Search results for: dynamic capability approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17857

Search results for: dynamic capability approach

17047 Using Shape Memory Alloys for Structural Engineering Applications

Authors: Donatello Cardone

Abstract:

Shape memory alloys (SMAs) have great potential for use in the field of civil engineering. The author of this manuscript has been involved, since 1996, in several experimental and theoretical studies on the application of SMAs in structural engineering, within national and international research projects. This paper provides an overview of the main results achieved, including the conceptual design, implementation, and testing of different SMA-based devices, namely: (i) energy-dissipating braces for RC buildings, (ii) seismic isolation devices for buildings and bridges, (iii) smart tie-rods for arches and vaults and (iv) seismic restrainers for bridges. The main advantages of using SMA-based devices in the seismic protection of structures derive from the double-flag shape of their hysteresis loops, which implies three favourable features, i.e., self-centering capability, good energy dissipation capability, and high stiffness for small displacements. The main advantages of SMA-based units for steel tie-rods are associated with the thermal behaviour of superelastic SMAs, which is antagonistic compared to that of steel. This implies a strong reduction of force changes due to air temperature variations. Finally, SMA-based seismic restrainers proved to be effective in preventing bridge deck unseating and pounding.

Keywords: seismic protection of structures, shape memory alloys, structural engineering, steel tie-rods, seismic restrainers for bridges

Procedia PDF Downloads 97
17046 Rocket Launch Simulation for a Multi-Mode Failure Prediction Analysis

Authors: Mennatallah M. Hussein, Olivier de Weck

Abstract:

The advancement of space exploration demands a robust space launch services program capable of reliably propelling payloads into orbit. Despite rigorous testing and quality assurance, launch failures still occur, leading to significant financial losses and jeopardizing mission objectives. Traditional failure prediction methods often lack the sophistication to account for multi-mode failure scenarios, as well as the predictive capability in complex dynamic systems. Traditional approaches also rely on expert judgment, leading to variability in risk prioritization and mitigation strategies. Hence, there is a pressing need for robust approaches that enhance launch vehicle reliability from lift-off until it reaches its parking orbit through comprehensive simulation techniques. In this study, the developed model proposes a multi-mode launch vehicle simulation framework for predicting failure scenarios when incorporating new technologies, such as new propulsion systems or advanced staging separation mechanisms in the launch system. To this end, the model combined a 6-DOF system dynamics with comprehensive data analysis to simulate multiple failure modes impacting launch performance. The simulator utilizes high-fidelity physics-based simulations to capture the complex interactions between different subsystems and environmental conditions.

Keywords: launch vehicle, failure prediction, propulsion anomalies, rocket launch simulation, rocket dynamics

Procedia PDF Downloads 31
17045 HPPDFIM-HD: Transaction Distortion and Connected Perturbation Approach for Hierarchical Privacy Preserving Distributed Frequent Itemset Mining over Horizontally-Partitioned Dataset

Authors: Fuad Ali Mohammed Al-Yarimi

Abstract:

Many algorithms have been proposed to provide privacy preserving in data mining. These protocols are based on two main approaches named as: the perturbation approach and the Cryptographic approach. The first one is based on perturbation of the valuable information while the second one uses cryptographic techniques. The perturbation approach is much more efficient with reduced accuracy while the cryptographic approach can provide solutions with perfect accuracy. However, the cryptographic approach is a much slower method and requires considerable computation and communication overhead. In this paper, a new scalable protocol is proposed which combines the advantages of the perturbation and distortion along with cryptographic approach to perform privacy preserving in distributed frequent itemset mining on horizontally distributed data. Both the privacy and performance characteristics of the proposed protocol are studied empirically.

Keywords: anonymity data, data mining, distributed frequent itemset mining, gaussian perturbation, perturbation approach, privacy preserving data mining

Procedia PDF Downloads 505
17044 A Research on the Effect of Soil-Structure Interaction on the Dynamic Response of Symmetrical Reinforced Concrete Buildings

Authors: Adinew Gebremeskel Tizazu

Abstract:

The effect of soil-structure interaction on the dynamic response of reinforced concrete buildings of regular and symmetrical geometry are considered in this study. The structures are presumed to be generally embedded in a homogenous soil formation underlain by very stiff material or bedrock. The structure-foundation–soil system is excited at the base by an earthquake ground motion. The superstructure is idealized as a system with lumped masses concentrated at the floor levels, and coupled with the substructure. The substructure system, which comprises of the foundation and soil, is represented, and replaced by springs and dashpots. Frequency-dependent impedances of the foundation system are incorporated in the discrete model in terms of the springs and dashpots coefficients. The excitation applied to the model is field ground motions of actual earthquake records. Modal superposition principle is employed to transform the equations of motion in geometrical coordinates to modal coordinates. However, the modal equations remain coupled with respect to damping terms due to the difference in damping mechanisms of the superstructure and the soil. Hence, proportional damping for the coupled structural system may not be assumed. An iterative approach is adopted and programmed to solve the system of coupled equations of motion in modal coordinates to obtain the displacement responses of the system. Parametric studies for responses of building structures with regular and symmetric plans of different structural properties and heights are made for fixed and flexible base conditions, for different soil conditions encountered in Addis Ababa. The displacement, base shear and base overturning moments are used in the comparison of different types of structures for various foundation embedment depths, site conditions and height of structures. These values are compared against those of fixed base structure. The study shows that the flexible base structures, generally exhibit different responses from those structures with fixed base. Basically, the natural circular frequencies, the base shears and the inter-story displacements for the flexible base are less than those of the fixed base structures. This trend is particularly evident when the flexible soil has large thickness. In contrast, the trend becomes less predictable, when the thickness of the flexible soil decreases. Moreover, in the latter case, the iteration undulates significantly making the prediction difficult. This is attributed to the highly jagged nature of the impedance functions of frequencies for such formations. In this case, it is difficult to conclude whether the conventional fixed-base approach yields conservative design forces, as is the case for soil formations of large thickness.

Keywords: effect of soil structure, dynamic response corroborated, the modal superposition principle, parametric studies

Procedia PDF Downloads 32
17043 Real-Time Generative Architecture for Mesh and Texture

Authors: Xi Liu, Fan Yuan

Abstract:

In the evolving landscape of physics-based machine learning (PBML), particularly within fluid dynamics and its applications in electromechanical engineering, robot vision, and robot learning, achieving precision and alignment with researchers' specific needs presents a formidable challenge. In response, this work proposes a methodology that integrates neural transformation with a modified smoothed particle hydrodynamics model for generating transformed 3D fluid simulations. This approach is useful for nanoscale science, where the unique and complex behaviors of viscoelastic medium demand accurate neurally-transformed simulations for materials understanding and manipulation. In electromechanical engineering, the method enhances the design and functionality of fluid-operated systems, particularly microfluidic devices, contributing to advancements in nanomaterial design, drug delivery systems, and more. The proposed approach also aligns with the principles of PBML, offering advantages such as multi-fluid stylization and consistent particle attribute transfer. This capability is valuable in various fields where the interaction of multiple fluid components is significant. Moreover, the application of neurally-transformed hydrodynamical models extends to manufacturing processes, such as the production of microelectromechanical systems, enhancing efficiency and cost-effectiveness. The system's ability to perform neural transfer on 3D fluid scenes using a deep learning algorithm alongside physical models further adds a layer of flexibility, allowing researchers to tailor simulations to specific needs across scientific and engineering disciplines.

Keywords: physics-based machine learning, robot vision, robot learning, hydrodynamics

Procedia PDF Downloads 66
17042 The Effectiveness of Intensive Short-Term Dynamic Psychotherapy on Ambiguity Tolerance, Emotional Intelligence and Stress Coping Strategies in Financial Market Traders

Authors: Ahmadreza Jabalameli, Mohammad Ebrahimpour Borujeni

Abstract:

This study aims to evaluate the effectiveness of intensive short-term dynamic psychotherapy (ISTDP) on ambiguity tolerance, emotional intelligence and stress coping strategies in financial market traders. The methodology of this study was quasi-experimental, pre-test and post-test with control group. The statistical population of this study includes all students at Jabalameli Information Technology Academy in 2022. Among them, 30 people were selected by voluntary sampling through interviews, and were randomly divided into two experimental and control groups of 51 people. And the components were measured according to McLain Ambiguity Tolerance Questionnaire, Bar-On Emotional Intelligence and Lazarus Stress Coping Strategies. The data were obtained by SPSS software and were analyzed by using multivariate analysis of covariance. The results indicate that intensive short-term dynamic psychotherapy influences the emotional intelligence as well as the ambiguity tolerance of traders.

Keywords: ISTDP, ambiguity tolerance, trading, emotional intelligence, stress

Procedia PDF Downloads 87
17041 A Digital Twin Approach for Sustainable Territories Planning: A Case Study on District Heating

Authors: Ahmed Amrani, Oussama Allali, Amira Ben Hamida, Felix Defrance, Stephanie Morland, Eva Pineau, Thomas Lacroix

Abstract:

The energy planning process is a very complex task that involves several stakeholders and requires the consideration of several local and global factors and constraints. In order to optimize and simplify this process, we propose a tool-based iterative approach applied to district heating planning. We build our tool with the collaboration of a French territory using actual district data and implementing the European incentives. We set up an iterative process including data visualization and analysis, identification and extraction of information related to the area concerned by the operation, design of sustainable planning scenarios leveraging local renewable and recoverable energy sources, and finally, the evaluation of scenarios. The last step is performed by a dynamic digital twin replica of the city. Territory’s energy experts confirm that the tool provides them with valuable support towards sustainable energy planning.

Keywords: climate change, data management, decision support, digital twin, district heating, energy planning, renewables, smart city

Procedia PDF Downloads 171
17040 Ecological Systems Theory, the SCERTS Model, and the Autism Spectrum, Node and Nexus

Authors: C. Surmei

Abstract:

Autism Spectrum Disorder (ASD) is a complex developmental disorder that can affect an individual’s (but is not limited to) cognitive development, emotional development, language acquisition and the capability to relate to others. Ecological Systems Theory is a sociocultural theory that focuses on environmental systems with which an individual interacts. The SCERTS Model is an educational approach and multidisciplinary framework that addresses the challenges confronted by individuals on the autism spectrum and other developmental disabilities. To aid the understanding of ASD and educational philosophies for families, educators, and the global community alike, a Comparative Analysis was undertaken to examine key variables (the child, society, education, nurture/care, relationships, communication). The results indicated that the Ecological Systems Theory and the SCERTS Model were comparable in focus, motivation, and application, attaining to a viable and notable relationship between both theories. This paper unpacks two child development philosophies and their relationship to each other.

Keywords: autism spectrum disorder, ecological systems theory, education, SCERTS model

Procedia PDF Downloads 586
17039 Simulation of Uniaxial Ratcheting Behaviors of SA508-3 Steel at Elevated Temperature

Authors: Jun Tian, Yu Yang, Liping Zhang, Qianhua Kan

Abstract:

Experimental results show that SA 508-3 steel exhibits temperature dependent cyclic softening characteristic and obvious ratcheting behaviors, and dynamic strain age was observed at temperature range of 200 ºC to 350 ºC. Based on these observations, a temperature dependent cyclic plastic constitutive model was proposed by introducing the nonlinear cyclic softening and kinematic hardening rules, and the dynamic strain age was also considered into the constitutive model. Comparisons between experiments and simulations were carried out to validate the proposed model at elevated temperature.

Keywords: constitutive model, elevated temperature, ratcheting, SA 508-3

Procedia PDF Downloads 302
17038 Dynamic Behavior of the Nanostructure of Load-Bearing Biological Materials

Authors: Mahan Qwamizadeh, Kun Zhou, Zuoqi Zhang, Yong Wei Zhang

Abstract:

Typical load-bearing biological materials like bone, mineralized tendon and shell, are biocomposites made from both organic (collagen) and inorganic (biomineral) materials. This amazing class of materials with intrinsic internally designed hierarchical structures show superior mechanical properties with regard to their weak components from which they are formed. Extensive investigations concentrating on static loading conditions have been done to study the biological materials failure. However, most of the damage and failure mechanisms in load-bearing biological materials will occur whenever their structures are exposed to dynamic loading conditions. The main question needed to be answered here is: What is the relation between the layout and architecture of the load-bearing biological materials and their dynamic behavior? In this work, a staggered model has been developed based on the structure of natural materials at nanoscale and Finite Element Analysis (FEA) has been used to study the dynamic behavior of the structure of load-bearing biological materials to answer why the staggered arrangement has been selected by nature to make the nanocomposite structure of most of the biological materials. The results showed that the staggered structures will efficiently attenuate the stress wave rather than the layered structure. Furthermore, such staggered architecture is effectively in charge of utilizing the capacity of the biostructure to resist both normal and shear loads. In this work, the geometrical parameters of the model like the thickness and aspect ratio of the mineral inclusions selected from the typical range of the experimentally observed feature sizes and layout dimensions of the biological materials such as bone and mineralized tendon. Furthermore, the numerical results validated with existing theoretical solutions. Findings of the present work emphasize on the significant effects of dynamic behavior on the natural evolution of load-bearing biological materials and can help scientists to design bioinspired materials in the laboratories.

Keywords: load-bearing biological materials, nanostructure, staggered structure, stress wave decay

Procedia PDF Downloads 457
17037 Innovation and Economic Growth Model of East Asian Countries: The Adaptability of the Model in Ethiopia

Authors: Khalid Yousuf Ahmed

Abstract:

At the beginning of growth period, East Asian countries achieved impressive economic growth for the decades. They transformed from agricultural economy toward industrialization and contributed to dynamic structural transformation. The achievements were driven by government-led development policies that implemented effective innovation policy to boost technological capability of local firms. Recently, most Sub-Saharan African have been showing sustainable growth. Exceptionally, Ethiopia has been recording double-digit growth for a decade. Hence, Ethiopia has claimed to follow the footstep of East Asia development model. The study is going to examine whether Ethiopia can replicate innovation and economic growth model of East Asia by using Japan, Taiwan, South Korea and China as a case to illustrate their model of growth. This research will be based on empirical data gathering and extended theory of national innovation system and economic growth theory. Moreover, the methodology is based on Knowledge Assessment Methodology (KAM) and also employing cross-countries regression analysis. The results explained that there is a significant relationship between innovation indicators and economic growth in East Asian countries while the relationship is non-existing for Ethiopia except implementing similar policies and achieving similar growth trend. Therefore, Ethiopia needs to introduce inclusive policies that give priority to improving human capital and invest on the knowledge-based economy to replicate East Asian Model.

Keywords: economic growth, FDI, endogenous growth theory, East Asia model

Procedia PDF Downloads 275
17036 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 74
17035 Design, Development and Evaluation of a Portable Recording System to Capture Dynamic Presentations using the Teacher´s Tablet PC

Authors: Enrique Barra, Abel Carril, Aldo Gordillo, Joaquin Salvachua, Juan Quemada

Abstract:

Computers and multimedia equipment have improved a lot in the last years. They have reduced costs and size while at the same time has increased their capabilities. These improvements allowed us to design and implement a portable recording system that also integrates the teacher´s tablet PC to capture what he/she writes on the slides and all that happens in it. This paper explains this system in detail and the validation of the recordings that we did after using it to record all the lectures of a course in our university called “Communications Software”. The results show that pupils used the recordings for different purposes and consider them useful for a variety of things, especially after missing a lecture.

Keywords: recording system, capture dynamic presentations, lecture recording

Procedia PDF Downloads 366
17034 Using Cooperation without Communication in a Multi-Agent Unpredictable Dynamic Real-Time Environment

Authors: Abbas Khosravi

Abstract:

This paper discusses the use of cooperation without communication in a multi-agent, unpredictable, dynamic real-time environment. The architecture of the Persian Gulf agent consists of three layers: fixed rule, low level, and high level layers, allowing for cooperation without direct communication. A scenario is presented to each agent in the form of a file, specifying each player's role and actions in the game. The scenario helps in cases of miscommunication, improving team performance. Cooperation without communication enhances reliability and coordination among agents, leading to better results in challenging situations.

Keywords: multi-agent systems, communication, Robocop, software engineering

Procedia PDF Downloads 34
17033 Alpha: A Groundbreaking Avatar Merging User Dialogue with OpenAI's GPT-3.5 for Enhanced Reflective Thinking

Authors: Jonas Colin

Abstract:

Standing at the vanguard of AI development, Alpha represents an unprecedented synthesis of logical rigor and human abstraction, meticulously crafted to mirror the user's unique persona and personality, a feat previously unattainable in AI development. Alpha, an avant-garde artefact in the realm of artificial intelligence, epitomizes a paradigmatic shift in personalized digital interaction, amalgamating user-specific dialogic patterns with the sophisticated algorithmic prowess of OpenAI's GPT-3.5 to engender a platform for enhanced metacognitive engagement and individualized user experience. Underpinned by a sophisticated algorithmic framework, Alpha integrates vast datasets through a complex interplay of neural network models and symbolic AI, facilitating a dynamic, adaptive learning process. This integration enables the system to construct a detailed user profile, encompassing linguistic preferences, emotional tendencies, and cognitive styles, tailoring interactions to align with individual characteristics and conversational contexts. Furthermore, Alpha incorporates advanced metacognitive elements, enabling real-time reflection and adaptation in communication strategies. This self-reflective capability ensures continuous refinement of its interaction model, positioning Alpha not just as a technological marvel but as a harbinger of a new era in human-computer interaction, where machines engage with us on a deeply personal and cognitive level, transforming our interaction with the digital world.

Keywords: chatbot, GPT 3.5, metacognition, symbiose

Procedia PDF Downloads 70
17032 Stochastic Repair and Replacement with a Single Repair Channel

Authors: Mohammed A. Hajeeh

Abstract:

This paper examines the behavior of a system, which upon failure is either replaced with certain probability p or imperfectly repaired with probability q. The system is analyzed using Kolmogorov's forward equations method; the analytical expression for the steady state availability is derived as an indicator of the system’s performance. It is found that the analysis becomes more complex as the number of imperfect repairs increases. It is also observed that the availability increases as the number of states and replacement probability increases. Using such an approach in more complex configurations and in dynamic systems is cumbersome; therefore, it is advisable to resort to simulation or heuristics. In this paper, an example is provided for demonstration.

Keywords: repairable models, imperfect, availability, exponential distribution

Procedia PDF Downloads 287
17031 Bioactivity Profiling of Botswana’s Medicinal Ethnobotany With Potential to Mitigate Oxidative Stress

Authors: Daniel Motlhanka, Neo Kerebotswe

Abstract:

The strong and long history of use of medicinal plants in Botswana to address existing and emerging health threats provides undebatable evidence for their potential as innovative therapeutic tools. The prevalence of emerging health threats, such as COVID-19 and hard-to-treat non-communicable diseases, warrants the scientific community to revisit and exploit ethnopharmacology for its potential as a source of therapeutic tools. Many studies conducted on bioactivity-guided bioassays of ethnobotanical resources have proved a number of health beneficial properties of these plants, such as free radical scavenging, anti-inflammatory, antimicrobial and, most importantly, the capability of medicinal plants to alleviate oxidative stress. In this work, a number of medicinal plants used in Botswana traditional medicine were investigated for both their free radical scavenging capability and total phenolic contents using the Free Radical Scavenging Power (FRSP) and Folin Ciocalteau (FC) method. At 100 micrograms/ml all the studied plants expressed above 90% Scavenging power and expressed total phenolic contents between 5000- 8890 mg/L.GAE. These plants are promising tools for engineering active therapeutic tools against life-threatening diseases of oxidative stress origin.

Keywords: oxidative stress, non-communicable diseases, total phenolics, ethnobotanicals

Procedia PDF Downloads 49
17030 Optimization of Surface Roughness in Additive Manufacturing Processes via Taguchi Methodology

Authors: Anjian Chen, Joseph C. Chen

Abstract:

This paper studies a case where the targeted surface roughness of fused deposition modeling (FDM) additive manufacturing process is improved. The process is designing to reduce or eliminate the defects and improve the process capability index Cp and Cpk for an FDM additive manufacturing process. The baseline Cp is 0.274 and Cpk is 0.654. This research utilizes the Taguchi methodology, to eliminate defects and improve the process. The Taguchi method is used to optimize the additive manufacturing process and printing parameters that affect the targeted surface roughness of FDM additive manufacturing. The Taguchi L9 orthogonal array is used to organize the parameters' (four controllable parameters and one non-controllable parameter) effectiveness on the FDM additive manufacturing process. The four controllable parameters are nozzle temperature [°C], layer thickness [mm], nozzle speed [mm/s], and extruder speed [%]. The non-controllable parameter is the environmental temperature [°C]. After the optimization of the parameters, a confirmation print was printed to prove that the results can reduce the amount of defects and improve the process capability index Cp from 0.274 to 1.605 and the Cpk from 0.654 to 1.233 for the FDM additive manufacturing process. The final results confirmed that the Taguchi methodology is sufficient to improve the surface roughness of FDM additive manufacturing process.

Keywords: additive manufacturing, fused deposition modeling, surface roughness, six-sigma, Taguchi method, 3D printing

Procedia PDF Downloads 392
17029 Testing a Flexible Manufacturing System Facility Production Capacity through Discrete Event Simulation: Automotive Case Study

Authors: Justyna Rybicka, Ashutosh Tiwari, Shane Enticott

Abstract:

In the age of automation and computation aiding manufacturing, it is clear that manufacturing systems have become more complex than ever before. Although technological advances provide the capability to gain more value with fewer resources, sometimes utilisation of the manufacturing capabilities available to organisations is difficult to achieve. Flexible manufacturing systems (FMS) provide a unique capability to manufacturing organisations where there is a need for product range diversification by providing line efficiency through production flexibility. This is very valuable in trend driven production set-ups or niche volume production requirements. Although FMS provides flexible and efficient facilities, its optimal set-up is key in achieving production performance. As many variables are interlinked due to the flexibility provided by the FMS, analytical calculations are not always sufficient to predict the FMS’ performance. Simulation modelling is capable of capturing the complexity and constraints associated with FMS. This paper demonstrates how discrete event simulation (DES) can address complexity in an FMS to optimise the production line performance. A case study of an automotive FMS is presented. The DES model demonstrates different configuration options depending on prioritising objectives: utilisation and throughput. Additionally, this paper provides insight into understanding the impact of system set-up constraints on the FMS performance and demonstrates the exploration into the optimal production set-up.

Keywords: discrete event simulation, flexible manufacturing system, capacity performance, automotive

Procedia PDF Downloads 327
17028 Dynamic Analysis and Vibration Response of Thermoplastic Rolling Elements in a Rotor Bearing System

Authors: Nesrine Gaaliche

Abstract:

This study provides a finite element dynamic model for analyzing rolling bearing system vibration response. The vibration responses of polypropylene bearings with and without defects are studied using FE analysis and compared to experimental data. The viscoelastic behavior of thermoplastic is investigated in this work to evaluate the influence of material flexibility and damping viscosity. The vibrations are detected using 3D dynamic analysis. Peak vibrations are more noticeable in an inner ring defect than in an outer ring defect, according to test data. The performance of thermoplastic bearings is compared to that of metal parts using vibration signals. Both the test and numerical results show that Polypropylene bearings exhibit less vibration than steel counterparts. Unlike bearings made from metal, polypropylene bearings absorb vibrations and handle shaft misalignments. Following validation of the overall vibration spectrum data, Von Mises stresses inside the rings are assessed under high loads. Stress is significantly high under the balls, according to the simulation findings. For the test cases, the computational findings correspond closely to the experimental results.

Keywords: viscoelastic, FE analysis, polypropylene, bearings

Procedia PDF Downloads 104
17027 Modeling Usage Patterns of Mobile App Service in App Market Using Hidden Markov Model

Authors: Yangrae Cho, Jinseok Kim, Yongtae Park

Abstract:

Mobile app service ecosystem has been abruptly emerged, explosively grown, and dynamically transformed. In contrast with product markets in which product sales directly cause increment in firm’s income, customer’s usage is less visible but more valuable in service market. Especially, the market situation with cutthroat competition in mobile app store makes securing and keeping of users as vital. Although a few service firms try to manage their apps’ usage patterns by fitting on S-curve or applying other forecasting techniques, the time series approaches based on past sequential data are subject to fundamental limitation in the market where customer’s attention is being moved unpredictably and dynamically. We therefore propose a new conceptual approach for detecting usage pattern of mobile app service with Hidden Markov Model (HMM) which is based on the dual stochastic structure and mainly used to clarify unpredictable and dynamic sequential patterns in voice recognition or stock forecasting. Our approach could be practically utilized for app service firms to manage their services’ lifecycles and academically expanded to other markets.

Keywords: mobile app service, usage pattern, Hidden Markov Model, pattern detection

Procedia PDF Downloads 336
17026 Guidelines for Cooperation between Police and the Media with an Approach to Prevent Juvenile Delinquency

Authors: Akbar Salimi, Mehdi Moghimi

Abstract:

Goal: Today, the cooperative and systemic work is of importance and guarantees higher efficiency. This research was done with the aim of understanding the guidelines for co-op between police and the national media in order to reduce the juvenile delinquency. Method: This research is applied in terms of goal and of a compound type, which was done through a descriptive-analytical methodology. The data were collected through field surveys and documents. The statistical population included the professors of a higher education center in the area of education affairs, where as many as 36 people were randomly selected. The data collection procedure was by way of interview and researcher made questionnaire. Findings and results: Problems caused by the national media in the area of adolescents are categorized in three levels of production, broadcasting and consumption and elimination and reduction of the problems entail a set of estimations and predictions and also some education which the police forces has the capability to operationalize them. Thus, three hypotheses were defined and by conducting t and Friedman tests, all three hypotheses were confirmed and their rating was identified.

Keywords: management, media, TV, adolscents, delinquency

Procedia PDF Downloads 255
17025 Developing Offshore Energy Grids in Norway as Capability Platforms

Authors: Vidar Hepsø

Abstract:

The energy and oil companies on the Norwegian Continental shelf come from a situation where each asset control and manage their energy supply (island mode) and move towards a situation where the assets need to collaborate and coordinate energy use with others due to increased cost and scarcity of electric energy sharing the energy that is provided. Currently, several areas are electrified either with an onshore grid cable or are receiving intermittent energy from offshore wind-parks. While the onshore grid in Norway is well regulated, the offshore grid is still in the making, with several oil and gas electrification projects and offshore wind development just started. The paper will describe the shift in the mindset that comes with operating this new offshore grid. This transition process heralds an increase in collaboration across boundaries and integration of energy management across companies, businesses, technical disciplines, and engagement with stakeholders in the larger society. This transition will be described as a function of the new challenges with increased complexity of the energy mix (wind, oil/gas, hydrogen and others) coupled with increased technical and organization complexity in energy management. Organizational complexity denotes an increasing integration across boundaries, whether these boundaries are company, vendors, professional disciplines, regulatory regimes/bodies, businesses, and across numerous societal stakeholders. New practices must be developed, made legitimate and institutionalized across these boundaries. Only parts of this complexity can be mitigated technically, e.g.: by use of batteries, mixing energy systems and simulation/ forecasting tools. Many challenges must be mitigated with legitimated societal and institutionalized governance practices on many levels. Offshore electrification supports Norway’s 2030 climate targets but is also controversial since it is exploiting the larger society’s energy resources. This means that new systems and practices must also be transparent, not only for the industry and the authorities, but must also be acceptable and just for the larger society. The paper report from ongoing work in Norway, participant observation and interviews in projects and people working with offshore grid development in Norway. One case presented is the development of an offshore floating windfarm connected to two offshore installations and the second case is an offshore grid development initiative providing six installations electric energy via an onshore cable. The development of the offshore grid is analyzed using a capability platform framework, that describes the technical, competence, work process and governance capabilities that are under development in Norway. A capability platform is a ‘stack’ with the following layers: intelligent infrastructure, information and collaboration, knowledge sharing & analytics and finally business operations. The need for better collaboration and energy forecasting tools/capabilities in this stack will be given a special attention in the two use cases that are presented.

Keywords: capability platform, electrification, carbon footprint, control rooms, energy forecsting, operational model

Procedia PDF Downloads 67
17024 Multi-Scale Damage and Mechanical Behavior of Sheet Molding Compound Composites Subjected to Fatigue, Dynamic, and Post-Fatigue Dynamic Loadings

Authors: M. Shirinbayan, J. Fitoussi, N. Abbasnezhad, A. Lucas, A. Tcharkhtchi

Abstract:

Sheet Molding Compounds (SMCs) with special microstructures are very attractive to use in automobile structures especially when they are accidentally subjected to collision type accidents because of their high energy absorption capacity. These are materials designated as standard SMC, Advanced Sheet Molding Compounds (A-SMC), Low-Density SMC (LD-SMC) and etc. In this study, testing methods have been performed to compare the mechanical responses and damage phenomena of SMC, LD-SMC, and A-SMC under quasi-static and high strain rate tensile tests. The paper also aims at investigating the effect of an initial pre-damage induced by fatigue on the tensile dynamic behavior of A-SMC. In the case of SMCs and A-SMCs, whatever the fibers orientation and applied strain rate are, the first observed phenomenon of damage corresponds to decohesion of the fiber-matrix interface which is followed by coalescence and multiplication of these micro-cracks and their propagations. For LD-SMCs, damage mechanisms depend on the presence of Hollow Glass Microspheres (HGM) and fibers orientation.

Keywords: SMC, Sheet Molding Compound, LD-SMC, Low-Density SMC, A-SMC, Advanced Sheet Molding Compounds, HGM, Hollow Glass Microspheres, damage

Procedia PDF Downloads 211
17023 Simulation and Fabrication of Plasmonic Lens for Bacteria Detection

Authors: Sangwoo Oh, Jaewoo Kim, Dongmin Seo, Jaewon Park, Yongha Hwang, Sungkyu Seo

Abstract:

Plasmonics has been regarded one of the most powerful bio-sensing modalities to evaluate bio-molecular interactions in real-time. However, most of the plasmonic sensing methods are based on labeling metallic nanoparticles, e.g. gold or silver, as optical modulation markers, which are non-recyclable and expensive. This plasmonic modulation can be usually achieved through various nano structures, e.g., nano-hole arrays. Among those structures, plasmonic lens has been regarded as a unique plasmonic structure due to its light focusing characteristics. In this study, we introduce a custom designed plasmonic lens array for bio-sensing, which was simulated by finite-difference-time-domain (FDTD) approach and fabricated by top-down approach. In our work, we performed the FDTD simulations of various plasmonic lens designs for bacteria sensor, i.e., Samonella and Hominis. We optimized the design parameters, i.e., radius, shape, and material, of the plasmonic lens. The simulation results showed the change in the peak intensity value with the introduction of each bacteria and antigen i.e., peak intensity 1.8711 a.u. with the introduction of antibody layer of thickness of 15nm. For Salmonella, the peak intensity changed from 1.8711 a.u. to 2.3654 a.u. and for Hominis, the peak intensity changed from 1.8711 a.u. to 3.2355 a.u. This significant shift in the intensity due to the interaction between bacteria and antigen showed a promising sensing capability of the plasmonic lens. With the batch processing and bulk production of this nano scale design, the cost of biological sensing can be significantly reduced, holding great promise in the fields of clinical diagnostics and bio-defense.

Keywords: plasmonic lens, FDTD, fabrication, bacteria sensor, salmonella, hominis

Procedia PDF Downloads 270
17022 Characterization and Evaluation of Soil Resources for Sustainable Land Use Planning of Timatjatji Community Farm, Limpopo, South Africa

Authors: M. Linda Phooko, Phesheya E. Dlamini, Vusumuzi E. Mbanjwa, Rhandu Chauke

Abstract:

The decline of yields as a consequence of miss-informed land-use decisions poses a threat to sustainable agriculture in South Africa. The non-uniform growth pattern of wheat crop and the yields below expectations has been one of the main concerns for Timatjatji community farmers. This study was then conducted to characterize, classify, and evaluate soils of the farm for sustainable land use planning. A detailed free survey guided by surface features was conducted on a 25 ha farm to check soil variation. It was revealed that Sepane (25%), Bonheim (21%), Rensburg (18%), Katspruit (15%), Arcadia (12%) and Dundee (9%) were the dominant soil forms found across the farm. Field soil description was done to determine morphological characteristics of the soils which were matched with slope percentage and climate to assess the potential of the soils. The land capability results showed that soils were generally shallow due to high clay content in the B horizon. When the climate of the area was factored in (i.e. land potential), it further revealed that the area has low cropping potential due to heat, moisture stress and shallow soils. This implies that the farm is not suitable for annual cropping but can be highly suitable for planted pastures.

Keywords: characterization, land capability, land evaluation, land potential

Procedia PDF Downloads 199
17021 Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior

Authors: N. Manoj

Abstract:

The aeroelastic behavior of engine nacelle strake when subjected to unsteady aerodynamic flows is investigated in this paper. Geometric nonlinear characteristics and modal parameters of nacelle strake are studied when it is under dynamic loading condition. Here, an N-S based Finite Volume solver is coupled with Finite Element (FE) based nonlinear structural solver to investigate the nonlinear characteristics of nacelle strake over a range of dynamic pressures at various phases of flight like takeoff, climb, and cruise conditions. The combination of high fidelity models for both aerodynamics and structural dynamics is used to predict the nonlinearities of strake (chine). The methodology adopted for present aeroelastic analysis is partitioned-based time domain coupled CFD and CSD solvers and it is validated by the consideration of experimental and numerical comparison of aeroelastic data for a cropped delta wing model which has a proven record. The present strake geometry is derived from theoretical formulation. The amplitude and frequency obtained from the coupled solver at various dynamic pressures is discussed, which gives a better understanding of its impact on aerodynamic design-sizing of strake.

Keywords: aeroelasticity, finite volume, geometric nonlinearity, limit cycle oscillations, strake

Procedia PDF Downloads 284
17020 A Low-Power Comparator Structure with Arbitrary Pre-Amplification Delay

Authors: Ata Khorami, Mohammad Sharifkhani

Abstract:

In the dynamic comparators, the pre-amplifier amplifies the input differential voltage and when the output Vcm of the pre-amplifier becomes larger than Vth of the latch input transistors, the latch is activated and finalizes the comparison. As a result, the pre-amplification delay is fixed to a value and cannot be set at the minimum required delay, thus, significant power and delay are imposed. In this paper, a novel structure is proposed through which the pre-amplification delay can be set at any low value saving power and time. Simulations show that using the proposed structure, by setting the pre-amplification delay at the minimum required value the power and comparison delay can be reduced by 55% and 100ps respectively.

Keywords: dynamic comparator, low power comparator, analog to digital converter, pre-amplification delay

Procedia PDF Downloads 204
17019 Preliminary Study on Using of Thermal Energy from Effluent Water for the SBR Process of RO

Authors: Gyeong-Sung Kim, In-soo Ahn, Yong Cho

Abstract:

SBR (Sequencing Batch Reactor) process is usually applied to membrane water treatment plants to treat its concentrated wastewater. The role of SBR process is to remove COD (Chemical Oxygen Demand) and NH3 from wastewater before discharging it outside of the water treatment plant using microorganism. Microorganism’s nitrification capability is influenced by water temperature because the nitrification rate of the concentrated wastewater becomes ‘zero’ as water temperature approach 0℃. Heating system is necessary to operate SBR in winter season even though the operating cost increase sharply. The operating cost of SBR at ‘D’ RO water treatment plant in Korea was 51.8 times higher in winter (October to March) compare to summer (April to September) season in 2014. Otherwise the effluent water temperature maintained around 8℃ constantly in winter. This study focuses on application heat pump system to recover the thermal energy from the effluent water of ‘D’ RO plant so that the operating cost will be reduced.

Keywords: water treatment, water thermal energy, energy saving, RO, SBR

Procedia PDF Downloads 516
17018 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis

Authors: Meng Su

Abstract:

High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.

Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis

Procedia PDF Downloads 107