Search results for: fluorescence microscopy
1477 Structural, Optical, And Ferroelectric Properties Of BaTiO3 Sintered At Different Temperatures
Authors: Anurag Gaur, Neha Sharma
Abstract:
In this work, we have synthesized BaTiO3 via sol gel method by sintering at different temperatures (600-1000 0C) and studied their structural, optical and ferroelectric properties through X-Ray diffraction (XRD), UV-Vis spectrophotometer and PE Loop Tracer. X-Ray diffraction patterns of barium titanate samples show that the peaks of the diffractogram are successfully indexed with the tetragonal structure of BaTiO3 along with some minor impurities of BaCO3. The optical band gap calculated through UV Visible spectrophotometer varies from 4.37 to 3.80 eV for the samples sintered at 600 to 1000 0 C, respectively. The particle size calculated through transmission electron microscopy varies from 20 to 60 nm for the samples sintered at 600 to 1000 0C, respectively. Moreover, it has been observed that the ferroelectricity reduces as we increase the sintering temperature.Keywords: nanostructures, ferroelectricity, sol-gel method, diffractogram
Procedia PDF Downloads 4261476 High Quality Gallium Oxide Microstructures by Catalyst-Free Thermal Oxidation
Authors: Jiang-Bei Qin, Rui-Xia Miao, Wei Ren
Abstract:
In this study, high crystalline gallium oxide microstructures (wires, belts, and sheets) were synthesized by catalyst-free thermal oxidation. Structural studies such as X-ray diffraction, Raman and transmission electron microscope (TEM) investigations on the microstructures showed monoclinic phase of gallium oxide and single crystalline structure. The scanning electron microscopy (SEM) observations revealed that a huge super microsheet even grows up to 450 µm in length and 206 µm in width. Gallium oxide microstructures exhibit high crystallinity along (002) and (401), respectively. The PL spectrum of these microstructures excites a blue light band centered at 441 and 489nm. The growth mechanism of gallium oxide microstructures is discussed. These gallium oxide microstructures have great potential in functional devices.Keywords: catalyst-free, gallium oxide, microstructures, thermal oxide
Procedia PDF Downloads 1891475 Green Synthesis of Silver and Silver-Gold Alloy Nanoparticle Using Cyanobacteria as Bioreagent
Authors: Piya Roychoudhury, Ruma Pal
Abstract:
Cyanobacteria, commonly known as blue green algae were found to be an effective bioreagent for nanoparticle synthesis. Nowadays silver nanoparticles (AgNPs) are very popular due to their antimicrobial and anti-proliferative activity. To exploit these characters in different biotechnological fields, it is very essential to synthesize more stable, non-toxic nano-silver. For this reason silver-gold alloy (Ag-AuNPs) nanoparticles are of great interest as they are more stable, harder and more effective than single metal nanoparticles. In the present communication we described a simple technique for rapid synthesis of biocompatible AgNP and Ag-AuNP employing cyanobacteria, Leptolyngbya and Lyngbya respectively. For synthesis of AgNP the biomass of Leptolyngbya valderiana (200 mg Fresh weight) was exposed to 9 mM AgNO3 solution (pH 4). For synthesis of Ag-AuNP Lyngbya majuscula (200 mg Fresh weight) was exposed to equimolar solution of hydrogen tetra-auro chlorate and silver nitrate (1mM, pH 4). After 72 hrs of exposure thallus of Leptolyngyba turned brown in color and filaments of Lyngbya turned pink in color that indicated synthesis of nanoparticles. The produced particles were extracted from the cyanobacterial biomass using nano-capping agent, sodium citrate. Firstly, extracted brown and pink suspensions were taken for Energy Dispersive X-ray (EDAX) analysis to confirm the presence of silver in brown suspension and presence of both gold and silver in pink suspension. Extracted nanoparticles showed a distinct single plasmon band (AgNP at 411 nm; Ag-Au NP at 481 nm) in Uv-vis spectroscopy. It was revealed from Transmission electron microscopy (TEM) that all the synthesized particles were spherical in nature with a size range of ~2-25 nm. In X-ray powder diffraction (XRD) analysis four intense peaks appeared at 38.2°, 44.5°, 64.8°and 77.8° which confirmed the crystallographic nature of synthesized particles. Presence of different functional groups viz. N-H, C=C, C–O, C=O on the surface of nanoparticles were recorded by Fourier transform infrared spectroscopy (FTIR). Scanning Electron microscopy (SEM) images showed the surface topography of metal treated filaments of cyanobacteria. The stability of the particles was observed by Zeta potential study. Antibiotic property of synthesized particles was tested by Agar well diffusion method against gram negative bacteria Pseudomonas aeruginosa. Overall, this green-technique requires low energy, less manufacturing cost and produces rapidly eco-friendly metal nanoparticles.Keywords: cyanobacteria, silver nanoparticles, silver-gold alloy nanoparticles, spectroscopy
Procedia PDF Downloads 3231474 Preparation and Characterization of Iron/Titanium-Pillared Clays
Authors: Rezala Houria, Valverde Jose Luis, Romero Amaya, Molinari Alessandra, Maldotti Andrea
Abstract:
The escalation of oil prices in 1973 confronted the oil industry with the problem of how to maximize the processing of crude oil, especially the heavy fractions, to give gasoline components. Strong impetus was thus given to the development of catalysts with relatively large pore sizes, which were able to deal with larger molecules than the existing molecular sieves, and with good thermal and hydrothermal stability. The oil embargo in 1973 therefore acted as a stimulus for the investigation and development of pillared clays. Iron doped titania-pillared montmorillonite clays was prepared using bentonite from deposits of Maghnia in western-Algeria. The preparation method consists of differents steps (purification of the raw bentonite, preparation of a pillaring agent solution and exchange of the cations located between the clay layers with the previously formed iron/titanium solution). The characterization of this material was carried out by X-ray fluorescence spectrometry, X-ray diffraction, textural measures by BET method, inductively coupled plasma atomic emission spectroscopy, diffuse reflectance UV visible spectroscopy, temperature- programmed desorption of ammonia and atomic absorption.This new material was investigated as photocatalyst for selective oxygenation of the liquid alkylaromatics such as: toluene, paraxylene and orthoxylene and the photocatalytic properties of it were compared with those of the titanium-pillared clays.Keywords: iron doping, montmorillonite clays, pillared clays, oil industry
Procedia PDF Downloads 3021473 Combination of Silver-Curcumin Nanoparticle for the Treatment of Root Canal Infection
Authors: M. Gowri, E. K. Girija, V. Ganesh
Abstract:
Background and Significance: Among the dental infections, inflammation and infection of the root canal are common among all age groups. Currently, the management of root canal infections involves cleaning the canal with powerful irrigants followed by intracanal medicament application. Though these treatments have been in vogue for a long time, root canal failures do occur. Treatment for root canal infections is limited due to the anatomical complexity in terms of small micrometer volumes and poor penetration of drugs. Thus, infections of the root canal seem to be a challenge that demands development of new agents that can eradicate C. albicans. Methodology: In the present study, we synthesized and screened silver-curcumin nanoparticle against Candida albicans. Detailed molecular studies were carried out with silver-curcumin nanoparticle on C. albicans pathogenicity. Morphological cell damage and antibiofilm activity of silver-curcumin nanoparticle on C. albicans was studied using scanning electron microscopy (SEM). Biochemical evidence for membrane damage was studied using flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model. Results: Screening data showed that silver-curcumin nanoparticle was active against C. albicans. Silver-curcumin nanoparticle exerted time kill effect and post antifungal effect. When used in combination with fluconazole or nystatin, silver-curcumin nanoparticle revealed a minimum inhibitory concentration (MIC) decrease for both drugs used. In-depth molecular studies with silver-curcumin nanoparticle on C. albicans showed that silver-curcumin nanoparticle inhibited yeast to hyphae (Y-H) conversion. Further, SEM images of C. albicans showed that silver-curcumin nanoparticle caused membrane damage and inhibited biofilm formation. Biochemical evidence for membrane damage was confirmed by increased propidium iodide (PI) uptake in flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model, which mimics human tooth root canal infection. Confocal laser scanning microscopy studies showed eradication of C. albicans and reduction in colony forming unit (CFU) after 24 h treatment in the infected tooth samples in this model. Conclusion: The results of this study can pave the way for developing new antifungal agents with well deciphered mechanisms of action and can be a promising antifungal agent or medicament against root canal infection.Keywords: C. albicans, ex vivo dentine model, inhibition of biofilm formation, root canal infection, yeast to hyphae conversion inhibition
Procedia PDF Downloads 2081472 Effect of Rotation Speed on Microstructure and Microhardness of AA7039 Rods Joined by Friction Welding
Authors: H. Karakoc, A. Uzun, G. Kırmızı, H. Çinici, R. Çitak
Abstract:
The main objective of this investigation was to apply friction welding for joining of AA7039 rods produced by powder metallurgy. Friction welding joints were carried out using a rotational friction welding machine. Friction welds were obtained under different rotational speeds between (2700 and 2900 rpm). The friction pressure of 10 MPa and friction time of 30 s was kept constant. The cross sections of joints were observed by optical microscopy. The microstructures were analyzed using scanning electron microscope/energy dispersive X-ray spectroscopy. The Vickers micro hardness measurement of the interface was evaluated using a micro hardness testing machine. Finally the results obtained were compared and discussed.Keywords: Aluminum alloy, powder metallurgy, friction welding, microstructure
Procedia PDF Downloads 3631471 Biodegradability and Thermal Properties of Polycaprolactone/Starch Nanocomposite as a Biopolymer
Authors: Emad A. Jaffar Al-Mulla
Abstract:
In this study, a biopolymer-based nanocomposite was successfully prepared through melt blending technique. Two biodegradable polymers, polycaprolactone and starch, environmental friendly and obtained from renewable, easily available raw materials, have been chosen. Fatty hydrazide, synthesized from palm oil, has been used as a surfactant to modify montmorillonite (natural clay) for preparation of polycaprolactone/starch nanocomposite. X-ray diffraction and transmission electron microscopy were used to characterize nanocomposite formation. Compatibility of the blend was improved by adding 3% weight modified clay. Higher biodegradability and thermal stability of nanocomopeite were also observed compared to those of the polycaprolactone/starch blend. This product will solve the problem of plastic waste, especially disposable packaging, and reduce the dependence on petroleum-based polymers and surfactants.Keywords: polycaprolactone, starch, biodegradable, nanocomposite
Procedia PDF Downloads 3571470 Influence of High Temperature and Humidity on Polymer Composites Used in Relining of Sewage
Authors: Parastou Kharazmi, Folke Björk
Abstract:
Some of the main causes for degradation of polymeric materials are thermal aging, hydrolysis, oxidation or chemical degradation by acids, alkalis or water. The first part of this paper provides a brief summary of advances in technology, methods and specification of composite materials for relining as a rehabilitation technique for sewage systems. The second part summarizes an investigation on frequently used composite materials for relining in Sweden, the rubber filled epoxy composite and reinforced polyester composite when they were immersed in deionized water or in dry conditions, and elevated temperatures up to 80°C in the laboratory. The tests were conducted by visual inspection, microscopy, Dynamic Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC) as well as mechanical testing, three point bending and tensile testing.Keywords: composite, epoxy, polyester, relining, sewage
Procedia PDF Downloads 3421469 Polydopamine Nanoparticle as a Stable and Capacious Nano-Reservoir of Rifampicin
Authors: Tasnuva Tamanna, Aimin Yu
Abstract:
Application of nanoscience in biomedical field has come across as a new era. This study involves the synthesis of nano drug carrier with antibiotic loading. Based on the founding that polydopamine (PDA) nanoparticles could be formed via self-polymerization of dopamine at alkaline pH, one-step synthesis of rifampicin coupled polydopamine (PDA-R) nanoparticles was achieved by adding rifampicin into the dopamine solution. The successful yield of PDA nanoparticles with or without the presence of rifampicin during the polymerization process was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Drug loading was monitored by UV-vis spectroscopy and the loading efficiency of rifampicin was calculated to be 76%. Such highly capacious nano-reservoir was found very stable with little drug leakage at pH 3.Keywords: drug loading, nanoparticles, polydopamine, rifampicin
Procedia PDF Downloads 4781468 Recovery of the Demolition and Construction Waste, Casablanca (Morocco)
Authors: Morsli Mourad, Tahiri Mohamed, Samdi Azzeddine
Abstract:
Casablanca is the biggest city in Morocco. It concentrates more than 60% of the economic and industrial activity of the kingdom. Its building and public works (BTP) sector is the leading source of inert waste scattered in open areas. This inert waste is a major challenge for the city of Casablanca, as it is not properly managed, thus causing a significant nuisance for the environment and the health of the population. Hence the vision of our project is to recycle and valorize concrete waste. In this work, we present concrete results in the exploitation of this abundant and permanent deposit. Typical wastes are concrete, clay and concrete bricks, ceramic tiles, marble panels, gypsum, scrap metal, wood . The work performed included: geolocation with a combination of artificial intelligence and Google Earth, estimation of the amount of waste per site, sorting, crushing, grinding, and physicochemical characterization of the samples. Then, we proceeded to the exploitation of the types of substrates to be developed: light cement, coating, and glue for ceramics... The said products were tested and characterized by X-ray fluorescence, specific surface, resistance to bending and crushing, etc. We will present in detail the main results of our research work and also describe the specific properties of each material developed.Keywords: déchets de démolition et des chantiers de construction, logiciels de combinaison SIG, valorisation de déchets inertes, enduits, ciment leger, casablanca
Procedia PDF Downloads 1121467 Electrodeposition of Nickel-Zinc Alloy on Stainless Steel in a Magnetic Field in a Chloride Environment
Authors: Naima Benachour, Sabiha Chouchane, J. Paul Chopart
Abstract:
The objective of this work is to determine the appropriate conditions for a Ni-Zn deposit with good nickel content. The electrodeposition of zinc-nickel on a stainless steel is carried out in a chlorinated bath NiCl2.6H2O, ZnCl2, and H3BO3), whose composition is 1.1 M; 1.8 M; 0.1 M respectively. Studies show the effect of the concentration of NH4Cl, which reveals a significant effect on the reduction and ion transport in the electrolyte. In order to highlight the influence of magnetic field on the chemical composition and morphology of the deposit, chronopotentiometry tests were conducted, the curves obtained inform us that the application of a magnetic field promotes stability of the deposit. Characterization developed deposits was performed by scanning electron microscopy coupled with EDX and specified by the X-ray diffraction.Keywords: Zn-Ni alloys, electroplating, magnetic field, chronopotentiometry
Procedia PDF Downloads 4401466 Development of Allergenic and Melliferous Floral Pollen Spectrum Using Scanning Electron Microscopy
Authors: Mehwish Jamil Noor
Abstract:
Morphological features of pollen (sculpturing) were useful for identification of different floral taxa. In this study 49 pollen grains, types belonging to 25 families were studied using Scanning Electron Microscope. Shape and sculpturing of pollen ranging from Psilate, scabrate to reticulate, bireticulate and echinolophate. Honey pollen was identified using morphological features, number and arrangement of pore and colpi, size and shape. It presents the first attempt from Pakistan involving extraction of pollen from honey, its identification and taxonomic analysis. Among pollen studied diversity in shape and sculpturing has been observed ranging from Psilate, scabrate to reticulate to bireticulate and echinolophate condition. Pollen has been identified with the help of morphological feature, number and arrangement of pore and colpi, size and shape, reference slides, light microscopic data and previous literature have been consulted for pollen identification. Pollen of closely related species resemble each other therefore pollen identification of airborne and honey pollen is not possible till species level. Survey of flora was carried in parallel to keep the record about the allergenic and melliferous preference of specific sites through surveys and interviews. Their pollination season and geographical distribution were recorded. Two hundred and five including wild and cultivated taxa were identified belonging to sixty-seven families. Major bee attracting wild shrub and trees includes Justicia adhatoda, Acacia nilotica, Ziziphus jujuba, Taraxicum officinalis, Artemisia dubia, Casuarina sp., Ulmus sp., Broussonetia papyrifera, Cupressus sp. or Pinus roxburghii etc. Cultivated crops like Pennisetum typhoides, Nigella sativa, Triticum sativum along with fruit trees of Pyrus, Prunus, Eryobotria, Citrus etc. are popular melliferous floras. Exotic/ introduced species like Eucalyptus or Parthenium hysterophorus, are also frequently visited by bees indicating the significance of those plants in the honey industry. It is concluded that different microscopic analysis techniques give more clear and authentic pictures of and melliferous pollen identification which is well supported by the floral calendar. The diversity of pollen are observed in case of melliferous pollen, and most of the windborne pollen were found less sculptured or psilate expressing the adaptation to the specific mode of pollination. Pollen morphology and sculpturing would serve as a reference for future studies.Keywords: pollen, allergenic flora, sem, pollen key, Scanning Electron Microscopy (SEM)
Procedia PDF Downloads 2011465 Microstructural Interactions of Ag and Sc Alloying Additions during Casting and Artificial Ageing to a T6 Temper in a A356 Aluminium Alloy
Authors: Dimitrios Bakavos, Dimitrios Tsivoulas, Chaowalit Limmaneevichitr
Abstract:
Aluminium cast alloys, of the Al-Si system, are widely used for shape castings. Their microstructures can be further improved on one hand, by alloying modification and on the other, by optimised artificial ageing. In this project four hypoeutectic Al-alloys, the A356, A356+ Ag, A356+Sc, and A356+Ag+Sc have been studied. The interactions of Ag and Sc during solidification and artificial ageing at 170°C to a T6 temper have been investigated in details. The evolution of the eutectic microstructure is studied by thermal analysis and interrupted solidification. The ageing kinetics of the alloys has been identified by hardness measurements. The precipitate phases, number density, and chemical composition has been analysed by means of transmission electron microscopy (TEM) and EDS analysis. Furthermore, the SHT effect onto the Si eutectic particles for the four alloys has been investigated by means of optical microscopy, image analysis, and the UTS strength has been compared with the UTS of the alloys after casting. The results suggest that the Ag additions, significantly enhance the ageing kinetics of the A356 alloy. The formation of β” precipitates were kinetically accelerated and an increase of 8% and 5% in peak hardness strength has been observed compared to the base A356 and A356-Sc alloy. The EDS analysis demonstrates that Ag is present on the β” precipitate composition. After prolonged ageing 100 hours at 170°C, the A356-Ag exhibits 17% higher hardness strength compared to the other three alloys. During solidification, Sc additions change the macroscopic eutectic growth mode to the propagation of a defined eutectic front from the mold walls opposite to the heat flux direction. In contrast, Ag has no significance effect on the solidification mode revealing a macroscopic eutectic growth similar to A356 base alloy. However, the mechanical strength of the as cast A356-Ag, A356-Sc, and A356+Ag+Sc additions has increased by 5, 30, and 35 MPa, respectively. The outcome is a tribute to the refining of the eutectic Si that takes place which it is strong in the A356-Sc alloy and more profound when silver and scandium has been combined. Moreover after SHT the Al alloy with the highest mechanical strength, is the one with Ag additions, in contrast to the as-cast condition where the Sc and Sc+Ag alloy was the strongest. The increase of strength is mainly attributed to the dissolution of grain boundary precipitates the increase of the solute content into the matrix, the spherodisation, and coarsening of the eutectic Si. Therefore, we could safely conclude for an A356 hypoeutectic alloy additions of: Ag exhibits a refining effect on the Si eutectic which is improved when is combined with Sc. In addition Ag enhance, the ageing kinetics increases the hardness and retains its strength at prolonged artificial ageing in a Al-7Si 0.3Mg hypoeutectic alloy. Finally the addition of Sc is beneficial due to the refinement of the α-Al grain and modification-refinement of the eutectic Si increasing the strength of the as-cast product.Keywords: ageing, casting, mechanical strength, precipitates
Procedia PDF Downloads 4971464 X-Ray Analysis and Grain Size of CuInx Ga1-X Se2 Solar Cells
Authors: A. I. Al-Bassam, A. M. El-Nggar
Abstract:
Polycrystalline Cu In I-x GaxSe2 thin films have been fabricated. Some physical properties such as lattice parameters, crystal structure and microstructure of Cu In I-x GaxSe2 were determined using X-ray diffractometry and scanning electron microscopy. X-ray diffraction analysis showed that the films with x ≥ 0.5 have a chalcopyrite structure and the films with x ≤ 0.5 have a zinc blende structure. The lattice parameters were found to vary linearly with composition over a wide range from x = 0 to x =1.0. The variation of lattice parameters with composition was found to obey Vegard's law. The variation of the c/a with composition was also linear. The quality of a wide range of Cu In I-xGaxSe2 thin film absorbers from CuInSe to CuGaSe was evaluated by Photoluminescence (PL) measurements.Keywords: grain size, polycrystalline, solar cells, lattice parameters
Procedia PDF Downloads 5041463 Freshwater Cyanobacterial Bioactive Insights: Planktothricoides raciorskii Compounds vs. Green Synthesized Silver Nanoparticles: Characterization, in vitro Cytotoxicity, and Antibacterial Exploration
Authors: Sujatha Edla
Abstract:
Introduction: New compounds and possible uses for the bioactive substances produced by freshwater cyanobacteria are constantly being discovered through research. Certain molecules are hazardous to the environment and human health, but others have potential applications in industry, biotechnology, and pharmaceuticals. These discoveries advance our knowledge of the varied functions these microbes perform in different ecosystems. Cyanobacterial silver nanoparticles (AgNPs) have special qualities and possible therapeutic advantages, which make them very promising for a range of medicinal uses. Aim: In our study; the attention was focused on the analysis and characterization of bioactive compounds extracted from freshwater cyanobacteria Planktothricoides raciorskii and its comparative study on Cyanobacteria-mediated silver nanoparticles synthesized by cell-free extract of Planktothricoides raciorskii. Material and Methods: A variety of bioactive secondary metabolites have been extracted, purified, and identified from cyanobacterial species using column chromatography, FTIR, and GC-MS/MS chromatography techniques and evaluated for antibacterial and cytotoxic studies, where the Cyanobacterial silver nanoparticles (CSNPs) were characterized by UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) analysis and were further tested for antibacterial and cytotoxic efficiency. Results: The synthesis of CSNPs was confirmed through visible color change and shift of peaks at 430–445 nm by UV-Vis spectroscopy. The size of CSNPs was between 22 and 34 nm and oval-shaped which were confirmed by SEM and TEM analyses. The FTIR spectra showed a new peak at the range of 3,400–3,460 cm−1 compared to the control, confirming the reduction of silver nitrate. The antibacterial activity of both crude bioactive compound extract and CSNPs showed remarkable activity with Zone of inhibition against E. coli with 9.5mm and 10.2mm, 13mm and 14.5mm against S. paratyphi, 9.2mm and 9.8mm zone of inhibition against K. pneumonia by both crude extract and CSNPs, respectively. The cytotoxicity as evaluated by extracts of Planktothricoides raciorskii against MCF7-Human Breast Adenocarcinoma cell line and HepG2- Human Hepatocellular Carcinoma cell line employing MTT assay gave IC50 value of 47.18ug/ml, 110.81ug/ml against MCF7cell line and HepG2 cell line, respectively. The cytotoxic evaluation of Planktothricoides raciorskii CSNPs against the MCF7cell line was 43.37 ug/ml and 20.88 ug/ml against the HepG2 cell line. Our ongoing research in this field aims to uncover the full therapeutic potential of cyanobacterial silver nanoparticles and address any associated challenges.Keywords: cyanobacteria, silvernanoparticles, pharmaceuticals, bioactive compounds, cytotoxic
Procedia PDF Downloads 621462 Graphene/ZnO/Polymer Nanocomposite Thin Film for Separation of Oil-Water Mixture
Authors: Suboohi Shervani, Jingjing Ling, Jiabin Liu, Tahir Husain
Abstract:
Offshore oil-spill has become the most emerging problem in the world. In the current paper, a graphene/ZnO/polymer nanocomposite thin film is coated on stainless steel mesh via layer by layer deposition method. The structural characterization of materials is determined by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The total petroleum hydrocarbons (TPHs) and separation efficiency have been measured via gas chromatography – flame ionization detector (GC-FID). TPHs are reduced to 2 ppm and separation efficiency of the nanocomposite coated mesh is reached ≥ 99% for the final sample. The nanocomposite coated mesh acts as a promising candidate for the separation of oil- water mixture.Keywords: oil spill, graphene, oil-water separation, nanocomposite
Procedia PDF Downloads 1731461 Synthesis, Characterization and Gas Sensing Applications of Perovskite CaZrO3 Nanoparticles
Authors: B. M. Patil
Abstract:
Calcium Zirconate (CaZrO3) has high protonic conductivities at elevated temperature in water or hydrogen atmosphere. Undoped calcium zirconate acts as a p-type semiconductor in air. In this paper, we reported synthesis of CaZrO3 nanoparticles via modified molecular precursor method. The precursor calcium zirconium oxalate (CZO) was synthesized by exchange reaction between freshly generated aqueous solution of sodium zirconyl oxalate and calcium acetate at room temperature. The controlled pyrolysis of CZO in air at 700°C for one hour resulted in the formation nanocrystalline CaZrO3 powder. CaZrO3 obtained by the present method was characterized by Simultaneous thermogravimetry and differential thermogravimetry (TG-DTA), X-ray diffraction (XRD), infra-red spectroscopy and transmission electron microscopy (TEM). The pellets of synthesized CaZrO3 fabricated, sintered at 1000°C for 5 hr and tested as sensors for NO2 and NH3 gases.Keywords: CaZrO3, CZO, NO2, NH3
Procedia PDF Downloads 1671460 A Comprehensive Study on the Porosity Effect of Ti-20Zr Alloy Produced by Powder Metallurgy as a Biomaterial
Authors: Eyyup Murat Karakurt, Yan Huang, Mehmet Kaya, Huseyin Demirtas
Abstract:
In this study, the effect of the porosity effect of Ti-20Zr alloy produced by powder metallurgy as a biomaterial was investigated experimentally. The Ti based alloys (Ti-20%Zr (at.) were produced under 300 MPa, for 6 h at 1200 °C. Afterward, the microstructure of the Ti-based alloys was analyzed by optical analysis, scanning electron microscopy, energy dispersive spectrometry. Moreover, compression tests were applied to determine the mechanical behaviour of samples. As a result, highly porous Ti-20Zr alloys exhibited an elastic modulus close to human bone. The results later were compared theoretically and experimentally.Keywords: porosity effect, Ti based alloys, elastic modulus, compression test
Procedia PDF Downloads 2301459 Potential Use of Local Materials as Synthesizing One Part Geopolymer Cement
Authors: Areej Almalkawi, Sameer Hamadna, Parviz Soroushian, Nalin Darsana
Abstract:
The work on indigenous binders in this paper focused on the following indigenous raw materials: red clay, red lava and pumice (as primary aluminosilicate precursors), wood ash and gypsum (as supplementary minerals), and sodium sulfate and lime (as alkali activators). The experimental methods used for evaluation of these indigenous raw materials included laser granulometry, x-ray fluorescence (XRF) spectroscopy, and chemical reactivity. Formulations were devised for transforming these raw materials into alkali aluminosilicate-based hydraulic cements. These formulations were processed into hydraulic cements via simple heating and milling actions to render thermal activation, mechanochemical and size reduction effects. The resulting hydraulic cements were subjected to laser granulometry, heat of hydration and reactivity tests. These cements were also used to prepare mortar mixtures, which were evaluated via performance of compressive strength tests. The measured values of strength were correlated with the reactivity, size distribution and microstructural features of raw materials. Some of the indigenous hydraulic cements produced in this reporting period yielded viable levels of compressive strength. The correlation trends established in this work are being evaluated for development of simple and thorough methods of qualifying indigenous raw materials for use in production of indigenous hydraulic cements.Keywords: one-part geopolymer cement, aluminosilicate precursors, thermal activation, mechanochemical
Procedia PDF Downloads 3141458 Bioprophylaxis of Saprolegniasis in Incubated Clarias gariepinus Eggs Using Pyocyanin Extracted from Pseudomonas aeruginosa
Authors: G. A. Oladosu1, P. O. Ogbodogbo, C. I. Makinde1, M. O. Tijani, O. A. Adegboyega
Abstract:
Saprolegniasis is a major pathogenic infection that contributes significantly to poor hatching rates in incubated fish eggs in the Africa catfish hatchery in Nigeria. Malachite green known to be very effective against this condition has been banned because it is carcinogenic. There is, therefore, the need for other effective yet safer methods of controlling saprolegniasis in incubated fish eggs. A total of 50 ml crude, chloroform extract of pyocyanin from which solvent was removed to attain 30 ml, having a concentration of 12.16 ug/ml was produced from 700 ml broth culture of Pseudomonas aeruginosa isolated from a previous study. In-vitro susceptibility of the fungus was investigated by exposing fungal infected eggs to two different time-concentration ratios of pyocyanin; 0.275 ug/ml and 2.75 ug/ml for 1 and 24 hours, and 5 mg/L malachite green as positive control while normal saline was the control. The efficacy of pyocyanin was evaluated using the degree of mycelial growth inhibition in different treatments. Fertilized Clarias gariepinus eggs (between 45 to 64 eggs) were then incubated in 20 ml of medium containing similar concentrations of pyocyanin and malachite green, with freshwater as a control for 24 hours. Hatching rates of the incubated eggs were observed. Three samples of un-hatched eggs were taken from each medium and observed for the presence of fungal pathogens using microscopy. Another batch of three samples of un-hatched eggs from each treatment was also inoculated on Sabourand dextrose agar (SDA) using Egg-Agar Transfer Technique to observe for fungal growth. Mycelial growth was inhibited in fungal infected eggs treated with 2.75 ug/ml for 24 hrs and the 5 mg/L malachite green for both 1 hr and 24 hrs. The mortality rate was 100% in fertilized C. gariepinus eggs exposed for 24 hrs to 0.275 and 2.75 ug/ml of pyocyanin. The mortality rate was least in malachite green followed by the control treatment. Embryonic development was observed to be arrested in the eggs treated with the two pyocyanin concentrations as they maintain their colour but showed no development beyond the gastrula stage, whereas viable eggs in the control and malachite green treatments developed fully into healthy hatchlings. Furthermore, microscopy of the un-hatched eggs revealed the presence of a protozoan ciliate; Colpidium sp, (Tetrahymenidae), as well as a pathogenic fungus; Saprolegnia sp. in the control but not in the malachite green and pyocyanin treatments. Growth of Saprolegnia sp was also observed in SDA culture of un-hatched eggs from the control, but not from pyocyanin and malachite green treated eggs. Pyocyanin treatment of incubated eggs of Clarias gariepinus effectively prevented fungal infection in the eggs, but also arrested the development of the embryo. Therefore, crude chloroform extract of pyocyanin from Pseudomonas aeruginosa cannot be used in the control of Saprolegniasis in incubated Clarias gariepinus eggs at the concentration and duration tested in this study.Keywords: African catfish, bioprophylaxis, catfish embryo, Saprolegniasis
Procedia PDF Downloads 1151457 Polymerization: An Alternative Technology for Heavy Metal Removal
Authors: M. S. Mahmoud
Abstract:
In this paper, the adsorption performance of a novel environmental friendly material, calcium alginate gel beads as a non-conventional technique for the successful removal of copper ions from aqueous solution are reported on. Batch equilibrium studies were carried out to evaluate the adsorption capacity and process parameters such as pH, adsorbent dosages, initial metal ion concentrations, stirring rates and contact times. It was observed that the optimum pH for maximum copper ions adsorption was at pH 5.0. For all contact times, an increase in copper ions concentration resulted in decrease in the percent of copper ions removal. Langmuir and Freundlich's isothermal models were used to describe the experimental adsorption. Adsorbent was characterization using Fourier transform-infrared (FT-IR) spectroscopy and Transmission electron microscopy (TEM).Keywords: adsorption, alginate polymer, isothermal models, equilibrium
Procedia PDF Downloads 4481456 Effects of Valproate on Vascular Endothelial Growth Factor in the Retina Associated with Choroidal Neovascularization
Authors: Zhang Zhenzhen
Abstract:
Valproate (VPA) is commonly used in the treatment of bipolar disorder and epilepsy. The mechanism is complicated, including its ability to inhibit histone deacetylases (HDACs). Here, we show that VPA attenuated VEGF gene expression and the morphological changes in choroidal neovascularization (CNV) induced by photocoagulation in retina. C57BL/6 mice were injected subcutaneously at 300mg/kg twice daily with VPA before insult. Vascular endothelial growth factor (VEGF)-A and VEGF-B were examined in the eyes of VPA-treated mice and in human retinal pigment epithelial cell lines (ARPE-19) exposed to VPA. In addition, CNV was induced by photocoagulation in mice injected with VPA, and the volume of CNV was compared by fluorescence-labeled choroidal flat mount. Morphological changes were analyzed on stained histological sections. Western blot analysis was used to determine protein levels of VEGF-A and VEGF-B, and acetylation of histone H3 in each group. VPA injected intraperitoneally attenuated the VEGF-A and VEGF-B expression in the retina, accompanied by the hyperacetylation of retina tissue, indicating that VPA acts directly on retina tissues through acetylation to reduce the expression of VEGF. VPA also attenuated the VEGF-A mRNA expression in the retinal pigment epithelium showed by immunohistochemistry. Moreover, the administration of VPA significantly attenuated photocoagulation-induced CNV in mice. These results demonstrate that VPA attenuated VEGF production in retina associated with choroidal neovascularization possibly via the HDAC inhibition.Keywords: retina, acetylation, chorodial neovascularization, vascular endothelial growth factor
Procedia PDF Downloads 2041455 The Effect of the Reaction Time on the Microwave Synthesis of Magnesium Borates from MgCl2.6H2O, MgO and H3BO3
Authors: E. Moroydor Derun, P. Gurses, M. Yildirim, A. S. Kipcak, T. Ibroska, S. Piskin
Abstract:
Due to their strong mechanical and thermal properties magnesium borates have a wide usage area such as ceramic industry, detergent production, friction reducing additive and grease production. In this study, microwave synthesis of magnesium borates from MgCl2.6H2O (Magnesium chloride hexahydrate), MgO (Magnesium oxide) and H3BO3 (Boric acid) for different reaction times is researched. X-ray Diffraction (XRD) and Fourier Transform Infrared (FT-IR) Spectroscopy are used to find out how the reaction time sways on the products. The superficial properties are investigated with Scanning Electron Microscopy (SEM). According to XRD analysis, the synthesized compounds are 00-041-1407 pdf coded Shabinite (Mg5(BO3)4Cl2(OH)5.4(H2O)) and 01-073-2158 pdf coded Karlite (Mg7(BO3)3(OH,Cl)5).Keywords: magnesium borate, microwave synthesis, XRD, SEM
Procedia PDF Downloads 3481454 The Development and Testing of a Small Scale Dry Electrostatic Precipitator for the Removal of Particulate Matter
Authors: Derek Wardle, Tarik Al-Shemmeri, Neil Packer
Abstract:
This paper presents a small tube/wire type electrostatic precipitator (ESP). In the ESPs present form, particle charging and collecting voltages and airflow rates were individually varied throughout 200 ambient temperature test runs ranging from 10 to 30 kV in increments on 5 kV and 0.5 m/s to 1.5 m/s, respectively. It was repeatedly observed that, at input air velocities of between 0.5 and 0.9 m/s and voltage settings of 20 kV to 30 kV, the collection efficiency remained above 95%. The outcomes of preliminary tests at combustion flue temperatures are, at present, inconclusive although indications are that there is little or no drop in comparable performance during ideal test conditions. A limited set of similar tests was carried out during which the collecting electrode was grounded, having been disconnected from the static generator. The collecting efficiency fell significantly, and for that reason, this approach was not pursued further. The collecting efficiencies during ambient temperature tests were determined by mass balance between incoming and outgoing dry PM. The efficiencies of combustion temperature runs are determined by analysing the difference in opacity of the flue gas at inlet and outlet compared to a reference light source. In addition, an array of Leit tabs (carbon coated, electrically conductive adhesive discs) was placed at inlet and outlet for a number of four-day continuous ambient temperature runs. Analysis of the discs’ contamination was carried out using scanning electron microscopy and ImageJ computer software that confirmed collection efficiencies of over 99% which gave unequivocal support to all the previous tests. The average efficiency for these runs was 99.409%. Emissions collected from a woody biomass combustion unit, classified to a diameter of 100 µm, were used in all ambient temperature trials test runs apart from two which collected airborne dust from within the laboratory. Sawdust and wood pellets were chosen for laboratory and field combustion trials. Video recordings were made of three ambient temperature test runs in which the smoke from a wood smoke generator was drawn through the precipitator. Although these runs were visual indicators only, with no objective other than to display, they provided a strong argument for the device’s claimed efficiency, as no emissions were visible at exit when energised. The theoretical performance of ESPs, when applied to the geometry and configuration of the tested model, was compared to the actual performance and was shown to be in good agreement with it.Keywords: electrostatic precipitators, air quality, particulates emissions, electron microscopy, image j
Procedia PDF Downloads 2531453 Electrochemical Synthesis and Morphostructural Study of the Cuprite Thin Film
Authors: M. El Hajji, A. Hallaoui, L. Bazzi, A. Benlhachemi, Lh. Bazzi, M. Hilali, O. Jbara, A. Tara, B. Bakiz
Abstract:
The cathodic electro deposition of the cuprite Cu2O by chrono potentiometry is performed on two types of electrodes "titanium and stainless steel", in a basic medium containing the precursor of copper. The plot produced vs SCE, shows the formation of a brown layer on the electrode surface. The chrono potentiometric recording made between - 0.2 and - 1 mA/cm2, has allowed us to have a deposit having different morphologies and structural orientation obtained as a function of the variation of many parameters. The morphology, the size of crystals, and the phase of the deposits produced were studied by conventional techniques of analysis of the solid, particularly the X-ray diffraction (XRD), scanning electron microscopy analysis (SEM) and quantitative chemical analysis (EDS). The results will be presented and discussed, they show that the majority of deposits are pure and uniform.Keywords: cathodic electrodeposition, cuprite Cu2O, XRD, SEM, EDS analysis
Procedia PDF Downloads 4181452 Application of Scanning Electron Microscopy and X-Ray Evaluation of the Main Digestion Methods for Determination of Macroelements in Plant Tissue
Authors: Krasimir I. Ivanov, Penka S. Zapryanova, Stefan V. Krustev, Violina R. Angelova
Abstract:
Three commonly used digestion methods (dry ashing, acid digestion, and microwave digestion) in different variants were compared for digestion of tobacco leaves. Three main macroelements (K, Ca and Mg) were analysed using AAS Spectrometer Spectra АА 220, Varian, Australia. The accuracy and precision of the measurements were evaluated by using Polish reference material CTR-VTL-2 (Virginia tobacco leaves). To elucidate the problems with elemental recovery X-Ray and SEM–EDS analysis of all residues after digestion were performed. The X-ray investigation showed a formation of KClO4 when HClO4 was used as a part of the acids mixture. The use of HF at Ca and Mg determination led to the formation of CaF2 and MgF2. The results were confirmed by energy dispersive X-ray microanalysis. SPSS program for Windows was used for statistical data processing.Keywords: digestion methods, plant tissue, determination of macroelements, K, Ca, Mg
Procedia PDF Downloads 3171451 Detection of Epinephrine in Chicken Serum at Iron Oxide Screen Print Modified Electrode
Authors: Oluwole Opeyemi Dina, Saheed E. Elugoke, Peter Olutope Fayemi, Omolola E. Fayemi
Abstract:
This study presents the detection of epinephrine (EP) at Fe₃O₄ modified screen printed silver electrode (SPSE). The iron oxide (Fe₃O₄) nanoparticles were characterized with UV-visible spectroscopy, Fourier-Transform infrared spectroscopy (FT-IR) and Scanning electron microscopy (SEM) prior to the modification of the SPSE. The EP oxidation peak current (Iap) increased with an increase in the concentration of EP as well as the scan rate (from 25 - 400 mVs⁻¹). Using cyclic voltammetry (CV), the relationship between Iap and EP concentration was linear over a range of 3.8 -118.9 µM and 118.9-175 µM with a detection limit of 41.99 µM and 83.16 µM, respectively. Selective detection of EP in the presence of ascorbic acid was also achieved at this electrode.Keywords: screenprint electrode, iron oxide nanoparticle, epinephrine, serum, cyclic voltametry
Procedia PDF Downloads 1651450 The Effect of Arabic Gum on Polyethersulfone Membranes
Authors: Yehia Manawi, Viktor Kochkodan, Muataz Hussien
Abstract:
In this paper, the effect of adding Arabic Gum (AG) to the dope solutions of polyethersulfone (PES) was studied. The aim of adding AG is to enhance the properties of ultrafiltration membranes such as hydrophilicity, porosity and selectivity. several AG loading (0.1-3.0 wt.%) in PES/ N-Methyl-2-pyrrolidone (NMP) casting solutions were prepared to fabricate PES membranes using phase inversion technique. The surface morphology, hydrophilicity and selectivity of the cast PES/AG membranes were analyzed using scanning electron microscopy and contact angle measurements. The selectivity of the fabricated membranes was also tested by filtration of oil solutions (1 ppm) and found to show quite high removal efficiency. The effect of adding AG to PES membranes was found to increase the permeate flux and porosity as well as reducing surface roughness and the contact angle of the membranes.Keywords: antifouling, Arabic gum, polyethersulfone membrane, ultrafiltration
Procedia PDF Downloads 2851449 The Effects and Interactions of Synthesis Parameters on Properties of Mg Substituted Hydroxyapatite
Authors: S. Sharma, U. Batra, S. Kapoor, A. Dua
Abstract:
In this study, the effects and interactions of reaction time and capping agent assistance during sol-gel synthesis of magnesium substituted hydroxyapatite nanopowder (MgHA) on hydroxyapatite (HA) to β-tricalcium phosphate (β-TCP) ratio, Ca/P ratio and mean crystallite size was examined experimentally as well as through statistical analysis. MgHA nanopowders were synthesized by sol-gel technique at room temperature using aqueous solution of calcium nitrate tetrahydrate, magnesium nitrate hexahydrate and potassium dihydrogen phosphate as starting materials. The reaction time for sol-gel synthesis was varied between 15 to 60 minutes. Two process routes were followed with and without addition of triethanolamine (TEA) in the solutions. The elemental compositions of as-synthesized powders were determined using X-ray fluorescence (XRF) spectroscopy. The functional groups present in the as-synthesized MgHA nanopowders were established through Fourier Transform Infrared Spectroscopy (FTIR). The amounts of phases present, Ca/P ratio and mean crystallite sizes of MgHA nanopowders were determined using X-ray diffraction (XRD). The HA content in biphasic mixture of HA and β-TCP and Ca/P ratio in as-synthesized MgHA nanopowders increased effectively with reaction time of sols (p < 0.0001, two way Anova), however, these were independent of TEA addition (p > 0.15, two way Anova). The MgHA nanopowders synthesized with TEA assistance exhibited 14 nm lower crystallite size (p < 0.018, 2 sample t-test) compared to the powder synthesized without TEA assistance.Keywords: capping agent, hydroxyapatite, regression analysis, sol-gel, 2- sample t-test, two-way analysis of variance (ANOVA)
Procedia PDF Downloads 3701448 Failure Localization of Bipolar Integrated Circuits by Implementing Active Voltage Contrast
Authors: Yiqiang Ni, Xuanlong Chen, Enliang Li, Linting Zheng, Shizheng Yang
Abstract:
Bipolar ICs are playing an important role in military applications, mainly used in logic gates, such as inverter and NAND gate. The defect of metal break located on the step is one of the main failure mechanisms of bipolar ICs, resulting in open-circuit or functional failure. In this situation, general failure localization methods like optical beam-induced resistance change (OBIRCH) and photon emission microscopy (PEM) might not be fully effective. However, active voltage contrast (AVC) can be used as a voltage probe, which may pinpoint the incorrect potential and thus locate the failure position. Two case studies will be present in this paper on how to implement AVC for failure localization, and the detailed failure mechanism will be discussed.Keywords: bipolar IC, failure localization, metal break, open failure, voltage contrast
Procedia PDF Downloads 291