bulk modulus. From the electronic structure, we obtain that Cd0.75V0.25S alloy is nearly half-metallic. The analysis of the density of states (DOS) curves allow to evaluate the spin-exchange splitting energies Δx(d) and Δx(pd) that are generated by V-3d states, where the effective potential for spin-down case is attractive than for spin-up case. Calculations of the exchange constants N0α (valence band) and N0β (conduction band) are served to describe the magnetic behavior of the compounds.Keywords: first-principles calculations, structural properties, electronic properties
Procedia PDF Downloads 365829 Agro-Industrial Waste as a Source of Catalyst Production
Authors: Brenda Cecilia Ledesma, Andrea Beltramone
Abstract:
This work deals with the bio-waste valorization approach for catalyst development, the use of products derived from biomass as raw material and the obtaining of biofuels. In this research, activated carbons were synthesized from the orange peel using different synthesis conditions. With the activated carbons obtained with the best structure and texture, PtIr bimetallic catalysts were prepared. Carbon activation was carried out through a chemical process with phosphoric acid as an activating agent, varying the acid concentration, the ratio substrate/activating agent and time of contact between them. The best support was obtained using a carbonization time of 1 h, the temperature of carbonization of 470oC, the phosphoric acid concentration of 50 wt.% and a BET area of 1429 m2/g. Subsequently, the metallic nanoparticles were deposited in the activated carbon to use the solid as a catalytic material for the hydrogenation of HMF to 2,5-DMF. The catalyst presented an excellent performance for biofuels generation.Keywords: orange peel, bio-waste valorization, platinum, iridium, 5-hydroxymethylfurfural
Procedia PDF Downloads 195828 Engineering of Stable and Improved Electrochemical Activities of Redox Dominating Charge Storage Electrode Materials
Authors: Girish Sambhaji Gund
Abstract:
The controlled nanostructure growth and its strong coupling with the current collector are key factors to achieve good electrochemical performance of faradaic-dominant electroactive materials. We employed binder-less and additive-free hydrothermal and physical vapor doping methods for the synthesis of nickel (Ni) and cobalt (Co) based compounds nanostructures (NiO, NiCo2O4, NiCo2S4) deposited on different conductive substrates such as carbon nanotube (CNT) on stainless steel, and reduced graphene oxide (rGO) and N-doped rGO on nickel foam (NF). The size and density of Ni- and Co-based compound nanostructures are controlled through the strong coupling with carbon allotropes on stainless steel and NF substrates. This controlled nanostructure of Ni- and Co-based compounds with carbon allotropes leads to stable faradaic electrochemical reactions at the material/current collector interface and within the electrode, which is consequence of strong coupling of nanostructure with functionalized carbon surface as a buffer layer. Thus, it is believed that the results provide the synergistic approaches to stabilize electrode materials physically and chemically, and hence overall electrochemical activity of faradaic dominating battery-type electrode materials through buffer layer engineering.Keywords: metal compounds, carbon allotropes, doping, electrochemicstry, hybrid supercapacitor
Procedia PDF Downloads 79827 Ultrasonic Micro Injection Molding: Manufacturing of Micro Plates of Biomaterials
Authors: Ariadna Manresa, Ines Ferrer
Abstract:
Introduction: Ultrasonic moulding process (USM) is a recent injection technology used to manufacture micro components. It is able to melt small amounts of material so the waste of material is certainly reduced comparing to microinjection molding. This is an important advantage when the materials are expensive like medical biopolymers. Micro-scaled components are involved in a variety of uses, such as biomedical applications. It is required replication fidelity so it is important to stabilize the process and minimize the variability of the responses. The aim of this research is to investigate the influence of the main process parameters on the filling behaviour, the dimensional accuracy and the cavity pressure when a micro-plate is manufactured by biomaterials such as PLA and PCL. Methodology or Experimental Procedure: The specimens are manufactured using a Sonorus 1G Ultrasound Micro Molding Machine. The used geometry is a rectangular micro-plate of 15x5mm and 1mm of thickness. The materials used for the investigation are PLA and PCL due to biocompatible and degradation properties. The experimentation is divided into two phases. Firstly, the influence of process parameters (vibration amplitude, sonotrodo velocity, ultrasound time and compaction force) on filling behavior is analysed, in Phase 1. Next, when filling cavity is assured, the influence of both cooling time and force compaction on the cavity pressure, part temperature and dimensional accuracy is instigated, which is done in Phase. Results and Discussion: Filling behavior depends on sonotrodo velocity and vibration amplitude. When the ultrasonic time is higher, more ultrasonic energy is applied and the polymer temperature increases. Depending on the cooling time, it is possible that when mold is opened, the micro-plate temperature is too warm. Consequently, the polymer relieve its stored internal energy (ultrasonic and thermal) expanding through the easier direction. This fact is reflected on dimensional accuracy, causing micro-plates thicker than the mold. It has also been observed the most important fact that affects cavity pressure is the compaction configuration during the manufacturing cycle. Conclusions: This research demonstrated the influence of process parameters on the final micro-plated manufactured. Future works will be focused in manufacturing other geometries and analysing the mechanical properties of the specimens.Keywords: biomaterial, biopolymer, micro injection molding, ultrasound
Procedia PDF Downloads 284