Search results for: experimental autoimmune encephalomyelitis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7412

Search results for: experimental autoimmune encephalomyelitis

6602 Effect of High Temperature on Residual Mechanical and Physical Properties of Brick Aggregate Concrete

Authors: Samia Hachemi, Abdelhafid Ounis, W. Heriheri

Abstract:

This paper presents an experimental investigation of high temperatures applied to normal and high performance concrete made with natural coarse aggregates. The experimental results of physical and mechanical properties were compared with those obtained with recycled brick aggregates produced by replacing 30% of natural coarse aggregates by recycled brick aggregates. The following parameters: compressive strength, concrete mass loss, apparent density and water porosity were examined in this experiment. The results show that concrete could be produced by using recycled brick aggregates and reveals that at high temperatures recycled aggregate concrete preformed similar or even better than natural aggregate concrete.

Keywords: high temperature, compressive strength, mass loss, recycled brick aggregate

Procedia PDF Downloads 245
6601 Soil Parameters Identification around PMT Test by Inverse Analysis

Authors: I. Toumi, Y. Abed, A. Bouafia

Abstract:

This paper presents a methodology for identifying the cohesive soil parameters that takes into account different constitutive equations. The procedure, applied to identify the parameters of generalized Prager model associated to the Drucker & Prager failure criterion from a pressuremeter expansion curve, is based on an inverse analysis approach, which consists of minimizing the function representing the difference between the experimental curve and the simulated curve using a simplex algorithm. The model response on pressuremeter path and its identification from experimental data lead to the determination of the friction angle, the cohesion and the Young modulus. Some parameters effects on the simulated curves and stresses path around pressuremeter probe are presented. Comparisons between the parameters determined with the proposed method and those obtained by other means are also presented.

Keywords: cohesive soils, cavity expansion, pressuremeter test, finite element method, optimization procedure, simplex algorithm

Procedia PDF Downloads 294
6600 Seismic Retrofit of Rectangular Columns Using Fiber Reinforced Polymers

Authors: E. L. Elghazy, A. M. Sanad, M. G. Ghoneim

Abstract:

Over the past two decades research has shown that fiber reinforced polymers can be efficiently, economically and safely used for strengthening and rehabilitation of reinforced concrete (RC) structures. Designing FRP confined concrete columns requires reliable analytical tools that predict the level of performance and ductility enhancement. A numerical procedure is developed aiming at determining the type and thickness of FRP jacket needed to achieve a certain level of ductility enhancement. The procedure starts with defining the stress strain curve, which is used to obtain moment curvature relationship then displacement ductility ratio of reinforced concrete cross-sections subjected to bending moment and axial force. Three sets of published experimental tests were used to validate the numerical procedure. Comparisons between predicted results obtained by using the proposed procedure and actual results of experimental tests proved the reliability of the proposed procedure.

Keywords: columns, confinement, ductility, FRP, numerical

Procedia PDF Downloads 448
6599 Peer Corrective Feedback on Written Errors in Computer-Mediated Communication

Authors: S. H. J. Liu

Abstract:

This paper aims to explore the role of peer Corrective Feedback (CF) in improving written productions by English-as-a- foreign-language (EFL) learners who work together via Wikispaces. It attempted to determine the effect of peer CF on form accuracy in English, such as grammar and lexis. Thirty-four EFL learners at the tertiary level were randomly assigned into the experimental (with peer feedback) or the control (without peer feedback) group; each group was subdivided into small groups of two or three. This resulted in six and seven small groups in the experimental and control groups, respectively. In the experimental group, each learner played a role as an assessor (providing feedback to others), as well as an assessee (receiving feedback from others). Each participant was asked to compose his/her written work and revise it based on the feedback. In the control group, on the other hand, learners neither provided nor received feedback but composed and revised their written work on their own. Data collected from learners’ compositions and post-task interviews were analyzed and reported in this study. Following the completeness of three writing tasks, 10 participants were selected and interviewed individually regarding their perception of collaborative learning in the Computer-Mediated Communication (CMC) environment. Language aspects to be analyzed included lexis (e.g., appropriate use of words), verb tenses (e.g., present and past simple), prepositions (e.g., in, on, and between), nouns, and articles (e.g., a/an). Feedback types consisted of CF, affective, suggestive, and didactic. Frequencies of feedback types and the accuracy of the language aspects were calculated. The results first suggested that accurate items were found more in the experimental group than in the control group. Such results entail that those who worked collaboratively outperformed those who worked non-collaboratively on the accuracy of linguistic aspects. Furthermore, the first type of CF (e.g., corrections directly related to linguistic errors) was found to be the most frequently employed type, whereas affective and didactic were the least used by the experimental group. The results further indicated that most participants perceived that peer CF was helpful in improving the language accuracy, and they demonstrated a favorable attitude toward working with others in the CMC environment. Moreover, some participants stated that when they provided feedback to their peers, they tended to pay attention to linguistic errors in their peers’ work but overlook their own errors (e.g., past simple tense) when writing. Finally, L2 or FL teachers or practitioners are encouraged to employ CMC technologies to train their students to give each other feedback in writing to improve the accuracy of the language and to motivate them to attend to the language system.

Keywords: peer corrective feedback, computer-mediated communication (CMC), second or foreign language (L2 or FL) learning, Wikispaces

Procedia PDF Downloads 245
6598 Cold Model Experimental Research on Particle Velocity Distribution in Gas-Solid Circulating Fluidized Bed for Methanol-To-Olefins Process

Authors: Yongzheng Li, Hongfang Ma, Qiwen Sun, Haitao Zhang, Weiyong Ying

Abstract:

Radial profiles of particle velocities were investigated in a 6.1 m tall methanol-to-olefins cold model experimental device using a TSI laser Doppler velocimeter. The measurement of axial levels was conducted in the full developed region. The effect of axial level on flow development was not obvious under the same operating condition. Superficial gas velocity and solid circulating rate had significant influence on particle velocity in the center region of the riser. Besides, comparisons between upward, downward and average particle velocity were conducted. The average particle velocity was close to upward velocity and higher than downward velocity in radial locations except the wall region of riser.

Keywords: circulating fluidized bed, laser doppler velocimeter, particle velocity, radial profile

Procedia PDF Downloads 370
6597 Experimental Investigation on Tsunami Acting on Bridges

Authors: Iman Mazinani, Zubaidah Ismail, Ahmad Mustafa Hashim, Amir Reza Saba

Abstract:

Two tragic tsunamis that devastated the west coast of Sumatra Island, Indonesia in 2004 and North East Japan in 2011 had damaged bridges to various extents. Tsunamis have resulted in the catastrophic deterioration of infrastructures i.e. coastal structures, utilities and transportation facilities. A bridge structure performs vital roles to enable people to perform activities related to their daily needs and for development. A damaged bridge needs to be repaired expeditiously. In order to understand the effects of tsunami forces on bridges, experimental tests are carried out to measure the characteristics of hydrodynamic force at various wave heights. Coastal bridge models designed at a 1:40 scale are used in a 24.0 m long hydraulic flume with a cross section of 1.5 m by 2.0 m. The horizontal forces and uplift forces in all cases show that forces increase nonlinearly with increasing wave amplitude.

Keywords: tsunami, bridge, horizontal force, uplift force

Procedia PDF Downloads 305
6596 Latent Heat Storage Using Phase Change Materials

Authors: Debashree Ghosh, Preethi Sridhar, Shloka Atul Dhavle

Abstract:

The judicious and economic consumption of energy for sustainable growth and development is nowadays a thing of primary importance; Phase Change Materials (PCM) provide an ingenious option of storing energy in the form of Latent Heat. Energy storing mechanism incorporating phase change material increases the efficiency of the process by minimizing the difference between supply and demand; PCM heat exchangers are used to storing the heat or non-convectional energy within the PCM as the heat of fusion. The experimental study evaluates the effect of thermo-physical properties, variation in inlet temperature, and flow rate on charging period of a coiled heat exchanger. Secondly, a numerical study is performed on a PCM double pipe heat exchanger packed with two different PCMs, namely, RT50 and Fatty Acid, in the annular region. In this work, the simulation of charging of paraffin wax (RT50) using water as high-temperature fluid (HTF) is performed. Commercial software Ansys-Fluent 15 is used for simulation, and hence charging of PCM is studied. In the Enthalpy-porosity model, a single momentum equation is applicable to describe the motion of both solid and liquid phases. The details of the progress of phase change with time are presented through the contours of melt-fraction, temperature. The velocity contour is shown to describe the motion of the liquid phase. The experimental study revealed that paraffin wax melts with almost the same temperature variation at the two Intermediate positions. Fatty acid, on the other hand, melts faster owing to greater thermal conductivity and low melting temperature. It was also observed that an increase in flow rate leads to a reduction in the charging period. The numerical study also supports some of the observations found in the experimental study like the significant dependence of driving force on the process of melting. The numerical study also clarifies the melting pattern of the PCM, which cannot be observed in the experimental study.

Keywords: latent heat storage, charging period, discharging period, coiled heat exchanger

Procedia PDF Downloads 117
6595 The Impact of a Sustainable Solar Heating System on the Growth of ‎Strawberry Plants in an Agricultural Greenhouse

Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui

Abstract:

The use of solar energy is a crucial tactic in the agricultural industry's plan ‎‎to decrease greenhouse gas emissions. This clean source of energy can ‎greatly lower the sector's carbon footprint and make a significant impact in ‎the ‎fight against climate change. In this regard, this study examines the ‎effects ‎of a solar-based heating system, in a north-south oriented agricultural ‎green‎house on the development of strawberry plants during winter. This ‎system ‎relies on the circulation of water as a heat transfer fluid in a closed ‎circuit ‎installed on the greenhouse roof to store heat during the day and ‎release it ‎inside at night. A comparative experimental study was conducted ‎in two ‎greenhouses, one experimental with the solar heating system and the ‎other ‎for control without any heating system. Both greenhouses are located ‎on the ‎terrace of the Solar Energy and Environment Laboratory of the ‎Mohammed ‎V University in Rabat, Morocco. The developed heating system ‎consists of a ‎copper coil inserted in double glazing and placed on the roof of ‎the greenhouse, a water pump circulator, a battery, and a photovoltaic solar ‎panel to ‎power the electrical components. This inexpensive and ‎environmentally ‎friendly system allows the greenhouse to be heated during ‎the winter and ‎improves its microclimate system. This improvement resulted ‎in an increase ‎in the air temperature inside the experimental greenhouse by 6 ‎‎°C and 8 °C, ‎and a reduction in its relative humidity by 23% and 35% ‎compared to the ‎control greenhouse and the ambient air, respectively, ‎throughout the winter. ‎For the agronomic performance, it was observed that ‎the production was 17 ‎days earlier than in the control greenhouse‎.‎

Keywords: sustainability, thermal energy storage, solar energy, agriculture greenhouse

Procedia PDF Downloads 87
6594 The Experimental and Statistical Analysis of the Wood Strength against Pressure According to Different Wood Types, Sizes, and Coatings

Authors: Mustafa Altin, Gamze Fahriye Pehlivan, Sadiye Didem Boztepe Erkis, Sakir Tasdemir, Sevda Altin

Abstract:

In this study, an experimental study was executed related to the strength of wooden materials which have been commonly used both in the past and present against pressure and whether fire retardant materials used against fire have any effects or not. Totally, 81 samples which included three different wood species, three different sizes, two different fire retardants and two unprocessed samples were prepared. Compressive pressure tests were applied to the prepared samples, their variance analyses were executed in accordance with the obtained results and it was aimed to determine the most convenient wooden materials and fire-retardant coating material. It was also determined that the species of wood and the species of coating caused the decrease and/or increase in the resistance against pressure.

Keywords: resistance of wood against pressure, species of wood, variance analysis, wood coating, wood fire safety

Procedia PDF Downloads 431
6593 After-Cooling Analysis of RC Structural Members Exposed to High Temperature by Using Numerical Approach

Authors: Ju-Young Hwang, Hyo-Gyoung Kwak

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical nonlinearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC, high temperature, after-cooling analysis, nonlinear analysis

Procedia PDF Downloads 414
6592 Simulation of Dynamic Behavior of Seismic Isolators Using a Parallel Elasto-Plastic Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, a one-dimensional (1d) Parallel Elasto- Plastic Model (PEPM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement, is presented. The parallel modeling concept is applied to discretize the continuously decreasing tangent stiffness function, thus allowing to simulate the dynamic behavior of seismic isolation bearings by putting linear elastic and nonlinear elastic-perfectly plastic elements in parallel. The mathematical model has been validated by comparing the experimental force-displacement hysteresis loops, obtained testing a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted numerically. Good agreement between the simulated and experimental results shows that the proposed model can be an effective numerical tool to predict the forcedisplacement relationship of seismic isolators within relatively large displacements. Compared to the widely used Bouc-Wen model, the proposed one allows to avoid the numerical solution of a first order ordinary nonlinear differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort, and requires the evaluation of only three model parameters from experimental tests, namely the initial tangent stiffness, the asymptotic tangent stiffness, and a parameter defining the transition from the initial to the asymptotic tangent stiffness.

Keywords: base isolation, earthquake engineering, parallel elasto-plastic model, seismic isolators, softening hysteresis loops

Procedia PDF Downloads 280
6591 Photoelastic Analysis and Finite Elements Analysis of a Stress Field Developed in a Double Edge Notched Specimen

Authors: A. Bilek, M. Beldi, T. Cherfi, S. Djebali, S. Larbi

Abstract:

Finite elements analysis and photoelasticity are used to determine the stress field developed in a double edge notched specimen loaded in tension. The specimen is cut in a birefringent plate. Experimental isochromatic fringes are obtained with circularly polarized light on the analyzer of a regular polariscope. The fringes represent the loci of points of equal maximum shear stress. In order to obtain the stress values corresponding to the fringe orders recorded in the notched specimen, particularly in the neighborhood of the notches, a calibrating disc made of the same material is loaded in compression along its diameter in order to determine the photoelastic fringe value. This fringe value is also used in the finite elements solution in order to obtain the simulated photoelastic fringes, the isochromatics as well as the isoclinics. A color scale is used by the software to represent the simulated fringes on the whole model. The stress concentration factor can be readily obtained at the notches. Good agreements are obtained between the experimental and the simulated fringe patterns and between the graphs of the shear stress particularly in the neighborhood of the notches. The purpose in this paper is to show that one can obtain rapidly and accurately, by the finite element analysis, the isochromatic and the isoclinic fringe patterns in a stressed model as the experimental procedure can be time consuming. Stress fields can therefore be analyzed in three dimensional models as long as the meshing and the limit conditions are properly set in the program.

Keywords: isochromatic fringe, isoclinic fringe, photoelasticity, stress concentration factor

Procedia PDF Downloads 229
6590 Hydraulic Studies on Core Components of PFBR

Authors: G. K. Pandey, D. Ramadasu, I. Banerjee, V. Vinod, G. Padmakumar, V. Prakash, K. K. Rajan

Abstract:

Detailed thermal hydraulic investigations are very essential for safe and reliable functioning of liquid metal cooled fast breeder reactors. These investigations are further more important for components with complex profile, since there is no direct correlation available in literature to evaluate the hydraulic characteristics of such components directly. In those cases available correlations for similar profile or geometries may lead to significant uncertainty in the outcome. Hence experimental approach can be adopted to evaluate these hydraulic characteristics more precisely for better prediction in reactor core components. Prototype Fast Breeder Reactor (PFBR), a sodium cooled pool type reactor is under advanced stage of construction at Kalpakkam, India. Several components of this reactor core require hydraulic investigation before its usage in the reactor. These hydraulic investigations on full scale models, carried out by experimental approaches using water as simulant fluid are discussed in the paper.

Keywords: fast breeder reactor, cavitation, pressure drop, reactor components

Procedia PDF Downloads 463
6589 Aeroacoustics Investigations of Unsteady 3D Airfoil for Different Angle Using Computational Fluid Dynamics Software

Authors: Haydar Kepekçi, Baha Zafer, Hasan Rıza Güven

Abstract:

Noise disturbance is one of the major factors considered in the fast development of aircraft technology. This paper reviews the flow field, which is examined on the 2D NACA0015 and 3D NACA0012 blade profile using SST k-ω turbulence model to compute the unsteady flow field. We inserted the time-dependent flow area variables in Ffowcs-Williams and Hawkings (FW-H) equations as an input and Sound Pressure Level (SPL) values will be computed for different angles of attack (AoA) from the microphone which is positioned in the computational domain to investigate effect of augmentation of unsteady 2D and 3D airfoil region noise level. The computed results will be compared with experimental data which are available in the open literature. As results; one of the calculated Cp is slightly lower than the experimental value. This difference could be due to the higher Reynolds number of the experimental data. The ANSYS Fluent software was used in this study. Fluent includes well-validated physical modeling capabilities to deliver fast, accurate results across the widest range of CFD and multiphysics applications. This paper includes a study which is on external flow over an airfoil. The case of 2D NACA0015 has approximately 7 million elements and solves compressible fluid flow with heat transfer using the SST turbulence model. The other case of 3D NACA0012 has approximately 3 million elements.

Keywords: 3D blade profile, noise disturbance, aeroacoustics, Ffowcs-Williams and Hawkings (FW-H) equations, k-ω-SST turbulence model

Procedia PDF Downloads 212
6588 The Effect of Transactional Analysis Group Training on Self-Knowledge and Its Ego States (The Child, Parent, and Adult): A Quasi-Experimental Study Applied to Counselors of Tehran

Authors: Mehravar Javid, Sadrieh Khajavi Mazanderani, Kelly Gleischman, Zoe Andris

Abstract:

The present study was conducted with the aim of investigating the effectiveness of transactional analysis group training on self-knowledge and Its dimensions (self, child, and adult) in counselors working in public and private high schools in Tehran. Counseling has become an important job for society, and there is a need for consultants in organizations. Providing better and more efficient counseling is one of the goals of the education system. The personal characteristics of counselors are important for the success of the therapy. In TA, humans have three ego states, which are named parent, adult, and child, and the main concept in the transactional analysis is self-state, which means a stable feeling and pattern of thinking related to behavioral patterns. Self-knowledge, considered a prerequisite to effective communication, fosters psychological growth, and recognizing it, is pivotal for emotional development, leading to profound insights. The research sample included 30 working counselors (22 women and 8 men) in the academic year 2019-2020 who achieved the lowest scores on the self-knowledge questionnaire. The research method was quasi-experimental with a control group (15 people in the experimental group and 15 people in the control group). The research tool was a self-awareness questionnaire with 29 questions and three subscales (child, parent, and adult Ego state). The experimental group was exposed to transactional analysis training for 10 once-weekly 2-hour sessions; the questionnaire was implemented in both groups (post-test). Multivariate covariance analysis was used to analyze the data. The data showed that the level of self-awareness of counselors who received transactional analysis training is higher than that of counselors who did not receive any training (p<0.01). The result obtained from this analysis shows that transactional analysis training is an effective therapy for enhancing self-knowledge and its subscales (Adult ego state, Parent ego state, and Child ego state). Teaching transactional analysis increases self-knowledge, and self-realization and helps people to achieve independence and remove irresponsibility to improve intra-personal and interpersonal relationships.

Keywords: ego state, group, transactional analysis, self-knowledge

Procedia PDF Downloads 75
6587 Exploring the Suitability and Benefits of Two Different Mindfulness-Based Interventions with Marginalized Female Youth

Authors: Samaneh Abedini, Diana Coholic

Abstract:

The transition from adolescence into adulthood involves many changes that result in increased vulnerability to psychological challenges. This developmental stage can be especially stressful for female youth living in underserviced regions. If mental health problems are left untreated in socially marginalized youth, these challenges can extend into adulthood. We know that a lack of access to mental health services and supports can influence adolescents’ psycho-social development and well-being, while resilience and emotion regulation can help them cope with these challenges. Feasible therapeutic programs can play a significant role in assisting youth in developing these characteristics and skills. Mindfulness-Based Cognitive Therapy for Children (MBCT-C) and Holistic Art-Based Program (HAP) are two examples of mindfulness-based interventions (MBIs) that address emotion regulation, coping strategies, and resilience in marginalized youth. While each program’s beneficial effects have been documented, there is a lack of research comparing MBIs with youth, within underserviced geographical locations, and across different cultures. In this study, the sample was 42 female youth between the ages of 12 and 17 years from Iran. 42 female youth from the Elm o Honar High School, located in rural parts of Iran, Isfahan province, have been enrolled in the study. The participants were assigned to one of the MBIs (three MBCT-C experimental groups (n=20) and three HAP experimental groups (n=22)). All participants completed measures including the Child and Youth Resilience Measure-28 (CYRM-28), Child and Adolescent Mindfulness Measure (CAMM), and Difficulties in Emotion Regulation Scale (DERS) at baseline and post-intervention. At the end of intervention, the MBCT-C and HAP experimental groups showed significant changes in resilience and emotion regulation. However, the changes in resilience in HAP groups were not significant; the participants in MBCT-C experimental groups showed significant improvement in resilience. The study provided initial evidence that mindfulness-based intervention can be potentially beneficial for improving mental health status in marginalized Iranian female youth living in the middle east culture.

Keywords: benefits, female, marginalized, mindfulness, youth

Procedia PDF Downloads 89
6586 Study on Moisture-Induced-Damage of Semi-Rigid Base under Hydrodynamic Pressure

Authors: Baofeng Pan, Heng Liu

Abstract:

Because of the high strength and large carrying capacity, the semi-rigid base is widely used in modern road engineering. However, hydrodynamic pressure, which is one of the main factors to cause early damage of semi-rigid base, cannot be avoided in the nature environment when pavement is subjected to some loadings such as the passing vehicles. In order to investigating how moisture-induced-damage of semi-rigid base influenced by hydrodynamic pressure, a new and effective experimental research method is provided in this paper. The results show that: (a) The washing action of high hydrodynamic pressure is the direct cause of strength reducing of road semi-rigid base. (b) The damage of high hydrodynamic pressure mainly occurs at the beginning of the scoring test and with the increasing of testing time the influence reduces. (c) Under the same hydrodynamic pressure, the longer the specimen health age, the stronger ability to resist moisture induced damage.

Keywords: semi-rigid base, hydrodynamic pressure, moisture-induced-damage, experimental research

Procedia PDF Downloads 318
6585 Study on NOₓ Emission Characteristics of Internal Gas Recirculation Technique

Authors: DaeHae Kim, MinJun Kwon, Sewon Kim

Abstract:

This study is aimed to develop ultra-low NOₓ burner using the internal recirculation of flue gas inside the combustion chamber that utilizes the momentum of intake fuel and air. Detailed experimental investigations are carried out to study these fluid dynamic effects on the emission characteristics of newly developed burner in industrial steam boiler system. Experimental parameters are distance of Venturi tube from burner, Coanda nozzle gap distance, and air sleeve length at various fuel/air ratio and thermal heat load conditions. The results showed that NOₓ concentration decreases as the distance of Venturi tube from burner increases. The CO concentration values at all operating conditions were negligible. In addition, the increase of the Coanda nozzle gap distance decreased the NOₓ concentration. It is experimentally found out that both fuel injection recirculation and air injection recirculation technique was very effective in reducing NOₓ formation.

Keywords: Coanda effect, combustion, burner, low NOₓ

Procedia PDF Downloads 201
6584 Scaling Strategy of a New Experimental Rig for Wheel-Rail Contact

Authors: Meysam Naeimi, Zili Li, Rolf Dollevoet

Abstract:

A new small–scale test rig developed for rolling contact fatigue (RCF) investigations in wheel–rail material. This paper presents the scaling strategy of the rig based on dimensional analysis and mechanical modelling. The new experimental rig is indeed a spinning frame structure with multiple wheel components over a fixed rail-track ring, capable of simulating continuous wheel-rail contact in a laboratory scale. This paper describes the dimensional design of the rig, to derive its overall scaling strategy and to determine the key elements’ specifications. Finite element (FE) modelling is used to simulate the mechanical behavior of the rig with two sample scale factors of 1/5 and 1/7. The results of FE models are compared with the actual railway system to observe the effectiveness of the chosen scales. The mechanical properties of the components and variables of the system are finally determined through the design process.

Keywords: new test rig, rolling contact fatigue, rail, small scale

Procedia PDF Downloads 484
6583 Mineral Slag Used as an Alternative of Cement in Concrete

Authors: Eskinder Desta Shumuye, Jun Zhao, Zike Wang

Abstract:

This paper summarizes the results of experimental studies carried out at Zhengzhou University, School of Mechanics and Engineering Science, research laboratory, on the performance of concrete produced by combining Ordinary Portland Cement (OPC) with Ground-Granulated Blast Furnace Slag (GGBS). Concrete specimens cast with OPC and various percentage of GGBS (0%, 30%, 50%, and 70%) were subjected to high temperature exposure and extensive experimental test reproducing basic freeze-thaw cycle and a chloride-ion attack to determine their combined effects within the concrete samples. From the experimental studies, comparisons were made on the physical, mechanical, and microstructural properties in compassion with ordinary Portland cement concrete (OPC). Further, durability of GGBS cement concrete, such as exposure to accelerated carbonation, chloride ion attack, and freeze-thaw action in compassion with various percentage of GGBS and ordinary Portland cement concrete of similar mixture composition was analyzed. The microstructure, mineralogical composition, and pore size distribution of concrete specimens were determined via Scanning Electron Microscopy (SEM) analysis and X-Ray Diffraction (XRD). The result demonstrated that when the exposure temperature increases from 200 ºC to 400 ºC, the residual compressive strength was fluctuating for all concrete group, and compressive strength and chloride ion exposure of the concrete decreased with the increasing of slag content. The SEM and EDS results showed an increase in carbonation rate with increasing in slag content.

Keywords: accelerated carbonation, chloride-ion, concrete, ground-granulated blast furnace slag, GGBS, high-temperature

Procedia PDF Downloads 140
6582 Effect of Tillage Technology on Species Composition of Weeds in Monoculture of Maize

Authors: Svetlana Chovancova, Frantisek Illek, Jan Winkler

Abstract:

The effect of tillage technology of maize on intensity of weed infestation and weed species composition was observed at experimental field. Maize is grown consecutively since 2001. The experimental site is situated at an altitude of 230 m above sea level in the Czech Republic. Variants of tillage technology are CT: plowing – conventional tillage 0.22 m, MT: loosening – disc tillage on the depth of 0.1 – 0.12 m, NT: direct sowing – without tillage. The evaluation of weed infestation was carried out by numerical method in years 2012 and 2013. Within the monitoring were found 20 various species of weeds. Conventional tillage (CT) primarily supports the occurrence of perennial weeds (Cirsium arvense, Convolvulus arvensis). Late spring species (Chenopodium album, Echinochloa crus-galli) were more frequently noticed on variants of loosening (MT) and direct sowing (NT). Different tillage causes a significant change of weed species spectrum in maize.

Keywords: weeds, maize, tillage, loosening, direct sowing

Procedia PDF Downloads 473
6581 Modeling Study of Short Fiber Orientation in Simple Injection Molding Processes

Authors: Ihsane Modhaffar, Kamal Gueraoui, Abouelkacem Qais, Abderrahmane Maaouni, Samir Men-La-Yakhaf, Hamid Eltourroug

Abstract:

The main objective of this paper is to develop a Computational Fluid Dynamics (CFD) model to simulate and characterize the fiber suspension in flow in rectangular cavities. The model is intended to describe the velocity profile and to predict the fiber orientation. The flow was considered to be incompressible, and behave as Newtonian fluid containing suspensions of short-fibers. The numerical model for determination of velocity profile and fiber orientation during mold-filling stage of injection molding process was solved using finite volume method. The governing equations of this problem are: the continuity, the momentum and the energy. The obtained results were compared to available experimental findings. A good agreement between the numerical results and the experimental data was achieved.

Keywords: injection, composites, short-fiber reinforced thermoplastics, fiber orientation, incompressible fluid, numerical simulation

Procedia PDF Downloads 465
6580 Saturation Misbehavior and Field Activation of the Mobility in Polymer-Based OTFTs

Authors: L. Giraudet, O. Simonetti, G. de Tournadre, N. Dumelié, B. Clarenc, F. Reisdorffer

Abstract:

In this paper we intend to give a comprehensive view of the saturation misbehavior of thin film transistors (TFTs) based on disordered semiconductors, such as most organic TFTs, and its link to the field activation of the mobility. Experimental evidence of the field activation of the mobility is given for disordered semiconductor based TFTs, when reducing the gate length. Saturation misbehavior is observed simultaneously. Advanced transport models have been implemented in a quasi-2D numerical TFT simulation software. From the numerical simulations it is clearly established that field activation of the mobility alone cannot explain the saturation misbehavior. Evidence is given that high longitudinal field gradient at the drain end of the channel is responsible for an excess charge accumulation, preventing saturation. The two combined effects allow reproducing the experimental output characteristics of short channel TFTs, with S-shaped characteristics and saturation failure.

Keywords: mobility field activation, numerical simulation, OTFT, saturation failure

Procedia PDF Downloads 520
6579 Toxic Influence of Cypermethrin on Biochemical Changes in Fresh Water Fish, Cyprinus carpio

Authors: Gowri Balaji, Muthusamy Nachiyappan, Ramalingam Venugopal

Abstract:

Amongst the wide spectrum of pesticides, pyrethroids are preferably used rather than organochlorine, organophosphorous and carbamates pesticides due to their high effectiveness. Synthetic pyrethroids which are the chemicals used for the pest control in agriculture are now being excessively used in India. The aim of the present study was to evaluate the adverse effect of cypermethrin on the fresh water fish Cyprinus carpio, the common carp. The effect was assessed by comparing the biochemical parameters in the blood and liver tissues of control fishes with three experimental group of fishes exposed with cypermethrin for 7 days 1/15 Lc50 (E1) 1/10 Lc50 (E2) and 1/5 Lc50 values (E3). After 7 days of exposure, blood was collected and liver and gills was dissected out. The activities of acid phosphatase, alkaline phosphatase, lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase were estimated by standard spectrophotometric techniques in the blood, liver and gills tissue homogenate. Lactate dehydrogenase was significantly decreased in E2 and E3 experimental groups. The activities of acid phosphatase, alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase were significantly altered in the experimental groups. All the biochemical parameters studied were adversely affected in the liver and gills of cypermethrin exposed fish. The results obtained from the present study of cypermethrin exposed fishes indicate a marked toxic effect of cypermethrin and also its dose dependent impact on different organs of the fish.

Keywords: cypermethrin, Cyprinus carpio, ALT, AST, LDH, liver, gills

Procedia PDF Downloads 286
6578 Removal of Cr⁶⁺, Co²⁺ and Ni²⁺ Ions from Aqueous Solutions by Algerian Enteromorpha compressa (L.) Biomass

Authors: Asma Aid, Samira Amokrane, Djamel Nibou, Hadj Mekatel

Abstract:

The marine Enteromorpha Compressa (L.) (ECL) biomass was used as a low-cost biological adsorbent for the removal of Cr⁶⁺, Co²⁺ and Ni²⁺ ions from artificially contaminated aqueous solutions. The operating variables pH, the initial concentration C₀, the solid/liquid ratio R and the temperature T were studied. A full factorial experimental design technique enabled us to obtain a mathematical model describing the adsorption of Cr⁶⁺, Co²⁺ and Ni²⁺ ions and to study the main effects and interactions among operational parameters. The equilibrium isotherm has been analyzed by Langmuir, Freundlich, and Dubinin-Radushkevich models; it has been found that the adsorption process follows the Langmuir model for the used ions. Kinetic studies showed that the pseudo-second-order model correlates our experimental data. Thermodynamic parameters showed the endothermic heat of adsorption and the spontaneity of the adsorption process for Cr⁶⁺ ions and exothermic heat of adsorption for Co²⁺ and Ni²⁺ ions.

Keywords: enteromorpha Compressa, adsorption process, Cr⁶⁺, Co²⁺ and Ni²⁺, equilibrium isotherm

Procedia PDF Downloads 196
6577 Experimental and Numerical Investigation of Fluid Flow inside Concentric Heat Exchanger Using Different Inlet Geometry Configurations

Authors: Mohamed M. Abo Elazm, Ali I. Shehata, Mohamed M. Khairat Dawood

Abstract:

A computational fluid dynamics (CFD) program FLUENT has been used to predict the fluid flow and heat transfer distribution within concentric heat exchangers. The effect of inlet inclination angle has been investigated with Reynolds number range (3000 – 4000) and Pr=0.71. The heat exchanger is fabricated from copper concentric inner tube with a length of 750 mm. The effects of hot to cold inlet flow rate ratio (MH/MC), Reynolds's number and of inlet inclination angle of 30°, 45°, 60° and 90° are considered. The results showed that the numerical prediction shows a good agreement with experimental measurement. The results present an efficient design of concentric tube heat exchanger to enhance the heat transfer by increasing the swirling effect.

Keywords: heat transfer, swirling effect, CFD, inclination angle, concentric tube heat exchange

Procedia PDF Downloads 321
6576 Numerical Simulation of Diesel Sprays under Hot Bomb Conditions

Authors: Ishtiaq A. Chaudhry, Zia R. Tahir, F. A. Siddiqui, F. Noor, M. J. Rashid

Abstract:

It has experimentally been proved that the performance of compression ignition (CI) engine is spray characteristics related. In modern diesel engine the spray formation and the eventual combustion process are the vital processes that offer more challenges towards enhancing the engine performance. In the present work, the numerical simulation has been carried out for evaporating diesel sprays using Fluent software. For computational fluid dynamics simulation “Meshing” is done using Gambit software before transmitting it into fluent. The simulation is carried out using hot bomb conditions under varying chamber conditions such as gas pressure, nozzle diameter and fuel injection pressure. For comparison purpose, the numerical simulations the chamber conditions were kept the same as that of the experimental data. At varying chamber conditions the spray penetration rates are compared with the existing experimental results.

Keywords: evaporating diesel sprays, penetration rates, hot bomb conditions

Procedia PDF Downloads 360
6575 Experimental and Theoratical Methods to Increase Core Damping for Sandwitch Cantilever Beam

Authors: Iyd Eqqab Maree, Moouyad Ibrahim Abbood

Abstract:

The purpose behind this study is to predict damping effect for steel cantilever beam by using two methods of passive viscoelastic constrained layer damping. First method is Matlab Program, this method depend on the Ross, Kerwin and Unger (RKU) model for passive viscoelastic damping. Second method is experimental lab (frequency domain method), in this method used the half-power bandwidth method and can be used to determine the system loss factors for damped steel cantilever beam. The RKU method has been applied to a cantilever beam because beam is a major part of a structure and this prediction may further leads to utilize for different kinds of structural application according to design requirements in many industries. In this method of damping a simple cantilever beam is treated by making sandwich structure to make the beam damp, and this is usually done by using viscoelastic material as a core to ensure the damping effect. The use of viscoelastic layers constrained between elastic layers is known to be effective for damping of flexural vibrations of structures over a wide range of frequencies. The energy dissipated in these arrangements is due to shear deformation in the viscoelastic layers, which occurs due to flexural vibration of the structures. The theory of dynamic stability of elastic systems deals with the study of vibrations induced by pulsating loads that are parametric with respect to certain forms of deformation. There is a very good agreement of the experimental results with the theoretical findings. The main ideas of this thesis are to find the transition region for damped steel cantilever beam (4mm and 8mm thickness) from experimental lab and theoretical prediction (Matlab R2011a). Experimentally and theoretically proved that the transition region for two specimens occurs at modal frequency between mode 1 and mode 2, which give the best damping, maximum loss factor and maximum damping ratio, thus this type of viscoelastic material core (3M468) is very appropriate to use in automotive industry and in any mechanical application has modal frequency eventuate between mode 1 and mode 2.

Keywords: 3M-468 material core, loss factor and frequency, domain method, bioinformatics, biomedicine, MATLAB

Procedia PDF Downloads 271
6574 Ectopic Mediastinal Parathyroid Adenoma: A Case Report with Diagnostic and Management Challenges

Authors: Augustina Konadu Larbi-Ampofo, Ekemini Umoinwek

Abstract:

Background: Hypercalcaemia is a common electrolyte imbalance that increases mortality if poorly controlled. Primary hyperparathyroidism often presents like this with a prevalence of 0.1-0.3%. Management due to an ectopic parathyroid adenoma in the mediastinum is challenging, especially in a patient with a pacemaker. Case Presentation: A 79-year-old woman with a history of a previous cardiac arrest, permanent pacemaker, ischaemic heart disease, bilateral renal calculi, rectal polyps, liver cirrhosis, and a family history of hyperthyroidism presented to the emergency department with acute back pain. Management and Outcome: The patient was diagnosed with primary hyperparathyroidism due to her elevated corrected calcium and parathyroid hormone levels. Parathyroid investigations consisting of an NM MIBI scan, SPECT-CT, 4D parathyroid scan, and an ultrasound scan of the neck and thorax confirmed an ectopic parathyroid adenoma in the mediastinum at the level of the aortic arch, along with benign thyroid nodules. The location of the adenoma warranted a thoracoscopic surgical approach; however, the presence of her pacemaker and other cardiovascular conditions predisposed her to a potentially poorer post-operative outcome. Discussion: Mediastinal ectopic parathyroid adenomas are rare and difficult to diagnose and treat, often needing a multimodal imaging approach for accurate localisation. Surgery is a definitive treatment; however, in this patient, long-term medical treatment with cinacalcet was the only next suitable treatment option. The difficulty with this is that cinacalcet tackles the biochemical markers of the disease entity and not the disease itself, leaving room for what happens next if there is refractory/uncontrolled hypercalcaemia in this patient with a pacemaker. Moreover, the coexistence of her multiple conditions raises the suspicion of an underlying multisystemic or multiple endocrine disorder, with multiple endocrine neoplasia coming to mind, necessitating further genetic or autoimmune investigations. Conclusion: Mediastinal ectopic parathyroid adenomas are rare, with diagnostic and management challenges.

Keywords: mediastinal ectopic parathyroid adenoma, hyperparathyroidism, SPECT/CT, nuclear medicine, multimodal imaging

Procedia PDF Downloads 16
6573 Interaction of Low-Energy Positrons with Mg Atoms: Elastic Scattering, Bound States, and Annihilation

Authors: Mahasen M. Abdel Mageed, H. S. Zaghloul

Abstract:

Annihilations, phase shifts, scattering lengths, and elastic cross sections of low energy positrons scattering from magnesium atoms were studied using the least-squares variational method (LSVM). The possibility of positron binding to the magnesium atoms is investigated. A trial wavefunction is suggested to represent e+-Mg elastic scattering and scattering parameters were derived to estimate the binding energy and annihilation rates. The trial function is taken to depend on several adjustable parameters and is improved iteratively by increasing the number of terms. The present results have the same behavior as reported semi-empirical, theoretical, and experimental results. Especially, the estimated positive scattering length supports the possibility of positron-magnesium bound state system that was confirmed in previous experimental and theoretical work.

Keywords: bound wavefunction, positron annihilation, scattering phase shift, scattering length

Procedia PDF Downloads 554