Search results for: intelligent distribution grids
5180 Temperature-Responsive Shape Memory Polymer Filament Integrated Smart Polyester Knitted Fabric Featuring Memory Behavior
Authors: Priyanka Gupta, Bipin Kumar
Abstract:
Recent developments in smart materials motivate researchers to create novel textile products for innovative and functional applications, which have several potential uses beyond the conventional. This study investigates the memory behavior of shape memory filaments integrated into a knitted textile structure. The research advances the knowledge of how these intelligent materials respond within textile structures. This integration may also open new avenues for developing smart fabrics with unique sensing and actuation capabilities. A shape memory filament and polyester yarn were knitted to produce a shape memory knitted fabric (SMF). Thermo-mechanical tensile test was carried out to quantify the memory behavior of SMF under different conditions. The experimental findings demonstrate excellent shape recovery (100%) and shape fixity up to 88% at different strains (20% and 60%) and temperatures (30 ℃ and 50 ℃). Experimental results reveal that memory filament behaves differently in a fabric structure than in its pristine condition at various temperatures and strains. The cycle test of SMF under different thermo-mechanical conditions indicated complete shape recovery with an increase in shape fixity. So, the utterly recoverable textile structure was achieved after a few initial cycles. These intelligent textiles are beneficial for the development of novel, innovative, and functional fabrics like elegant curtains, pressure garments, compression stockings, etc. In addition to fashion and medical uses, this unique feature may also be leveraged to build textile-based sensors and actuators.Keywords: knitting, memory filament, shape memory, smart textiles, thermo-mechanical cycle
Procedia PDF Downloads 895179 Assessing the Impact of Autonomous Vehicles on Supply Chain Performance – A Case Study of Agri-Food Supply Chain
Authors: Nitish Suvarna, Anjali Awasthi
Abstract:
In an era marked by rapid technological advancements, the integration of Autonomous Vehicles into supply chain networks represents a transformative shift, promising to redefine the paradigms of logistics and transportation. This thesis delves into a comprehensive assessment of the impact of autonomous vehicles on supply chain performance, with a particular focus on network design, operational efficiency, and environmental sustainability. Employing the advanced simulation capabilities of anyLogistix (ALX), the study constructs a digital twin of a conventional supply chain network, encompassing suppliers, production facilities, distribution centers, and customer endpoints. The research methodically integrates Autonomous Vehicles into this intricate network, aiming to unravel the multifaceted effects on transportation logistics including transit times, cost-efficiency, and sustainability. Through simulations and scenarios analysis, the study scrutinizes the operational resilience and adaptability of supply chains in the face of dynamic market conditions and disruptive technologies like Autonomous Vehicles. Furthermore, the thesis undertakes carbon footprint analysis, quantifying the environmental benefits and challenges associated with the adoption of Autonomous Vehicles in supply chain operations. The insights from this research are anticipated to offer a strategic framework for industry stakeholders, guiding the adoption of Autonomous Vehicles to foster a more efficient, responsive, and sustainable supply chain ecosystem. The findings aim to serve as a cornerstone for future research and practical implementations in the realm of intelligent transportation and supply chain management.Keywords: autonomous vehicle, agri-food supply chain, ALX simulation, anyLogistix
Procedia PDF Downloads 755178 Modelling a Distribution Network with a Hybrid Solar-Hydro Power Plant in Rural Cameroon
Authors: Contimi Kenfack Mouafo, Sebastian Klick
Abstract:
In the rural and remote areas of Cameroon, access to electricity is very limited since most of the population is not connected to the main utility grid. Throughout the country, efforts are underway to not only expand the utility grid to these regions but also to provide reliable off-grid access to electricity. The Cameroonian company Solahydrowatt is currently working on the design and planning of one of the first hybrid solar-hydropower plants of Cameroon in Fotetsa, in the western region of the country, to provide the population with reliable access to electricity. This paper models and proposes a design for the low-voltage network with a hybrid solar-hydropower plant in Fotetsa. The modelling takes into consideration the voltage compliance of the distribution network, the maximum load of operating equipment, and most importantly, the ability for the network to operate as an off-grid system. The resulting modelled distribution network does not only comply with the Cameroonian voltage deviation standard, but it is also capable of being operated as a stand-alone network independent of the main utility grid.Keywords: Cameroon, rural electrification, hybrid solar-hydro, off-grid electricity supply, network simulation
Procedia PDF Downloads 1245177 A Brief Study about Nonparametric Adherence Tests
Authors: Vinicius R. Domingues, Luan C. S. M. Ozelim
Abstract:
The statistical study has become indispensable for various fields of knowledge. Not any different, in Geotechnics the study of probabilistic and statistical methods has gained power considering its use in characterizing the uncertainties inherent in soil properties. One of the situations where engineers are constantly faced is the definition of a probability distribution that represents significantly the sampled data. To be able to discard bad distributions, goodness-of-fit tests are necessary. In this paper, three non-parametric goodness-of-fit tests are applied to a data set computationally generated to test the goodness-of-fit of them to a series of known distributions. It is shown that the use of normal distribution does not always provide satisfactory results regarding physical and behavioral representation of the modeled parameters.Keywords: Kolmogorov-Smirnov test, Anderson-Darling test, Cramer-Von-Mises test, nonparametric adherence tests
Procedia PDF Downloads 4445176 Spatial Distribution of Local Sheep Breeds in Antalya Province
Authors: Serife Gulden Yilmaz, Suleyman Karaman
Abstract:
Sheep breeding is important in terms of meeting both the demand of red meat consumption and the availability of industrial raw materials and the employment of the rural sector in Turkey. It is also very important to ensure the selection and continuity of the breeds that are raised in order to increase quality and productive products related to sheep breeding. The protection of local breeds and crossbreds also enables the development of the sector in the region and the reduction of imports. In this study, the data were obtained from the records of the Turkish Statistical Institute and Antalya Sheep & Goat Breeders' Association. Spatial distribution of sheep breeds in Antalya is reviewed statistically in terms of concentration at the local level for 2015 period spatially. For this reason; mapping, box plot, linear regression are used in this study. Concentration is introduced by means of studbook data on sheep breeding as locals and total sheep farm by mapping. It is observed that Pırlak breed (17.5%) and Merinos crossbreed (16.3%) have the highest concentration in the region. These breeds are respectively followed by Akkaraman breed (11%), Pirlak crossbreed (8%), Merinos breed (7.9%) Akkaraman crossbreed (7.9%) and Ivesi breed (7.2%).Keywords: sheep breeds, local, spatial distribution, agglomeration, Antalya
Procedia PDF Downloads 2855175 Electricity Services and COVID-19: Understanding the Role of Infrastructure Improvements and Institutional Innovations
Authors: Javed Younas
Abstract:
Fiscal challenges pervade the electricity sector in many developing countries. Low bill payment and high theft mean utility customers have little incentive to conserve. It also means electricity distribution companies have less to invest in infrastructure maintenance, modernization, and technical upgrades. The low-quality electricity services can result impair the economic benefits from connections to the electrical grid. We study the impacts of two interventions implemented in Karachi, Pakistan, with the goal of reducing distribution losses and increasing revenue recovery: infrastructure improvements that made illegal connections physically more difficult and institutional innovations designed to increase communities’ trust in and cooperation with the utility. Using differences in implementation timing across space, we estimate the interventions’ impacts before the COVID-19 pandemic and their role in mitigating the pandemic’s effects on electricity services. Results indicate that the infrastructure improvements reduced losses, as well as the electricity delivered to the distribution system, a proxy for a generation. The institutional innovations significantly impacted revenue recovery, but not losses in their initial months; however, the efforts mitigated the pandemic’s negative effect on the utility finances.Keywords: electricity, infrastructure, losses, revenue recovery
Procedia PDF Downloads 1975174 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities
Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun
Abstract:
As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning
Procedia PDF Downloads 565173 Species Distribution Model for Zanthoxylum Rhetsa Genus in Thailand
Authors: Yosiya Chanta, Jantrararuk Tovaranont
Abstract:
Species distribution model (SDMs) is one of the powerful tools used to create a suitability map used to predict and address ecology and conservation approaches. MaxEnt is a tool used among SDMs that is highly popular because it only uses presence data. Zanthoxylum rhetsa has more than 200 species distributed in the tropics. Most commonly found in cooler forest environments, there are 8-9 species found in Thailand. In northern Thailand, 3 varieties are commonly grown: Zanthoxylum myriacanthum, Zanthoxylum rhetsa and Zanthoxylum armatum. In the northern regions, these varieties are mainly used as a spice and as a cooking ingredient. MaxEnt has been used in this study to predict potential habitats for these Zanthoxylums in current and future times (2041and 2060). Suitable habitats are predicted using data from the EC-Earth3-Veg general circulation model with 19 climatic variables. The results indicate that the suitability of future habitats of Zanthoxylum rhetsa may expand into the lower northern part of Thailand. The habitat suitability map obtained from the MaxEnt tool shows that the Precipitation of Wettest Quarter (Bio16) is the most important climatic variable influencing the current and future spread of Zanthoxylum rhetsa.Keywords: MaxEnt, Zanthoxylum rhets, species distribution modelling, climate change
Procedia PDF Downloads 985172 Combining a Continuum of Hidden Regimes and a Heteroskedastic Three-Factor Model in Option Pricing
Authors: Rachid Belhachemi, Pierre Rostan, Alexandra Rostan
Abstract:
This paper develops a discrete-time option pricing model for index options. The model consists of two key ingredients. First, daily stock return innovations are driven by a continuous hidden threshold mixed skew-normal (HTSN) distribution which generates conditional non-normality that is needed to fit daily index return. The most important feature of the HTSN is the inclusion of a latent state variable with a continuum of states, unlike the traditional mixture distributions where the state variable is discrete with little number of states. The HTSN distribution belongs to the class of univariate probability distributions where parameters of the distribution capture the dependence between the variable of interest and the continuous latent state variable (the regime). The distribution has an interpretation in terms of a mixture distribution with time-varying mixing probabilities. It has been shown empirically that this distribution outperforms its main competitor, the mixed normal (MN) distribution, in terms of capturing the stylized facts known for stock returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence. Second, heteroscedasticity in the model is captured by a threeexogenous-factor GARCH model (GARCHX), where the factors are taken from the principal components analysis of various world indices and presents an application to option pricing. The factors of the GARCHX model are extracted from a matrix of world indices applying principal component analysis (PCA). The empirically determined factors are uncorrelated and represent truly different common components driving the returns. Both factors and the eight parameters inherent to the HTSN distribution aim at capturing the impact of the state of the economy on price levels since distribution parameters have economic interpretations in terms of conditional volatilities and correlations of the returns with the hidden continuous state. The PCA identifies statistically independent factors affecting the random evolution of a given pool of assets -in our paper a pool of international stock indices- and sorting them by order of relative importance. The PCA computes a historical cross asset covariance matrix and identifies principal components representing independent factors. In our paper, factors are used to calibrate the HTSN-GARCHX model and are ultimately responsible for the nature of the distribution of random variables being generated. We benchmark our model to the MN-GARCHX model following the same PCA methodology and the standard Black-Scholes model. We show that our model outperforms the benchmark in terms of RMSE in dollar losses for put and call options, which in turn outperforms the analytical Black-Scholes by capturing the stylized facts known for index returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence.Keywords: continuous hidden threshold, factor models, GARCHX models, option pricing, risk-premium
Procedia PDF Downloads 2975171 Update Mosquito Species Composition and Distribution in Qatar
Authors: Fatima Alkhayat, Abu Hassan Ahmed
Abstract:
Qatar as the one of Middle East and Gulf country is growing rapidly due to urbanization. Urbanization, population’s movement and goods transportation in addition to climatic change all together create suitable environments for remerging and/or introduction of new disease vectors species. Unfortunately, knowledge on mosquito species composition and their geographical distribution in Qatar is extremely limited. The objective of present study is to provide update information on species composition and distribution. Mosquito larval survey carried out in six sentinel sites in Qatar. The collection was made on monthly basis in period from October 2013 to May 2015 using dipping techniques and identified to species level using appropriate pictorial keys. In total about 3,085 mosquito larvae were collected and identified to species compromising three mosquito genera, Culex 87.4% (n=2697), Ochlerotatus 9.9% (n= 305) and Anopheles 2.6% (n= 81). Among Culex genera; Culex quinquefasciatus represent 87.8% (n= 2369), Cx. pipiens 8.7% (n=237), and Cx. mattinglyi 3.4% (n=91). Culex quinquefasciatus was the most commonly collected species, representing 93.5% in Alwakra (n= 2216) which was observed in November, December, March, April and May when reached the peak. 6.4% in Nuaija (n= 151) was found in February and March and reached the peak in March. 0.1% in Alkaraana (n=2) only observed in April. Cx. pipiens was observed 50.2% in Rwdat Alfaras (n=120) and 48.9% in Hazm Almurkhiya (n=117). While in Rowdat Alfaras it was observed in Oct-May and in Hazm Almurkhiya from Oct-April. Cx. mattinglyi (n= 91) was only found in Nuaija from October to December. Ochlerotatus genera account 1 species Oc. dorsalis (n=305). The majority of Oc. dorsalis were observed in March and May, 98% in Nuaija (n= 299), followed by 2% in Alkhor (n=6) which was observed in January and February. Anopheles was only represented by An. stephensi which was found 69% in Alwakra (n= 56) in November, December, April and May, while 25.9% in Hazm Almurkhiya (n=21) and found in May and November. 6.2% in Rwadat Alfaras and was observed only in November and 1.2% in Nuaija (n=1) and observed in October. Further investigation is required on the composition and distribution of mosquito for implementing a surveillance program and control of mosquito-borne diseases in Qatar.Keywords: composition, distribution, mosquito, Qatar
Procedia PDF Downloads 2825170 Spatial Assessment of Soil Contamination from Informal E-Waste Recycling Site in Agbogbloshie, Ghana
Authors: Kyere Vincent Nartey, Klaus Greve, Atiemo Sampson
Abstract:
E-waste is discarded electrical electronic equipment inclusive of all components, sub-assemblies and consumables which are part of the product at the time of discarding and known to contain both hazardous and valuable fractions. E-waste is recycled within the proposed ecological restoration of the Agbogbloshie enclave using crude and rudimental recycling procedures such as open burning and manual dismantling which result in pollution and contamination of soil, water and air. Using GIS, this study was conducted to examine the spatial distribution and extent of soil contamination by heavy metals from the e-waste recycling site in Agbogbloshie. From the month of August to November 2013, 146 soil samples were collected in addition to their coordinates using GPS. Elemental analysis performed on the collected soil samples using X-Ray fluorescence revealed over 30 elements including, Ni, Cr, Zn, Cu, Pb and Mn. Using geostatistical techniques in ArcGIS 10.1 spatial assessment and distribution maps were generated. Mathematical models or equations were used to estimate the degree of contamination and pollution index. Results from soil analysis from the Agbogbloshie enclave showed that levels of measured or observed elements were significantly higher than the Canadian EPA and Dutch environmental standards.Keywords: e-waste, geostatistics, soil contamination, spatial distribution
Procedia PDF Downloads 5155169 Development of a Web-Based Application for Intelligent Fertilizer Management in Rice Cultivation
Authors: Hao-Wei Fu, Chung-Feng Kao
Abstract:
In the era of rapid technological advancement, information technology (IT) has become integral to modern life, exerting significant influence across diverse sectors and serving as a catalyst for development in various industries. Within agriculture, the integration of IT offers substantial benefits, notably enhancing operational efficiency. Real-time monitoring systems, for instance, have been widely embraced in agriculture, effectively improving crop management practices. This study specifically addresses the management of rice panicle fertilizer, presenting the development of a web application tailored to handle data associated with rice panicle fertilizer management. Leveraging the normalized difference red edge index, this application optimizes the quantity of rice panicle fertilizer used, providing recommendations to agricultural stakeholders and service providers in the agricultural information sector. The overarching objective is to minimize costs while maximizing yields. Furthermore, a robust database system has been established to store and manage relevant data for future reference in rice cultivation management. Additionally, the study utilizes the Representational State Transfer software architectural style to construct an application programming interface (API), facilitating data creation, retrieval, updating, and deletion for users via the HyperText Transfer Protocol methods. Future plans involve integrating this API with third-party services to incorporate it into larger frameworks, thus catering to the diverse requirements of various third-party services.Keywords: application programming interface, HyperText Transfer Protocol, nitrogen fertilizer intelligent management, web-based application
Procedia PDF Downloads 615168 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function
Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos
Abstract:
Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.Keywords: diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion process, trends functions, bi-parameters weibull density function
Procedia PDF Downloads 3075167 The Strategies to Develop Post-Disaster Multi-Mode Transportation System from the Perspective of Traffic Resilience
Authors: Yuxiao Jiang, Lingjun Meng, Mengyu Zhan, Lichunyi Zhang, Yingxia Yun
Abstract:
On August 8th of 2015, a serious explosion occurred in Binhai New Area of Tianjin. This explosion led to the suspension of Tianjin-Binhai Light Rail Line 9 which was an important transportation mean connecting the old and new urban areas and the suspension causes inconvenience to commuters traveling from Tianjin to Binhai or Binhai to Tianjin and residents living by Line 9. On this regard, this paper intends to give suggestions on how to develop multi-mode transportation system rapidly and effectively after a disaster and tackle with the problems in terms of transportation infrastructure facilities. The paper proposes the idea of traffic resilience which refers to the city’s ability to restore its transportation system and reduce risks when the transportation system is destroyed by a disaster. By doing questionnaire research, on the spot study and collecting data from the internet, a GIS model is established so as to analyze the alternative traffic means used by different types of residents and study the transportation supply and demand. The result shows that along the Line 9, there is a larger demand for alternative traffic means in the place which is nearer to the downtown area. Also, the distribution of bus stations is more reasonable in the place nearer to downtown area, however, the traffic speed in the area is slower. Based on traffic resilience, the paper raises strategies to develop post-disaster multi-mode transportation system such as establishing traffic management mechanism timely and effectively, building multi-mode traffic networks, improving intelligent traffic systems and so on.Keywords: traffic resilience, multi-mode transportation system, public traffic, transportation demand
Procedia PDF Downloads 3465166 Evaluating Performance of Value at Risk Models for the MENA Islamic Stock Market Portfolios
Authors: Abderrazek Ben Maatoug, Ibrahim Fatnassi, Wassim Ben Ayed
Abstract:
In this paper we investigate the issue of market risk quantification for Middle East and North Africa (MENA) Islamic market equity. We use Value-at-Risk (VaR) as a measure of potential risk in Islamic stock market, for long and short position, based on Riskmetrics model and the conditional parametric ARCH class model volatility with normal, student and skewed student distribution. The sample consist of daily data for the 2006-2014 of 11 Islamic stock markets indices. We conduct Kupiec and Engle and Manganelli tests to evaluate the performance for each model. The main finding of our empirical results show that (i) the superior performance of VaR models based on the Student and skewed Student distribution, for the significance level of α=1% , for all Islamic stock market indices, and for both long and short trading positions (ii) Risk Metrics model, and VaR model based on conditional volatility with normal distribution provides the best accurate VaR estimations for both long and short trading positions for a significance level of α=5%.Keywords: value-at-risk, risk management, islamic finance, GARCH models
Procedia PDF Downloads 5925165 Don't Just Guess and Slip: Estimating Bayesian Knowledge Tracing Parameters When Observations Are Scant
Authors: Michael Smalenberger
Abstract:
Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate and even exceed some benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. A common facet of many ITS is their use of Bayesian Knowledge Tracing (BKT) to estimate parameters necessary for the implementation of the artificial intelligence component, and for the probability of mastery of a knowledge component relevant to the ITS. While various techniques exist to estimate these parameters and probability of mastery, none directly and reliably ask the user to self-assess these. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course for which detailed transaction-level observations were recorded, and users were also routinely asked direct questions that would lead to such a self-assessment. Comparisons were made between these self-assessed values and those obtained using commonly used estimation techniques. Our findings show that such self-assessments are particularly relevant at the early stages of ITS usage while transaction level data are scant. Once a user’s transaction level data become available after sufficient ITS usage, these can replace the self-assessments in order to eliminate the identifiability problem in BKT. We discuss how these findings are relevant to the number of exercises necessary to lead to mastery of a knowledge component, the associated implications on learning curves, and its relevance to instruction time.Keywords: Bayesian Knowledge Tracing, Intelligent Tutoring System, in vivo study, parameter estimation
Procedia PDF Downloads 1725164 Efficient Control of Some Dynamic States of Wheeled Robots
Authors: Boguslaw Schreyer
Abstract:
In some types of wheeled robots it is important to secure starting acceleration and deceleration maxima while at the same time maintaining transversal stability. In this paper torque distribution between the front and rear wheels as well as the timing of torque application have been calculated. Both secure an optimum traction coefficient. This paper also identifies required input signals to a control unit, which controls the torque values and timing. Using a three dimensional, two mass model of a robot developed by the author a computer simulation was performed confirming the calculations presented in this paper. These calculations were also implemented and confirmed during military robot testing.Keywords: robot dynamics, torque distribution, traction coefficient, wheeled robots
Procedia PDF Downloads 3125163 Depth-Averaged Velocity Distribution in Braided Channel Using Calibrating Coefficients
Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua
Abstract:
Rivers are the backbone of human civilization as well as one of the most important components of nature. In this paper, a method for predicting lateral depth-averaged velocity distribution in a two-flow braided compound channel is proposed. Experiments were conducted to study the boundary shear stress in the tip of the two flow path. The cross-section of the channel is divided into several panels to study the flow phenomenon on both the main channel and the flood plain. It can be inferred from the study that the flow coefficients get affected by boundary shear stress. In this study, the analytical solution of Shiono and knight (SKM) for lateral distributions of depth-averaged velocity and bed shear stress has been taken into account. The SKM is based on hydraulic parameters, which signify the bed friction factor (f), lateral eddy viscosity, and depth-averaged flow. While applying the SKM to different panels, the equations are solved considering the boundary conditions between panels. The boundary shear stress data, which are obtained from experimentation, are compared with CES software, which is based on quasi-one-dimensional Reynold's Averaged Navier-Stokes (RANS) approach.Keywords: boundary shear stress, lateral depth-averaged velocity, two-flow braided compound channel, velocity distribution
Procedia PDF Downloads 1285162 Use of Transportation Networks to Optimize The Profit Dynamics of the Product Distribution
Authors: S. Jayasinghe, R. B. N. Dissanayake
Abstract:
Optimization modelling together with the Network models and Linear Programming techniques is a powerful tool in problem solving and decision making in real world applications. This study developed a mathematical model to optimize the net profit by minimizing the transportation cost. This model focuses the transportation among decentralized production plants to a centralized distribution centre and then the distribution among island wide agencies considering the customer satisfaction as a requirement. This company produces basically 9 types of food items with 82 different varieties and 4 types of non-food items with 34 different varieties. Among 6 production plants, 4 were located near the city of Mawanella and the other 2 were located in Galewala and Anuradhapura cities which are 80 km and 150 km away from Mawanella respectively. The warehouse located in the Mawanella was the main production plant and also the only distribution plant. This plant distributes manufactured products to 39 agencies island-wide. The average values and average amount of the goods for 6 consecutive months from May 2013 to October 2013 were collected and then average demand values were calculated. The following constraints are used as the necessary requirement to satisfy the optimum condition of the model; there was one source, 39 destinations and supply and demand for all the agencies are equal. Using transport cost for a kilometer, total transport cost was calculated. Then the model was formulated using distance and flow of the distribution. Network optimization and linear programming techniques were used to originate the model while excel solver is used in solving. Results showed that company requires total transport cost of Rs. 146, 943, 034.50 to fulfil the customers’ requirement for a month. This is very much less when compared with data without using the model. Model also proved that company can reduce their transportation cost by 6% when distributing to island-wide customers. Company generally satisfies their customers’ requirements by 85%. This satisfaction can be increased up to 97% by using this model. Therefore this model can be used by other similar companies in order to reduce the transportation cost.Keywords: mathematical model, network optimization, linear programming
Procedia PDF Downloads 3465161 Labor Income Share Change and Mergers and Acquisitions: Empirical Evidence of the Importance of Employees
Authors: Jie Zhang, Chaomin Zhang
Abstract:
Mergers and Acquisitions (M&A) are important market tools to support economic transformation and upgrading to achieve high-quality development. Based on the employee value distribution in the context of M&A and reorganization of Chinese enterprises, this paper takes China's A-share listed companies from 2007 to 2022 as research samples to explore the impact of employee labor income share fluctuation on the success rate of M&A. The research finds that, first, when employees of the target party expect the share of labor income to decline after the merger, it will significantly inhibit the success rate of the merger. Second, when there is a vertical gap (that is, the target party has a larger scale and a higher level of corporate governance) or a horizontal gap (that is, the merger parties are in different industries and strategies) .Third, for enterprises that have completed the M&A process, the decline of labor income share will lead to higher post-M&A goodwill impairment. The research conclusions of this paper enrich the literature on the economic consequences of labor income share and the influencing factors of M&A, and provide useful reference for enterprises to better coordinate the value distribution of employees in M&A.Keywords: labor income share, the success rate of M&A, value distribution, goodwill impairment
Procedia PDF Downloads 185160 Concept and Design of a Biomimetic Single-Wing Micro Aerial Vehicle (MAV)
Authors: S. Thomas, D. Ho, A. Kerroux, L. Lixi, N. Rackham, S. Rosenfeld
Abstract:
In this first paper, the different concepts and designs to build a single-wing MAV are discussed. Six scratch-building prototypes using three different designs have been tested regarding sufficient lift and weight distribution, of which various configurations were explored. Samare prototypes achieved wireless control over the motor and flap whilst obtaining data from the IMU, though obtaining an increase in lift was the key issue due to insufficient thrust. The final prototype was able to demonstrate an improvement in weight distribution.Keywords: SAMARE, micro aerial vehicle (MAV), unmanned aerial vehicle (UAV), mono-copter, single-wing, mono-wing, flight control, aerofoil, lift
Procedia PDF Downloads 4545159 Trend and Distribution of Heavy Metals in Soil and Sediment: North of Thailand Region
Authors: Chatkaew Tansakul, Saovajit Nanruksa, Surasak Chonchirdsin
Abstract:
Heavy metals in the environment can be occurred by both natural weathering process and human activity, which may present significant risks to human health and the wider environment. A number of heavy metals, i.e. Arsenic (As) and Manganese (Mn), are found with a relatively high concentration in the northern part of Thailand that was assumptively from natural parent rocks and materials. However, scarce literature is challenging to identify the accurate root cause and best available explanation. This study is, therefore, aim to gather heavy metals data in 5 provinces of the North of Thailand where PTT Exploration and Production (PTTEP) public company limited has operated for more than 20 years. A thousand heavy metal analysis is collected and interpreted in term of Enrichment Factor (EF). The trend and distribution of heavy metals in soil and sediment are analyzed by considering altogether the geochemistry of the regional soil and rock. . In addition, the relationship between land use and heavy metals distribution is investigated. In the first conclusion, heavy metal concentrations of (As) and (Mn) in the studied areas are equal to 7.0 and 588.6 ppm, respectively, which are comparable to those in regional parent materials (1 – 12 and 850 – 1,000 ppm for As and Mn respectively). Moreover, there is an insignificant escalation of the heavy metals in these studied areas over two decades.Keywords: contaminated soil, enrichment factor, heavy metals, parent materials in North of Thailand
Procedia PDF Downloads 1565158 3D Model of Rain-Wind Induced Vibration of Inclined Cable
Authors: Viet-Hung Truong, Seung-Eock Kim
Abstract:
Rain–wind induced vibration of inclined cable is a special aerodynamic phenomenon because it is easily influenced by many factors, especially the distribution of rivulet and wind velocity. This paper proposes a new 3D model of inclined cable, based on single degree-of-freedom model. Aerodynamic forces are firstly established and verified with the existing results from a 2D model. The 3D model of inclined cable is developed. The 3D model is then applied to assess the effects of wind velocity distribution and the continuity of rivulets on the cable. Finally, an inclined cable model with small sag is investigated.Keywords: 3D model, rain - wind induced vibration, rivulet, analytical model
Procedia PDF Downloads 4895157 Simulation of Fiber Deposition on Molded Fiber Screen Using Multi-Sphere Discrete Element Method
Authors: Kim Quy Le, Duan Fei, Jia Wei Chew, Jun Zeng, Maria Fabiola Leyva
Abstract:
In line with the sustainable development goal, molded fiber products play important roles in reducing plastic-based packaging. To fabricate molded fiber products, besides using conventional meshing tools, 3D printing is employed to manufacture the molded fiber screen. 3D printing technique allows printing molded fiber screens with complex geometry, flexible in pore size and shape. The 3D printed molded fiber screens are in the progress of investigation to improve the de-watering efficiency, fiber collection, mechanical strength, etc. In addition, the fiber distribution on the screen is also necessary to access the quality of the screen. Besides using experimental methods to capture the fiber distribution on screen, simulation also offers using tools to access the uniformity of fiber. In this study, the fiber was simulated using the multi-sphere model to simulate the fibers. The interaction of the fibers was able to mimic by employing the discrete element method. The fiber distribution was captured and compared to the experiment. The simulation results were able to reveal the fiber deposition layer upon layer and explain the formation of uneven thickness on the tilted area of molded fiber screen.Keywords: 3D printing, multi-jet fusion, molded fiber screen, discrete element method
Procedia PDF Downloads 1145156 Fuzzy Logic for Control and Automatic Operation of Natural Ventilation in Buildings
Authors: Ekpeti Bukola Grace, Mahmoudi Sabar Esmail, Chaer Issa
Abstract:
Global energy consumption has been increasing steadily over the last half - century, and this trend is projected to continue. As energy demand rises in many countries throughout the world due to population growth, natural ventilation in buildings has been identified as a viable option for lowering these demands, saving costs, and also lowering CO2 emissions. However, natural ventilation is driven by forces that are generally unpredictable in nature thus, it is important to manage the resulting airflow in order to maintain pleasant indoor conditions, making it a complex system that necessitates specific control approaches. The effective application of fuzzy logic technique amidst other intelligent systems is one of the best ways to bridge this gap, as its control dynamics relates more to human reasoning and linguistic descriptions. This article reviewed existing literature and presented practical solutions by applying fuzzy logic control with optimized techniques, selected input parameters, and expert rules to design a more effective control system. The control monitors used indoor temperature, outdoor temperature, carbon-dioxide levels, wind velocity, and rain as input variables to the system, while the output variable remains the control of window opening. This is achieved through the use of fuzzy logic control tool box in MATLAB and running simulations on SIMULINK to validate the effectiveness of the proposed system. Comparison analysis model via simulation is carried out, and with the data obtained, an improvement in control actions and energy savings was recorded.Keywords: fuzzy logic, intelligent control systems, natural ventilation, optimization
Procedia PDF Downloads 1295155 Providing Additional Advantages for STATCOM in Power Systems by Integration of Energy Storage Device
Authors: Reza Sedaghati
Abstract:
The use of Flexible AC Transmission System (FACTS) devices in a power system can potentially overcome limitations of the present mechanically controlled transmission system. Also, the advance of technology makes possible to include new energy storage devices in the electrical power system. The integration of Superconducting Magnetic Energy Storage (SMES) into Static Synchronous Compensator (STATCOM) can lead to increase their flexibility in improvement of power system dynamic behaviour by exchanging both active and reactive powers with power grids. This paper describes structure and behaviour of SMES, specifications and performance principles of the STATCOM/SMES compensator. Moreover, the benefits and effectiveness of integrated SMES with STATCOM in power systems is presented. Also, the performance of the STATCOM/SMES compensator is evaluated using an IEEE 3-bus system through the dynamic simulation by PSCAD/EMTDC software.Keywords: STATCOM/SMES compensator, chopper, converter, energy storage system, power systems
Procedia PDF Downloads 5655154 Impact of HLA-C*03:04 Allele Frequency Screening Test in Preventing Dapsone-induced SCARs in Thais
Authors: Pear-Rarin Leelakunakorn, Patompong Satapornpong
Abstract:
Introduction: Dapsone is an anti-inflammatory and antibiotic drug that was widely used for the treatment of leprosy, acne fulminans, and dermatitis herpetiformis (DH). However, dapsone is the main cause that triggers severe cutaneous adverse reactions (SCARs), with a possibility of 0.4 to 3.6% of patients after initiating treatment. In fact, the mortality rate of dapsone-induced SCARs is approximately 9.9%. In previous studies, HLA-B*13:01 was strongly associated with dapsone-induced SCARs in Han Chinese, Thais, and Koreans. Nevertheless, the distribution of HLA-B*13:01 marker in each population might differ. Moreover, there were found that the association between HLA-C*03:04 and dapsone hypersensitivity syndrome in Han Chinese leprosy patients by OR = 9.00 and p-value = 2.23×10⁻¹⁹. Objective: The aim of this study was to investigate the distribution of HLA-C* 03:04 in Thailand's healthy population. Method: A total of 350 participants were HLA-C genotyping used sequence-specific oligonucleotides (PCR-SSOs). This study was approved by the Ethics Committee of Rangsit University Result : The most frequency of HLA -C alleles in Thais, consist of HLA -C* 01:02 (17.00 %), -C*08:01 (11.00%) , -C*07:02 (10.70%) , -C* 03:04 ( 9.10%) , -C* 03:02 (8.00%) , -C* 07:01 (6.30%), -C* 07:04 (4.60%), -C* 04:01 (4.40%) ,-C* 12:02 ( 4.30% ) ,and -C* 04:03(3.90%). Interestingly, HLA -C* 03:04 allele was similar to the distribution among Thais and other populations such as Eastern Europe (6.09%), Vietnam (7.42% ), East Croatia (2.25%), and Han Chinese (11.70%). Conclusion: Consequently, HLA-C*03:04 might serve as a pharmacogenetic marker for screening prior to initiation therapy with dapsone for prevention of dapsone-induced SCARs in Thai population.Keywords: HLA-C*03:04, SCARs, thai population, allele frequency
Procedia PDF Downloads 1295153 Alexandrium pacificum Cysts Distribution in One North African Lagoon Ecosystem
Authors: M. Fertouna Bellakhal, M. Bellakhal, A. Dhib, A. Fathalli, S. Turki, L. Aleya
Abstract:
Study of dinoflagellate cysts is a precious tool to get information about environment and water quality in many aquatic ecosystems. The distribution of Alexandrium pacificum cysts, in Bizerta lagoon located in North of Tunisia, was made based on sediment samples analysis from 123 equidistant stations delimiting 125 km² surfaces. Sediment characteristics such as percentage of water, organic matter, and particle size were analyzed to determine the factors that influence the distribution of this dinoflagellate. In addition, morphological examination and ribotyping of vegetative forms from microalgal cultures made from cyst germination confirmed the identity of the species attributed to A. pacificum. A correlation between the abundance of A. pacificum cysts and the percentage of water and sediment organic matter was recorded. In addition, the sedimentary fraction < 63μm was found to be potentially favorable for the installation and initiation of the Alexandrium pacificum efflorescence at the Bizerte lagoon. The mapping of cysts in this aquatic ecosystem has also allowed us to define distinct areas with specific abundance with closed relationship with shellfish aquaculture stations located within the lagoon.Keywords: Alexandrium pacificum, cysts, Dinoflagellate, microalgal culture
Procedia PDF Downloads 1495152 Variety and the Distribution of the Java Language Lexicon “Sleeping” in Jombang District East Java: Study of Geographic Dialectology
Authors: Krismonika Khoirunnisa
Abstract:
This research article aims to describe the variation of the Javanese lexicon "Sleep " and its distribution in the Jombang area, East Java. The objectives of this study were (1) to classify the variation of the "Sleep" lexicon in the Jombang area and (2) to design the fish rips for the variation of the "Sleep" lexicon according to their distribution. This type of research is a qualitative descriptive study using the method of leading proficiency, namely conducting interviews with speakers without directly meeting the speakers (interviews via WhatsApp and email as the media). This research article uses techniques record as support and tools for mapping and classifying data, collecting data in this study conducted at four points, namely the Kaliwungu village (Jombang City), Banjardowo village (District of Jombang), Mayangan Village (Subdistrict Jogoroto), and Karobelah village (Subdistrict Mojoagung) as a target investigators to conduct the interview. This study uses the dialectology theory as a basis for analyzing the data obtained. The results of this study found that the Javanese language variation "Sleep" has many different linguals, meanings, and forms even though they are in the same area (Jombang).Keywords: geographical dialectology, lexicon variations, jombangan dialect, sssavanese language
Procedia PDF Downloads 2235151 Pareto System of Optimal Placement and Sizing of Distributed Generation in Radial Distribution Networks Using Particle Swarm Optimization
Authors: Sani M. Lawal, Idris Musa, Aliyu D. Usman
Abstract:
The Pareto approach of optimal solutions in a search space that evolved in multi-objective optimization problems is adopted in this paper, which stands for a set of solutions in the search space. This paper aims at presenting an optimal placement of Distributed Generation (DG) in radial distribution networks with an optimal size for minimization of power loss and voltage deviation as well as maximizing voltage profile of the networks. And these problems are formulated using particle swarm optimization (PSO) as a constraint nonlinear optimization problem with both locations and sizes of DG being continuous. The objective functions adopted are the total active power loss function and voltage deviation function. The multiple nature of the problem, made it necessary to form a multi-objective function in search of the solution that consists of both the DG location and size. The proposed PSO algorithm is used to determine optimal placement and size of DG in a distribution network. The output indicates that PSO algorithm technique shows an edge over other types of search methods due to its effectiveness and computational efficiency. The proposed method is tested on the standard IEEE 34-bus and validated with 33-bus test systems distribution networks. Results indicate that the sizing and location of DG are system dependent and should be optimally selected before installing the distributed generators in the system and also an improvement in the voltage profile and power loss reduction have been achieved.Keywords: distributed generation, pareto, particle swarm optimization, power loss, voltage deviation
Procedia PDF Downloads 364