Search results for: gain-scheduling control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10764

Search results for: gain-scheduling control

9954 A Development of a Weight-Balancing Control System Based On Android Operating System

Authors: Rattanathip Rattanachai, Piyachai Petchyen, Kunyanuth Kularbphettong

Abstract:

This paper describes the development of a Weight- Balancing Control System based on the Android Operating System and it provides recommendations on ways of balancing of user’s weight based on daily metabolism process and need so that user can make informed decisions on his or her weight controls. The system also depicts more information on nutrition details. Furthermore, it was designed to suggest to users what kinds of foods they should eat and how to exercise in the right ways. We describe the design methods and functional components of this prototype. To evaluate the system performance, questionnaires for system usability and Black Box Testing were used to measure expert and user satisfaction. The results were satisfactory as followed: Means for experts and users were 3.94 and 4.07 respectively.

Keywords: weight-balancing control, Android operating system, daily metabolism, black box testing

Procedia PDF Downloads 471
9953 Comparative Study on Inhibiting Factors of Cost and Time Control in Nigerian Construction Practice

Authors: S. Abdulkadir, I. Y. Moh’d, S. U. Kunya, U. Nuruddeen

Abstract:

The basis of any contract formation between the client and contractor is the budgeted cost and the estimated duration of projects. These variables are paramount important to project's sponsor in a construction projects and in assessing the success or viability of construction projects. Despite the availability of various techniques of cost and time control, many projects failed to achieve their initial estimated cost and time. The paper evaluate the inhibiting factors of cost and time control in Nigerian construction practice and comparing the result with the United Kingdom practice as identified by one researcher. The populations of the study are construction professionals within Bauchi and Gombe state, Nigeria, a judgmental sampling employed in determining the size of respondents. Descriptive statistics used in analyzing the data in SPSS. Design change, project fraud and corruption, financing and payment of completed work found to be common among the top five inhibiting factors of cost and time control in the study area. Furthermore, the result had shown some comprising with slight contrast as in the case of United Kingdom practice. Study recommend the adaptation of mitigation measures developed in the UK prior to assessing its effectiveness and so also developing a mitigating measure for other top factors that are not within the one developed in United Kingdom practice. Also, it recommends a wider assessing comparison on the modify inhibiting factors of cost and time control as revealed by the study to cover almost all part of Nigeria.

Keywords: comparison, cost, inhibiting factor, United Kingdom, time

Procedia PDF Downloads 440
9952 A Robust Optimization for Multi-Period Lost-Sales Inventory Control Problem

Authors: Shunichi Ohmori, Sirawadee Arunyanart, Kazuho Yoshimoto

Abstract:

We consider a periodic review inventory control problem of minimizing production cost, inventory cost, and lost-sales under demand uncertainty, in which product demands are not specified exactly and it is only known to belong to a given uncertainty set, yet the constraints must hold for possible values of the data from the uncertainty set. We propose a robust optimization formulation for obtaining lowest cost possible and guaranteeing the feasibility with respect to range of order quantity and inventory level under demand uncertainty. Our formulation is based on the adaptive robust counterpart, which suppose order quantity is affine function of past demands. We derive certainty equivalent problem via second-order cone programming, which gives 'not too pessimistic' worst-case.

Keywords: robust optimization, inventory control, supply chain managment, second-order programming

Procedia PDF Downloads 409
9951 Modeling Dynamics and Control of Transversal Vibration of an Underactuated Flexible Plate Using Controlled Lagrangian Method

Authors: Mahmood Khalghollah, Mohammad Tavallaeinejad, Mohammad Eghtesad

Abstract:

The method of Controlled Lagrangian is an energy shaping control technique for under actuated Lagrangian systems. Energy shaping control design methods are appealing as they retain the underlying nonlinear dynamics and can provide stability results that hold over larger domain than can be obtained using linear design and analysis. In the present study, controlled lagrangian is employed for designing a controller in an under actuated rotating flexible plate system. In the system of rotating flexible plate, due to its nonlinear characteristics and coupled dynamics of rigid and flexible components, controller design is a known challenge. In this paper, controller objectives are considered to be vibration reduction of flexible component and position control of the tip of the plate. To achieve the goals, a method based on both kinetic and potential energy shaping is introduced. The stability of the closed-loop system is investigated and proved around its equilibrium points. Moreover, the proposed controller is shown to be robust against disturbance and plant uncertainties.

Keywords: controlled lagrangian, underactuated system, flexible rotating plate, disturbance

Procedia PDF Downloads 446
9950 Design, Analysis and Obstacle Avoidance Control of an Electric Wheelchair with Sit-Sleep-Seat Elevation Functions

Authors: Waleed Ahmed, Huang Xiaohua, Wilayat Ali

Abstract:

The wheelchair users are generally exposed to physical and psychological health problems, e.g., pressure sores and pain in the hip joint, associated with seating posture or being inactive in a wheelchair for a long time. Reclining Wheelchair with back, thigh, and leg adjustment helps in daily life activities and health preservation. The seat elevating function of an electric wheelchair allows the user (lower limb amputation) to reach different heights. An electric wheelchair is expected to ease the lives of the elderly and disable people by giving them mobility support and decreasing the percentage of accidents caused by users’ narrow sight or joystick operation errors. Thus, this paper proposed the design, analysis and obstacle avoidance control of an electric wheelchair with sit-sleep-seat elevation functions. A 3D model of a wheelchair is designed in SolidWorks that was later used for multi-body dynamic (MBD) analysis and to verify driving control system. The control system uses the fuzzy algorithm to avoid the obstacle by getting information in the form of distance from the ultrasonic sensor and user-specified direction from the joystick’s operation. The proposed fuzzy driving control system focuses on the direction and velocity of the wheelchair. The wheelchair model has been examined and proven in MSC Adams (Automated Dynamic Analysis of Mechanical Systems). The designed fuzzy control algorithm is implemented on Gazebo robotic 3D simulator using Robotic Operating System (ROS) middleware. The proposed wheelchair design enhanced mobility and quality of life by improving the user’s functional capabilities. Simulation results verify the non-accidental behavior of the electric wheelchair.

Keywords: fuzzy logic control, joystick, multi body dynamics, obstacle avoidance, scissor mechanism, sensor

Procedia PDF Downloads 129
9949 Pilot Scale Sub-Surface Constructed Wetland: Evaluation of Performance of Bed Vegetated with Water Hyacinth in the Treatment of Domestic Sewage

Authors: Abdul-Hakeem Olatunji Abiola, A. E. Adeniran, A. O. Ajimo, A. B. Lamilisa

Abstract:

Introduction: Conventional wastewater treatment technology has been found to fail in developing countries because they are expensive to construct, operate and maintain. Constructed wetlands are nowadays considered as a low-cost alternative for effective wastewater treatment, especially where suitable land can be available. This study aims to evaluate the performance of the constructed wetland vegetated with water hyacinth (Eichhornia crassipes) plant for the treatment of wastewater. Methodology: The sub-surface flow wetland used for this study was an experimental scale constructed wetland consisting of four beds A, B, C, and D. Beds A, B, and D were vegetated while bed C which was used as a control was non-vegetated. This present study presents the results from bed B vegetated with water hyacinth (Eichhornia crassipes) and control bed C which was non-vegetated. The influent of the experimental scale wetland has been pre-treated with sedimentation, screening and anaerobic chamber before feeding into the experimental scale wetland. Results: pH and conductivity level were more reduced, colour of effluent was more improved, nitrate, iron, phosphate, and chromium were more removed, and dissolved oxygen was more improved in the water hyacinth bed than the control bed. While manganese, nickel, cyanuric acid, and copper were more removed from the control bed than the water hyacinth bed. Conclusion: The performance of the experimental scale constructed wetland bed planted with water hyacinth (Eichhornia crassipes) is better than that of the control bed. It is therefore recommended that plain bed without any plant should not be encouraged.

Keywords: constructed experimental scale wetland, domestic sewage, treatment, water hyacinth

Procedia PDF Downloads 133
9948 A Comparison of Implant Stability between Implant Placed without Bone Graft versus with Bone Graft Using Guided Bone Regeneration (GBR) Technique: A Resonance Frequency Analysis

Authors: R. Janyaphadungpong, A. Pimkhaokham

Abstract:

This prospective clinical study determined the insertion torque (IT) value and monitored the changes in implant stability quotient (ISQ) values during the 12 weeks healing period from implant placement without bone graft (control group) and with bone graft using the guided bone regeneration (GBR) technique (study group). The relationship between the IT and ISQ values of the implants was also assessed. The control and study groups each consisted of 6 patients with 8 implants per group. The ASTRA TECH Implant System™ EV 4.2 mm in diameter was placed in the posterior mandibular region. In the control group, implants were placed in bone without bone graft, whereas in the study group implants were placed simultaneously with the GBR technique at favorable bone defect. IT (Ncm) of each implant was recorded when fully inserted. ISQ values were obtained from the Osstell® ISQ at the time of implant placement, and at 2, 4, 8, and 12 weeks. No difference in IT was found between groups (P = 0.320). The ISQ values in the control group were significantly higher than in the study group at the time of implant placement and at 4 weeks. There was no significant association between IT and ISQ values either at baseline or after the 12 weeks. At 12 weeks of healing, the control and study groups displayed different trends. Mean ISQ values for the control group decreased over the first 2 weeks and then started to increase. ISQ value increases were statistically significant at 8 weeks and later, whereas mean ISQ values in the study group decreased over the first 4 weeks and then started to increase, with statistical significance after 12 weeks. At 12 weeks, all implants achieved osseointegration with mean ISQ values over the threshold value (ISQ>70). These results indicated that implants, in which guided bone regeneration technique was performed during implant placement for treating favorable bone defects, were as predictable as implants placed without bone graft. However, loading in implants placed with the GBR technique for correcting favorable bone defects should be performed after 12 weeks of healing to ensure implant stability and osseointegration.

Keywords: dental implant, favorable bone defect, guided bone regeneration technique, implant stability

Procedia PDF Downloads 295
9947 Microchip-Integrated Computational Models for Studying Gait and Motor Control Deficits in Autism

Authors: Noah Odion, Honest Jimu, Blessing Atinuke Afuape

Abstract:

Introduction: Motor control and gait abnormalities are commonly observed in individuals with autism spectrum disorder (ASD), affecting their mobility and coordination. Understanding the underlying neurological and biomechanical factors is essential for designing effective interventions. This study focuses on developing microchip-integrated wearable devices to capture real-time movement data from individuals with autism. By applying computational models to the collected data, we aim to analyze motor control patterns and gait abnormalities, bridging a crucial knowledge gap in autism-related motor dysfunction. Methods: We designed microchip-enabled wearable devices capable of capturing precise kinematic data, including joint angles, acceleration, and velocity during movement. A cross-sectional study was conducted on individuals with ASD and a control group to collect comparative data. Computational modelling was applied using machine learning algorithms to analyse motor control patterns, focusing on gait variability, balance, and coordination. Finite element models were also used to simulate muscle and joint dynamics. The study employed descriptive and analytical methods to interpret the motor data. Results: The wearable devices effectively captured detailed movement data, revealing significant gait variability in the ASD group. For example, gait cycle time was 25% longer, and stride length was reduced by 15% compared to the control group. Motor control analysis showed a 30% reduction in balance stability in individuals with autism. Computational models successfully predicted movement irregularities and helped identify motor control deficits, particularly in the lower limbs. Conclusions: The integration of microchip-based wearable devices with computational models offers a powerful tool for diagnosing and treating motor control deficits in autism. These results have significant implications for patient care, providing objective data to guide personalized therapeutic interventions. The findings also contribute to the broader field of neuroscience by improving our understanding of the motor dysfunctions associated with ASD and other neurodevelopmental disorders.

Keywords: motor control, gait abnormalities, autism, wearable devices, microchips, computational modeling, kinematic analysis, neurodevelopmental disorders

Procedia PDF Downloads 23
9946 Efficacy of Plant and Mushroom Based Bio-Products against the Red Poultry Mite, Dermanyssus gallinae (Mesostigmata: Dermanyssidae)

Authors: Muhammad Asif Qayyoum, Bilal Saeed Khan

Abstract:

Poultry red mites (Dermanyssus gallinae De Geer) are economically deleterious parasite of hens in poultry industry in all over the world. Due to lack of proper control managements and result of poor application of commercial products, D. gallinae get resistance and severe infestation in poultry birds. Laboratory experiment was planned for the control of D. gallinae by using different mushroom and plant extracts. We used control treatment (100 ml distilled water) and nine treatments (10 gr Lentinula adobas, Ganoderma lucidum and Pleurotus aryngii with 100 ml methanol, 1% and 2% Neemazal, 1.5% Gamma-T-ol, Echinacea Leaf , 1.5% Fungatol with neem spray and Methanol) with five replication having five mites each. Data collected after 12 and 24 hours every day till mites found dead in every treatment. The significant differences among the mean values were compared with the DUNCAN multiple range test. The efficacy (%) of each treatment was determined with the Abbott formula. All statistical analyses were conducted with the SPSS Version 12 program. Lentinula edodes (80%), Ganoderma lucidum (76%) and Fungatol+Neem spray (1.5%) (80%) were significant against D. gallinae within 3 days.

Keywords: mushroom extracts, plant extracts, D. gallinae, control

Procedia PDF Downloads 307
9945 Continuous-Time Analysis And Performance Assessment For Digital Control Of High-Frequency Switching Synchronous Dc-Dc Converter

Authors: Rihab Hamdi, Amel Hadri Hamida, Ouafae Bennis, Sakina Zerouali

Abstract:

This paper features a performance analysis and robustness assessment of a digitally controlled DC-DC three-cell buck converter associated in parallel, operating in continuous conduction mode (CCM), facing feeding parameters variation and loads disturbance. The control strategy relies on the continuous-time with an averaged modeling technique for high-frequency switching converter. The methodology is to modulate the complete design procedure, in regard to the existence of an instantaneous current operating point for designing the digital closed-loop, to the same continuous-time domain. Moreover, the adopted approach is to include a digital voltage control (DVC) technique, taking an account for digital control delays and sampling effects, which aims at improving efficiency and dynamic response and preventing generally undesired phenomena. The results obtained under load change, input change, and reference change clearly demonstrates an excellent dynamic response of the proposed technique, also as provide stability in any operating conditions, the effectiveness is fast with a smooth tracking of the specified output voltage. Simulations studies in MATLAB/Simulink environment are performed to verify the concept.

Keywords: continuous conduction mode, digital control, parallel multi-cells converter, performance analysis, power electronics

Procedia PDF Downloads 150
9944 Current Status and Prospects of Further Control of Brucellosis in Humans and Domestic Ruminants in Bangladesh

Authors: A. K. M. Anisur Rahman

Abstract:

Brucellosis is an ancient and one of the world's most widespread zoonotic diseases affecting both, public health and animal production. Its current status in humans and domestic ruminants along with probable means to control further in Bangladesh are described. The true exposure prevalence of brucellosis in cattle, goats, and sheep seems to be low: 0.3% in cattle, 1% in goats and 1.2% in sheep. The true prevalence of brucellosis in humans was also reported to be around 2%. In such a low prevalence scenario both in humans and animals, the positive predictive values of the diagnostic tests were very low. The role Brucella species in the abortion of domestic ruminants is less likely. Still now, no Brucella spp. was isolated from animal and human samples. However, Brucella abortus DNA was detected from seropositive humans, cattle, and buffalo; milk of cow, goats, and gayals and semen of an infected bull. Consuming raw milk and unpasteurized milk products by Bangladeshi people are not common. Close contact with animals, artificial insemination using semen from infected bulls, grazing mixed species of animals together in the field and transboundary animal movement are important factors, which should be considered for the further control of this zoonosis in Bangladesh.

Keywords: brucellosis, control, human, zoonosis

Procedia PDF Downloads 363
9943 Machine Learning Approach to Project Control Threshold Reliability Evaluation

Authors: Y. Kim, H. Lee, M. Park, B. Lee

Abstract:

Planning is understood as the determination of what has to be performed, how, in which sequence, when, what resources are needed, and their cost within the organization before execution. In most construction project, it is evident that the inherent nature of planning is dynamic, and initial planning is subject to be changed due to various uncertain conditions of construction project. Planners take a continuous revision process during the course of a project and until the very end of project. However, current practice lacks reliable, systematic tool for setting variance thresholds to determine when and what corrective actions to be taken. Rather it is heavily dependent on the level of experience and knowledge of the planner. Thus, this paper introduces a machine learning approach to evaluate project control threshold reliability incorporating project-specific data and presents a method to automate the process. The results have shown that the model improves the efficiency and accuracy of the monitoring process as an early warning.

Keywords: machine learning, project control, project progress monitoring, schedule

Procedia PDF Downloads 244
9942 Locus of Control and Sense of Happiness: A Mediating Role of Self-Esteem

Authors: Ivanna Shubina

Abstract:

Background/Objectives and Goals: Recent interest in positive psychology is reflected in a plenty of studies conducted on its basic constructs (e.g. self-esteem and happiness) in interrelation with personality features, social rules, business and technology development. The purpose of this study is to investigate the mediating role of self-esteem, exploring the relationships between self-esteem and happiness, self-esteem and locus of control (LOC). It hypothesizes that self-esteem may be interpreted as a predictor of happiness and mediator in the locus of control establishment. A plenty of various empirical studies results have been analyzed in order to collect data for this theoretical study, and some of the analysed results can be considered as arguable or incoherent. However, the majority of results indicate a strong relationship between three considered concepts: self-esteem, happiness, the locus of control. Methods: In particular, this study addresses the following broad research questions: i) Is self-esteem just an index of global happiness? ii) May happiness be possible or realizable without a healthy self-confidence and self-acceptance? iii) To what extent does self-esteem influence on the level of happiness? iv) Is high self-esteem a sufficient condition for happiness? v) Is self-esteem is a strong predictor of internal locus of control maintenance? vi) Is high self-esteem related to internal LOC, while low self-esteem to external LOC? In order to find the answers for listed questions, 60 reliable sources have been analyzed, results of what are discussed more detailed below. Expected Results/Conclusion/Contribution:It is recognized that the relationship between self-esteem, happiness, locus of control is complex: internal LOC is contributing to happiness, but it is not directly related to it; self-esteem is a powerful and important psychological factor in mental health and well-being; the feelings of being worthy and empowered are associated with significant achievements and high self-esteem; strong and appropriate self-esteem (when the discrepancy between “ideal” and “real” self is balanced) is correlated with more internal LOC (when the individual tends to believe that personal achievements depend on possessed features, vigor, and persistence). Despite the special attention paid to happiness, the locus of control and self-esteem, independently, theoretical and empirical equivocations within each literature foreclose many obvious predictions about the nature of their empirical distinction. In terms of theoretical framework, no model has achieved consensus as an ultimate theoretical background for any of the mentioned constructs. To be able to clarify the relationship between self-esteem, happiness, and locus of control more interdisciplinary studies have to take place in order to get data on heterogeneous samples, provided from various countries, cultures, and social groups.

Keywords: happiness, locus of control, self-esteem, mediation

Procedia PDF Downloads 245
9941 An Optimal Control Model for the Dynamics of Visceral Leishmaniasis

Authors: Ibrahim M. Elmojtaba, Rayan M. Altayeb

Abstract:

Visceral leishmaniasis (VL) is a vector-borne disease caused by the protozoa parasite of the genus leishmania. The transmission of the parasite to humans and animals occurs via the bite of adult female sandflies previously infected by biting and sucking blood of an infectious humans or animals. In this paper we use a previously proposed model, and then applied two optimal controls, namely treatment and vaccination to that model to investigate optimal strategies for controlling the spread of the disease using treatment and vaccination as the system control variables. The possible impact of using combinations of the two controls, either one at a time or two at a time on the spread of the disease is also examined. Our results provide a framework for vaccination and treatment strategies to reduce susceptible and infection individuals of VL in five years.

Keywords: visceral leishmaniasis, treatment, vaccination, optimal control, numerical simulation

Procedia PDF Downloads 404
9940 An Algorithm of Regulation of Glucose-Insulin Concentration in the Blood

Authors: B. Selma, S. Chouraqui

Abstract:

The pancreas is an elongated organ that extends across the abdomen, below the stomach. In addition, it secretes certain enzymes that aid in food digestion. The pancreas also manufactures hormones responsible for regulating blood glucose levels. In the present paper, we propose a mathematical model to study the homeostasis of glucose and insulin in healthy human, and a simulation of this model, which depicts the physiological events after a meal, will be represented in ordinary humans. The aim of this paper is to design an algorithm which regulates the level of glucose in the blood. The algorithm applied the concept of expert system for performing an algorithm control in the form of an "active" used to prescribe the rate of insulin infusion. By decomposing the system into subsystems, we have developed parametric models of each subsystem by using a forcing function strategy. The results showed a performance of the control system.

Keywords: modeling, algorithm, regulation, glucose-insulin, blood, control system

Procedia PDF Downloads 177
9939 Solving Optimal Control of Semilinear Elliptic Variational Inequalities Obstacle Problems using Smoothing Functions

Authors: El Hassene Osmani, Mounir Haddou, Naceurdine Bensalem

Abstract:

In this paper, we investigate optimal control problems governed by semilinear elliptic variational inequalities involving constraints on the state, and more precisely, the obstacle problem. We present a relaxed formulation for the problem using smoothing functions. Since we adopt a numerical point of view, we first relax the feasible domain of the problem, then using both mathematical programming methods and penalization methods, we get optimality conditions with smooth Lagrange multipliers. Some numerical experiments using IPOPT algorithm (Interior Point Optimizer) are presented to verify the efficiency of our approach.

Keywords: complementarity problem, IPOPT, Lagrange multipliers, mathematical programming, optimal control, smoothing methods, variationally inequalities

Procedia PDF Downloads 172
9938 Effects of Gratitude Practice on Relationship Satisfaction and the Role of Perceived Superiority

Authors: Anomi Bearden, Brooke Goodyear, Alicia Khan

Abstract:

This repeated-measures experiment explored the effects of six weeks of gratitude practice on college students (N = 67) on relationship satisfaction and perceived superiority. Replicating previous research on gratitude practice, it was hypothesized that after consistent gratitude practice, participants in the experimental group (n = 32) would feel increased levels of relationship satisfaction compared to the control group (n = 35). Of particular interest was whether the level of perceived superiority would moderate the effect of gratitude practice on relationship satisfaction. The gratitude group evidenced significantly higher appreciation and marginally higher relationship satisfaction at post-test than the control group (both groups being equal at pre-test). Significant enhancements in gratitude, satisfaction, and feeling both appreciative and appreciated were found in the gratitude group, as well as significant enhancements in gratitude, satisfaction, and feeling appreciated in the control group. Appreciation for one’s partner was the only measure that improved in the gratitude group and not the control group from pre-test to post-test. Perceived superiority did not change significantly from pre-test to post-test in either group, supporting the prevalence and stability of this bias within people’s overall perceptions of their relationships.

Keywords: gratitude, relationship satisfaction, perceived superiority, partner appreciation

Procedia PDF Downloads 109
9937 Multi-Agent TeleRobotic Security Control System: Requirements Definitions of Multi-Agent System Using The Behavioral Patterns Analysis (BPA) Approach

Authors: Assem El-Ansary

Abstract:

This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent TeleRobotic Security Control System (MTSCS). The event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.

Keywords: analysis, multi-agent, TeleRobotics control, security, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases

Procedia PDF Downloads 438
9936 Adsorptive Waste Heat Based Air-Conditioning Control Strategy for Automotives

Authors: Indrasen Raghupatruni, Michael Glora, Ralf Diekmann, Thomas Demmer

Abstract:

As the trend in automotive technology is fast moving towards hybridization and electrification to curb emissions as well as to improve the fuel efficiency, air-conditioning systems in passenger cars have not caught up with this trend and still remain as the major energy consumers amongst others. Adsorption based air-conditioning systems, e.g. with silica-gel water pair, which are already in use for residential and commercial applications, are now being considered as a technology leap once proven feasible for the passenger cars. In this paper we discuss a methodology, challenges and feasibility of implementing an adsorption based air-conditioning system in a passenger car utilizing the exhaust waste heat. We also propose an optimized control strategy with interfaces to the engine control unit of the vehicle for operating this system with reasonable efficiency supported by our simulation and validation results in a prototype vehicle, additionally comparing to existing implementations, simulation based as well as experimental. Finally we discuss the influence of start-stop and hybrid systems on the operation strategy of the adsorption air-conditioning system.

Keywords: adsorption air-conditioning, feasibility study, optimized control strategy, prototype vehicle

Procedia PDF Downloads 435
9935 Comparison of Proportional-Integral (P-I) and Integral-Propotional (I-P) Controllers for Speed Control in Vector Controlled Permanent Magnet Synchronous Motor Drive

Authors: V. Srikanth, K. Balasubramanian, Rajath R. Bhat, A. S. Arjun, Nandhu Venugopal, Ananthu Unnikrishnan

Abstract:

Indirect vector control is known to produce high performance in Permanent Magnet Synchronous Motor (PMSM) drives by decoupling flux and torque producing current components of stator current. The most commonly used controller or the vector control of AC motor is Proportional-Integral (P-I) controller. However, the P-I controller has some disadvantages such as high starting overshoot, sensitivity to controller gains and slower response to sudden disturbance. Therefore, the Integral-Proportional controller for PMSM drives to overcome the disadvantages of the P-I controller. Simulations results are presented and analyzed for both controllers and it is observed that Integral-Proportional (I-P) controllers give better responses than the traditional P-I controllers.

Keywords: PMSM, FOC, PI controller, IP controller

Procedia PDF Downloads 359
9934 Improved Thermal Comfort in Cabin Aircraft with in-Seat Microclimate Conditioning Module

Authors: Mathieu Le Cam, Tejaswinee Darure, Mateusz Pawlucki

Abstract:

Climate control of cabin aircraft is traditionally conditioned as a single unit by the environmental control system. Cabin temperature is controlled by the crew while passengers of the aircraft have control on the gaspers providing fresh air from the above head area. The small nozzles are difficult to reach and adjust to meet the passenger’s needs in terms of flow and direction. More dedicated control over the near environment of each passenger can be beneficial in many situations. The European project COCOON, funded under Clean Sky 2, aims at developing and demonstrating a microclimate conditioning module (MCM) integrated into a standard economy 3-seat row. The system developed will lead to improved passenger comfort with more control on their personal thermal area. This study focuses on the assessment of thermal comfort of passengers in the cabin aircraft through simulation on the TAITherm modelling platform. A first analysis investigates thermal comfort and sensation of passengers in varying cabin environmental conditions: from cold to very hot scenarios, with and without MCM installed in the seats. The modelling platform is also used to evaluate the impact of different physiologies of passengers on their thermal comfort as well as different seat locations. Under the current cabin conditions, a passenger of a 50th percentile body size is feeling uncomfortably cool due to the high velocity cabin air ventilation. The simulation shows that the in-seat MCM developed in COCOON project improves the thermal comfort of the passenger.

Keywords: cabin aircraft, in-seat HVAC, microclimate conditioning module, thermal comfort

Procedia PDF Downloads 200
9933 The Future Control Rooms for Sustainable Power Systems: Current Landscape and Operational Challenges

Authors: Signe Svensson, Remy Rey, Anna-Lisa Osvalder, Henrik Artman, Lars Nordström

Abstract:

The electric power system is undergoing significant changes. Thereby, the operation and control are becoming partly modified, more multifaceted and automated, and thereby supplementary operator skills might be required. This paper discusses developing operational challenges in future power system control rooms, posed by the evolving landscape of sustainable power systems, driven in turn by the shift towards electrification and renewable energy sources. A literature review followed by interviews and a comparison to other related domains with similar characteristics, a descriptive analysis was performed from a human factors perspective. Analysis is meant to identify trends, relationships, and challenges. A power control domain taxonomy includes a temporal domain (planning and real-time operation) and three operational domains within the power system (generation, switching and balancing). Within each operational domain, there are different control actions, either in the planning stage or in the real-time operation, that affect the overall operation of the power system. In addition to the temporal dimension, the control domains are divided in space between a multitude of different actors distributed across many different locations. A control room is a central location where different types of information are monitored and controlled, alarms are responded to, and deviations are handled by the control room operators. The operators’ competencies, teamwork skills, team shift patterns as well as control system designs are all important factors in ensuring efficient and safe electricity grid management. As the power system evolves with sustainable energy technologies, challenges are found. Questions are raised regarding whether the operators’ tacit knowledge, experience and operation skills of today are sufficient to make constructive decisions to solve modified and new control tasks, especially during disturbed operations or abnormalities. Which new skills need to be developed in planning and real-time operation to provide efficient generation and delivery of energy through the system? How should the user interfaces be developed to assist operators in processing the increasing amount of information? Are some skills at risk of being lost when the systems change? How should the physical environment and collaborations between different stakeholders within and outside the control room develop to support operator control? To conclude, the system change will provide many benefits related to electrification and renewable energy sources, but it is important to address the operators’ challenges with increasing complexity. The control tasks will be modified, and additional operator skills are needed to perform efficient and safe operations. Also, the whole human-technology-organization system needs to be considered, including the physical environment, the technical aids and the information systems, the operators’ physical and mental well-being, as well as the social and organizational systems.

Keywords: operator, process control, energy system, sustainability, future control room, skill

Procedia PDF Downloads 95
9932 Deformation Behavior of Virgin and Polypropylene Modified Bituminous Mixture

Authors: Noor Zainab Habib, Ibrahim Kamaruddin, Madzlan Napiah

Abstract:

This paper present a part of research conducted to investigate the creep behavior of bituminous concrete mixture prepared with well graded using the dynamic creep test. The samples were prepared from unmodified control mix and Polypropylene modified bituminous mix. Unmodified or control mix was prepared with 80/100 grade bitumen while polypropylene modified mix was prepared using polypropylene PP polymer as modifier, blended with 80/100 Pen bitumen. The concentration of polymer in the blend was kept at 1%, 2%, and 3% by weight of bitumen content. For Dynamic Creep Test, Marshall Specimen were prepared at optimum bitumen content and then tested using IPC Global Universal Testing Machine (UTM), in order to investigate the creep stiffness of both modified and control mix. From the results obtained it was found that 1% and 2% PP modified bituminous mix offer better results in comparison to control and 3% PP modified mix samples. The results verify all the findings of empirical and viscosity test results which indicates that polymer modification induces stiffening effect in the binder. Enhanced viscous component of the binder was considered responsible for this change which eventually enhances the mechanical strength of the modified bituminous mixes.

Keywords: polymer modified bitumen, stiffness, creep, viscosity

Procedia PDF Downloads 419
9931 Research Developments in Vibration Control of Structure Using Tuned Liquid Column Dampers: A State-of-the-Art Review

Authors: Jay Gohel, Anant Parghi

Abstract:

A tuned liquid column damper (TLCD) is a modified passive system of tuned mass damper, where a liquid is used in place of mass in the structure. A TLCD consists of U-shaped tube with an orifice that produces damping against the liquid motion in the tube. This paper provides a state-of-the-art review on the vibration control of wind and earthquake excited structures using liquid dampers. Further, the paper will also discuss the theoretical background of TCLD, history of liquid dampers and existing literature on experimental, numerical, and analytical study. The review will also include different configuration of TLCD viz single TLCD, multi tuned liquid column damper (MTLCD), TLCD-Interior (TLCDI), tuned liquid column ball damper (TLCBD), tuned liquid column ball gas damper (TLCBGD), and pendulum liquid column damper (PLCD). The dynamic characteristics of the different configurate TLCD system and their effectiveness in reducing the vibration of structure will be discussed. The effectiveness of semi-active TLCD will be also discussed with reference to experimental and analytical results. In addition, the review will also provide the numerous examples of implemented TLCD to control the vibration in real structures. Based on the comprehensive review of literature, some important conclusions will be made and the need for future research will be identified for vibration control of structures using TLCD.

Keywords: earthquake, wind, tuned liquid column damper, passive response control, structures

Procedia PDF Downloads 208
9930 Carbohydrate Intake Estimation in Type I Diabetic Patients Described by UVA/Padova Model

Authors: David A. Padilla, Rodolfo Villamizar

Abstract:

In recent years, closed loop control strategies have been developed in order to establish a healthy glucose profile in type 1 diabetic mellitus (T1DM) patients. However, the controller itself is unable to define a suitable reference trajectory for glucose. In this paper, a control strategy Is proposed where the shape of the reference trajectory is generated bases in the amount of carbohydrates present during the digestive process, due to the effect of carbohydrate intake. Since there no exists a sensor to measure the amount of carbohydrates consumed, an estimator is proposed. Thus this paper presents the entire process of designing a carbohydrate estimator, which allows estimate disturbance for a predictive controller (MPC) in a T1MD patient, the estimation will be used to establish a profile of reference and improve the response of the controller by providing the estimated information of ingested carbohydrates. The dynamics of the diabetic model used are due to the equations described by the UVA/Padova model of the T1DMS simulator, the system was developed and simulated in Simulink, taking into account the noise and limitations of the glucose control system actuators.

Keywords: estimation, glucose control, predictive controller, MPC, UVA/Padova

Procedia PDF Downloads 261
9929 Impact of innovative Solar Heating Systems on Greenhouse ‎Microclimates: A Case Study with Zucchini (Cucurbita pepo)‎

Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui

Abstract:

Recent innovations in economical heating systems have significantly boosted ‎agricultural production by effectively managing temperature drops in greenhouse ‎microclimates. These advancements enhance product profitability in terms of quality, ‎quantity, and growth duration. This study experimentally investigates the impact of a ‎solar heating system on the microclimate of an agricultural greenhouse, focusing on ‎zucchini (Cucurbita pepo). The System comprises a copper tube placed between double ‎roof glazing and a sensible heat storage system, converting solar energy during the day ‎and storing it for night-time release. A second control greenhouse without heating ‎allows for comparative analysis at various growth stages. During the cold season, the ‎experimental greenhouse showed a temperature increase of 3°C compared to the ‎control greenhouse and 5°C above external ambient air. The relative humidity in the ‎experimental greenhouse ranged from 69% to 70%, whereas the control greenhouse recorded 68% to 86%, and ambient air ‎was between 94% to 99%. The heating systems achieved an efficiency of 73%, and ‎zucchini plants in the experimental greenhouse developed fruit 13 days earlier than ‎those in the control greenhouse.‎

Keywords: solar energy, storage, energy managment, heating system

Procedia PDF Downloads 44
9928 A Robust Model Predictive Control for a Photovoltaic Pumping System Subject to Actuator Saturation Nonlinearity and Parameter Uncertainties: A Linear Matrix Inequality Approach

Authors: Sofiane Bououden, Ilyes Boulkaibet

Abstract:

In this paper, a robust model predictive controller (RMPC) for uncertain nonlinear system under actuator saturation is designed to control a DC-DC buck converter in PV pumping application, where this system is subject to actuator saturation and parameter uncertainties. The considered nonlinear system contains a linear constant part perturbed by an additive state-dependent nonlinear term. Based on the saturating actuator property, an appropriate linear feedback control law is constructed and used to minimize an infinite horizon cost function within the framework of linear matrix inequalities. The proposed approach has successfully provided a solution to the optimization problem that can stabilize the nonlinear plants. Furthermore, sufficient conditions for the existence of the proposed controller guarantee the robust stability of the system in the presence of polytypic uncertainties. In addition, the simulation results have demonstrated the efficiency of the proposed control scheme.

Keywords: PV pumping system, DC-DC buck converter, robust model predictive controller, nonlinear system, actuator saturation, linear matrix inequality

Procedia PDF Downloads 181
9927 Active Control Improvement of Smart Cantilever Beam by Piezoelectric Materials and On-Line Differential Artificial Neural Networks

Authors: P. Karimi, A. H. Khedmati Bazkiaei

Abstract:

The main goal of this study is to test differential neural network as a controller of smart structure and is to enumerate its advantages and disadvantages in comparison with other controllers. In this study, the smart structure has been considered as a Euler Bernoulli cantilever beam and it has been tried that it be under control with the use of vibration neural network resulting from movement. Also, a linear observer has been considered as a reference controller and has been compared its results. The considered vibration charts and the controlled state have been recounted in the final part of this text. The obtained result show that neural observer has better performance in comparison to the implemented linear observer.

Keywords: smart material, on-line differential artificial neural network, active control, finite element method

Procedia PDF Downloads 210
9926 Control Performance Simulation and Analysis for Microgravity Vibration Isolation System Onboard Chinese Space Station

Authors: Wei Liu, Shuquan Wang, Yang Gao

Abstract:

Microgravity Science Experiment Rack (MSER) will be onboard TianHe (TH) spacecraft planned to be launched in 2018. TH is one module of Chinese Space Station. Microgravity Vibration Isolation System (MVIS), which is MSER’s core part, is used to isolate disturbance from TH and provide high-level microgravity for science experiment payload. MVIS is two stage vibration isolation system, consisting of Follow Unit (FU) and Experiment Support Unit (ESU). FU is linked to MSER by umbilical cables, and ESU suspends within FU and without physical connection. The FU’s position and attitude relative to TH is measured by binocular vision measuring system, and the acceleration and angular velocity is measured by accelerometers and gyroscopes. Air-jet thrusters are used to generate force and moment to control FU’s motion. Measurement module on ESU contains a set of Position-Sense-Detectors (PSD) sensing the ESU’s position and attitude relative to FU, accelerometers and gyroscopes sensing ESU’s acceleration and angular velocity. Electro-magnetic actuators are used to control ESU’s motion. Firstly, the linearized equations of FU’s motion relative to TH and ESU’s motion relative to FU are derived, laying the foundation for control system design and simulation analysis. Subsequently, two control schemes are proposed. One control scheme is that ESU tracks FU and FU tracks TH, shorten as E-F-T. The other one is that FU tracks ESU and ESU tracks TH, shorten as F-E-T. In addition, motion spaces are constrained within ±15 mm、±2° between FU and ESU, and within ±300 mm between FU and TH or between ESU and TH. A Proportional-Integrate-Differentiate (PID) controller is designed to control FU’s position and attitude. ESU’s controller includes an acceleration feedback loop and a relative position feedback loop. A Proportional-Integrate (PI) controller is designed in the acceleration feedback loop to reduce the ESU’s acceleration level, and a PID controller in the relative position feedback loop is used to avoid collision. Finally, simulations of E-F-T and F-E-T are performed considering variety uncertainties, disturbances and motion space constrains. The simulation results of E-T-H showed that control performance was from 0 to -20 dB for vibration frequency from 0.01 to 0.1 Hz, and vibration was attenuated 40 dB per ten octave above 0.1Hz. The simulation results of T-E-H showed that vibration was attenuated 20 dB per ten octave at the beginning of 0.01Hz.

Keywords: microgravity science experiment rack, microgravity vibration isolation system, PID control, vibration isolation performance

Procedia PDF Downloads 160
9925 Some Results on Cluster Synchronization

Authors: Shahed Vahedi, Mohd Salmi Md Noorani

Abstract:

This paper investigates cluster synchronization phenomena between community networks. We focus on the situation where a variety of dynamics occur in the clusters. In particular, we show that different synchronization states simultaneously occur between the networks. The controller is designed having an adaptive control gain, and theoretical results are derived via Lyapunov stability. Simulations on well-known dynamical systems are provided to elucidate our results.

Keywords: cluster synchronization, adaptive control, community network, simulation

Procedia PDF Downloads 475