Search results for: correlation and prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5938

Search results for: correlation and prediction

5128 Predictive Semi-Empirical NOx Model for Diesel Engine

Authors: Saurabh Sharma, Yong Sun, Bruce Vernham

Abstract:

Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model.  Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.

Keywords: diesel engine, machine learning, NOₓ emission, semi-empirical

Procedia PDF Downloads 114
5127 Secure Transfer of Medical Images Using Hybrid Encryption Authentication, Confidentiality, Integrity

Authors: Boukhatem Mohammed Belkaid, Lahdir Mourad

Abstract:

In this paper, we propose a new encryption system for security issues medical images. The hybrid encryption scheme is based on AES and RSA algorithms to validate the three security services are authentication, integrity, and confidentiality. Privacy is ensured by AES, authenticity is ensured by the RSA algorithm. Integrity is assured by the basic function of the correlation between adjacent pixels. Our system generates a unique password every new session of encryption, that will be used to encrypt each frame of the medical image basis to strengthen and ensure his safety. Several metrics have been used for various tests of our analysis. For the integrity test, we noticed the efficiencies of our system and how the imprint cryptographic changes at reception if a change affects the image in the transmission channel.

Keywords: AES, RSA, integrity, confidentiality, authentication, medical images, encryption, decryption, key, correlation

Procedia PDF Downloads 540
5126 Pattern Recognition Using Feature Based Die-Map Clustering in the Semiconductor Manufacturing Process

Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek

Abstract:

Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.

Keywords: die-map clustering, feature extraction, pattern recognition, semiconductor manufacturing process

Procedia PDF Downloads 402
5125 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics

Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy

Abstract:

Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.

Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance

Procedia PDF Downloads 150
5124 Clinical Prediction Rules for Using Open Kinetic Chain Exercise in Treatment of Knee Osteoarthritis

Authors: Mohamed Aly, Aliaa Rehan Youssef, Emad Sawerees, Mounir Guirgis

Abstract:

Relevance: Osteoarthritis (OA) is the most common degenerative disease seen in all populations. It causes disability and substantial socioeconomic burden. Evidence supports that exercise are the most effective conservative treatment for patients with OA. Therapists experience and clinical judgment play major role in exercise prescription and scientific evidence for this regard is lacking. The development of clinical prediction rules to identify patients who are most likely benefit from exercise may help solving this dilemma. Purpose: This study investigated whether body mass index and functional ability at baseline can predict patients’ response to a selected exercise program. Approach: Fifty-six patients, aged 35 to 65 years, completed an exercise program consisting of open kinetic chain strengthening and passive stretching exercises. The program was given for 3 sessions per week, 45 minutes per session, for 6 weeks Evaluation: At baseline and post treatment, pain severity was assessed using the numerical pain rating scale, whereas functional ability was being assessed by step test (ST), time up and go test (TUG) and 50 feet time walk test (50 FTW). After completing the program, global rate of change (GROC) score of greater than 4 was used to categorize patients as successful and non-successful. Thirty-eight patients (68%) had successful response to the intervention. Logistic regression showed that BMI and 50 FTW test were the only significant predictors. Based on the results, patients with BMI less than 34.71 kg/m2 and 50 FTW test less than 25.64 sec are 68% to 89% more likely to benefit from the exercise program. Conclusions: Clinicians should consider the described strengthening and flexibility exercise program for patents with BMI less than 34.7 Kg/m2 and 50 FTW faster than 25.6 seconds. The validity of these predictors should be investigated for other exercise.

Keywords: clinical prediction rule, knee osteoarthritis, physical therapy exercises, validity

Procedia PDF Downloads 422
5123 The Application of Artificial Neural Networks for the Performance Prediction of Evacuated Tube Solar Air Collector with Phase Change Material

Authors: Sukhbir Singh

Abstract:

This paper describes the modeling of novel solar air collector (NSAC) system by using artificial neural network (ANN) model. The objective of the study is to demonstrate the application of the ANN model to predict the performance of the NSAC with acetamide as a phase change material (PCM) storage. Input data set consist of time, solar intensity and ambient temperature wherever as outlet air temperature of NSAC was considered as output. Experiments were conducted between 9.00 and 24.00 h in June and July 2014 underneath the prevailing atmospheric condition of Kurukshetra (city of the India). After that, experimental results were utilized to train the back propagation neural network (BPNN) to predict the outlet air temperature of NSAC. The results of proposed algorithm show that the BPNN is effective tool for the prediction of responses. The BPNN predicted results are 99% in agreement with the experimental results.

Keywords: Evacuated tube solar air collector, Artificial neural network, Phase change material, solar air collector

Procedia PDF Downloads 120
5122 Applicability of Cameriere’s Age Estimation Method in a Sample of Turkish Adults

Authors: Hatice Boyacioglu, Nursel Akkaya, Humeyra Ozge Yilanci, Hilmi Kansu, Nihal Avcu

Abstract:

The strong relationship between the reduction in the size of the pulp cavity and increasing age has been reported in the literature. This relationship can be utilized to estimate the age of an individual by measuring the pulp cavity size using dental radiographs as a non-destructive method. The purpose of this study is to develop a population specific regression model for age estimation in a sample of Turkish adults by applying Cameriere’s method on panoramic radiographs. The sample consisted of 100 panoramic radiographs of Turkish patients (40 men, 60 women) aged between 20 and 70 years. Pulp and tooth area ratios (AR) of the maxilla¬¬ry canines were measured by two maxillofacial radiologists and then the results were subjected to regression analysis. There were no statistically significant intra-observer and inter-observer differences. The correlation coefficient between age and the AR of the maxillary canines was -0.71 and the following regression equation was derived: Estimated Age = 77,365 – ( 351,193 × AR ). The mean prediction error was 4 years which is within acceptable errors limits for age estimation. This shows that the pulp/tooth area ratio is a useful variable for assessing age with reasonable accuracy. Based on the results of this research, it was concluded that Cameriere’s method is suitable for dental age estimation and it can be used for forensic procedures in Turkish adults. These instructions give you guidelines for preparing papers for conferences or journals.

Keywords: age estimation by teeth, forensic dentistry, panoramic radiograph, Cameriere's method

Procedia PDF Downloads 450
5121 Investment and Economic Growth: An Empirical Analysis for Tanzania

Authors: Manamba Epaphra

Abstract:

This paper analyzes the causal effect between domestic private investment, public investment, foreign direct investment and economic growth in Tanzania during the 1970-2014 period. The modified neo-classical growth model that includes control variables such as trade liberalization, life expectancy and macroeconomic stability proxied by inflation is used to estimate the impact of investment on economic growth. Also, the economic growth models based on Phetsavong and Ichihashi (2012), and Le and Suruga (2005) are used to estimate the crowding out effect of public investment on private domestic investment on one hand and foreign direct investment on the other hand. A correlation test is applied to check the correlation among independent variables, and the results show that there is very low correlation suggesting that multicollinearity is not a serious problem. Moreover, the diagnostic tests including RESET regression errors specification test, Breusch-Godfrey serial correlation LM test, Jacque-Bera-normality test and white heteroskedasticity test reveal that the model has no signs of misspecification and that, the residuals are serially uncorrelated, normally distributed and homoskedastic. Generally, the empirical results show that the domestic private investment plays an important role in economic growth in Tanzania. FDI also tends to affect growth positively, while control variables such as high population growth and inflation appear to harm economic growth. Results also reveal that control variables such as trade openness and life expectancy improvement tend to increase real GDP growth. Moreover, a revealed negative, albeit weak, association between public and private investment suggests that the positive effect of domestic private investment on economic growth reduces when public investment-to-GDP ratio exceeds 8-10 percent. Thus, there is a great need for promoting domestic saving so as to encourage domestic investment for economic growth.

Keywords: FDI, public investment, domestic private investment, crowding out effect, economic growth

Procedia PDF Downloads 290
5120 The Role of Psychological Hardiness and Psychological Resilience Employee's Commitment to Change

Authors: Ni Made Dian Swandewi, Wustari L. Mangundjaya

Abstract:

Employees’ commitment to change are required for the success of organizational change in the company. The objective of this study is to identify the correlation between psychological hardiness and psychological resilience on commitment to change. The respondents of current research are permanent employees and employees that have worked for at least two years in a company that has been experiencing organizational change. Data was collected using Commitment to Change Inventory, Dispositional Resilience Scale (DRS), and Modified CD-RISC. The data were analyzed using regression. The results of the research show that both Psychological Hardiness and Psychological Resilience have positive and significant correlation and contribution on Commitment to Change. This research is important for companies who undergo organizational change in order plan and implement change more effectively.

Keywords: commitment to change, organizational change, psychological hardiness, psychological resilience

Procedia PDF Downloads 327
5119 Runoff Simulation by Using WetSpa Model in Garmabrood Watershed of Mazandaran Province, Iran

Authors: Mohammad Reza Dahmardeh Ghaleno, Mohammad Nohtani, Saeedeh Khaledi

Abstract:

Hydrological models are applied to simulation and prediction floods in watersheds. WetSpa is a distributed, continuous and physically model with daily or hourly time step that explains of precipitation, runoff and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave Equation which depend on the slope, velocity and flow route characteristics. Garmabrood watershed located in Mazandaran province in Iran and passing over coordinates 53° 10´ 55" to 53° 38´ 20" E and 36° 06´ 45" to 36° 25´ 30"N. The area of the catchment is about 1133 km2 and elevations in the catchment range from 213 to 3136 m at the outlet, with average slope of 25.77 %. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe Model Efficiency Coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 61% and 83.17 % respectively.

Keywords: watershed simulation, WetSpa, runoff, flood prediction

Procedia PDF Downloads 335
5118 Virtual Metrology for Copper Clad Laminate Manufacturing

Authors: Misuk Kim, Seokho Kang, Jehyuk Lee, Hyunchang Cho, Sungzoon Cho

Abstract:

In semiconductor manufacturing, virtual metrology (VM) refers to methods to predict properties of a wafer based on machine parameters and sensor data of the production equipment, without performing the (costly) physical measurement of the wafer properties (Wikipedia). Additional benefits include avoidance of human bias and identification of important factors affecting the quality of the process which allow improving the process quality in the future. It is however rare to find VM applied to other areas of manufacturing. In this work, we propose to use VM to copper clad laminate (CCL) manufacturing. CCL is a core element of a printed circuit board (PCB) which is used in smartphones, tablets, digital cameras, and laptop computers. The manufacturing of CCL consists of three processes: Treating, lay-up, and pressing. Treating, the most important process among the three, puts resin on glass cloth, heat up in a drying oven, then produces prepreg for lay-up process. In this process, three important quality factors are inspected: Treated weight (T/W), Minimum Viscosity (M/V), and Gel Time (G/T). They are manually inspected, incurring heavy cost in terms of time and money, which makes it a good candidate for VM application. We developed prediction models of the three quality factors T/W, M/V, and G/T, respectively, with process variables, raw material, and environment variables. The actual process data was obtained from a CCL manufacturer. A variety of variable selection methods and learning algorithms were employed to find the best prediction model. We obtained prediction models of M/V and G/T with a high enough accuracy. They also provided us with information on “important” predictor variables, some of which the process engineers had been already aware and the rest of which they had not. They were quite excited to find new insights that the model revealed and set out to do further analysis on them to gain process control implications. T/W did not turn out to be possible to predict with a reasonable accuracy with given factors. The very fact indicates that the factors currently monitored may not affect T/W, thus an effort has to be made to find other factors which are not currently monitored in order to understand the process better and improve the quality of it. In conclusion, VM application to CCL’s treating process was quite successful. The newly built quality prediction model allowed one to reduce the cost associated with actual metrology as well as reveal some insights on the factors affecting the important quality factors and on the level of our less than perfect understanding of the treating process.

Keywords: copper clad laminate, predictive modeling, quality control, virtual metrology

Procedia PDF Downloads 350
5117 Cooling Profile Analysis of Hot Strip Coil Using Finite Volume Method

Authors: Subhamita Chakraborty, Shubhabrata Datta, Sujay Kumar Mukherjea, Partha Protim Chattopadhyay

Abstract:

Manufacturing of multiphase high strength steel in hot strip mill have drawn significant attention due to the possibility of forming low temperature transformation product of austenite under continuous cooling condition. In such endeavor, reliable prediction of temperature profile of hot strip coil is essential in order to accesses the evolution of microstructure at different location of hot strip coil, on the basis of corresponding Continuous Cooling Transformation (CCT) diagram. Temperature distribution profile of the hot strip coil has been determined by using finite volume method (FVM) vis-à-vis finite difference method (FDM). It has been demonstrated that FVM offer greater computational reliability in estimation of contact pressure distribution and hence the temperature distribution for curved and irregular profiles, owing to the flexibility in selection of grid geometry and discrete point position, Moreover, use of finite volume concept allows enforcing the conservation of mass, momentum and energy, leading to enhanced accuracy of prediction.

Keywords: simulation, modeling, thermal analysis, coil cooling, contact pressure, finite volume method

Procedia PDF Downloads 472
5116 Syndecan -1 as Regulator of Ischemic-Reperfusion Damage Limitation in Experiment

Authors: M. E. Kolpakova, A. A. Jakovleva, L. S. Poliakova, H. El Amghari, S. Soliman, D. R. Faizullina, V. V. Sharoyko

Abstract:

Brain neuroplasticity is associated with blood-brain barrier vascular endothelial proteoglycans and post-stroke microglial activation. The study of the mechanisms of reperfusion injury limitation by remote ischemic postconditioning (RC) is of interest due to the effects on functional recovery after cerebral ischemia. The goal of the study is the assessment of the role of syndecan-1 (SDC-1) in restriction of ischemic-reperfusion injury on middle cerebral artery model in rats using RC protocol. Randomized controlled trials were conducted. Ischemia was performed by middle cerebral artery occlusion by Belayev L. (1996) on the Wistar rat-males (n= 87) weighting 250 ± 50 g. under general anesthesia (Zoletil 100 и Xylazine 2%). Syndecan-1 (SDC-1) concentration difference in plasma samples of false operated animals and animals with brain ischemia was 30% (30 min. МСАо: 41.4 * ± 1.3 ng/ml). SDC-1 concentration in animal plasma samples with ischemia + RC protocol was 112% (30 min МСАо+ RC): 67.8**± 5.8 ng/ml). Calculation of infarction volume in the ischemia group revealed brain injury in 31.97 ± 2.5%; the volume of infarction was 13.6 ± 1.3% in 30 min. МCАо + RC group. Swelling of tissue in the group 30 min. МCАо + RC was 16 ± 2.1%; it was 47 ± 3.3%. in 30 min. МCАо group. Correlation analysis showed a high direct correlation relationship between infarct area and muscle strength in the right forelimb (КК=0.72) in the 30 min. МCАо + RC group. Correlation analysis showed very high inverse correlation between infarct area and capillary blood flow in the 30 min. МCАо + RC group (p <0.01; r = -0.98). We believe the SDC-1 molecule in blood plasma may play role of potential messenger of ischemic-reperfusion injury restriction mechanisms. This leads to infarct-limiting effect of remote ischemic postconditioning and early functioning recovery.

Keywords: ischemia, МСАо, remote ischemic postconditioning, syndecan-1

Procedia PDF Downloads 61
5115 The Correlation between Users’ Star Rating and Usability on Mobile Applications

Authors: Abdulmohsen A. AlBesher, Richard T. Stone

Abstract:

Star rating for mobile applications is a very useful way to differentiate between the best and worst rated applications. However, the question is whether the rating reflects the level of usability or not. The aim of this paper is to find out if the user’ star ratings on mobile apps correlate with the usability of those apps. Thus, we tested three mobile apps, which have different star ratings: low, medium, and high. Participating in the study, 15 mobile phone users were asked to do one single task for each of the three tested apps. After each task, the participant evaluated the app by answering a survey based on the System Usability Scale (SUS). The results found that there is no major correlation between the star rating and the usability. However, it was found that the task completion time and the numbers of errors that may happen while completing the task were significantly correlated to the usability.

Keywords: mobile applications, SUS, star rating, usability

Procedia PDF Downloads 320
5114 Artificial Neural Network Based Approach in Prediction of Potential Water Pollution Across Different Land-Use Patterns

Authors: M.Rüştü Karaman, İsmail İşeri, Kadir Saltalı, A.Reşit Brohi, Ayhan Horuz, Mümin Dizman

Abstract:

Considerable relations has recently been given to the environmental hazardous caused by agricultural chemicals such as excess fertilizers. In this study, a neural network approach was investigated in the prediction of potential nitrate pollution across different land-use patterns by using a feedforward multilayered computer model of artificial neural network (ANN) with proper training. Periodical concentrations of some anions, especially nitrate (NO3-), and cations were also detected in drainage waters collected from the drain pipes placed in irrigated tomato field, unirrigated wheat field, fallow and pasture lands. The soil samples were collected from the irrigated tomato field and unirrigated wheat field on a grid system with 20 m x 20 m intervals. Site specific nitrate concentrations in the soil samples were measured for ANN based simulation of nitrate leaching potential from the land profiles. In the application of ANN model, a multi layered feedforward was evaluated, and data sets regarding with training, validation and testing containing the measured soil nitrate values were estimated based on spatial variability. As a result of the testing values, while the optimal structures of 2-15-1 was obtained (R2= 0.96, P < 0.01) for unirrigated field, the optimal structures of 2-10-1 was obtained (R2= 0.96, P < 0.01) for irrigated field. The results showed that the ANN model could be successfully used in prediction of the potential leaching levels of nitrate, based on different land use patterns. However, for the most suitable results, the model should be calibrated by training according to different NN structures depending on site specific soil parameters and varied agricultural managements.

Keywords: artificial intelligence, ANN, drainage water, nitrate pollution

Procedia PDF Downloads 310
5113 Mathematics Teachers’ Background Characteristics as a Correlate of Secondary School Students’ Achievement in Mathematics in Gombe State, Nigeria

Authors: Ali Adamu

Abstract:

Teachers’ background characteristics as a correlate of students’ achievement in Mathematics were studied in Gombe State. Pearson Product Moment Correlation Coefficient was used for the analysis. Five Hundred and Twelve (512) students and 20 teachers from 12 schools in Gombe State of Nigeria were used for the study. Students’ Achievement Tests and Mathematics Teachers’ backgrounds were instruments for the study. The findings indicated that teachers’ qualifications, experience of the teacher, and teachers’ personalities had a positive correlation with students’ achievement. Recommendations are made, which include allowing the teachers to go for training as well as the government should ensure recruiting teachers that have experience in the teaching job.

Keywords: achievement-test, teachers’ personality, teaching mathematics, teacher-background

Procedia PDF Downloads 103
5112 Contribution of Exchange-correlation Effects on Weakly Relativistic Plasma Expansion

Authors: Rachid Fermous, Rima Mebrek

Abstract:

Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamic multi-fluid equations, we investigated the expansion of dense plasma. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. It is shown that dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

Keywords: plasma expansion, quantum degeneracy, weakly relativistic, under-dense plasma

Procedia PDF Downloads 86
5111 A Study of Evaporative Heat Loss from the Skin of Baby Elephants (Elephas maximus maximus) at Elephant Transit Home

Authors: G .D. B. N. Kulasaooriya, H. B. S. Ariyarathne, I. Abeygunawardene, A. A. J. Rafarathne, B. V. Perera

Abstract:

Elephant is the largest resident of the wild and has small surface to volume ratio as well as less number of sweat glands which cause challenges to the thermoregulation of this mammal. However, this megaherbivore has adopted specialised meachanisms to maintain its thermal balance through behavioral adaptations, ear flapping and well anastomosed arterioles and venules of the ear. Nevertheless, little is known on the involvement of the skin in the process of thermoregulation. The present study was undertaken to monitor the water evaporation rate from the skin of unrestrained wild elephant calves throughout the day and to understand its importance in the thermoregulation. Seven baby elephants housed in the elephant transit home, Udawalawe were used. Ambient temparature, relative humidity (RH) and radiation heat load was monitored throughout the day of the study period. Similarly, surface temparature of the skin was taken at six points including lateral ear pinna, lateral body and the rump during the same period. The skin water evaporation was also measured from the same sites using cobolt chloride method. The surface are of the skin was determined by assigning geometrical shapes to each body part. The results showed that the ambient temperature gradually increased with the day reaching maximum around 3.00 pm. The relative humidity was lowest early in the morning. The radiation heat load did not show any significant change in the study period. The skin temperature was different among lateral ear pinna, lateral body and the rump where the highest temperature was on the rump and the lowest on the lateral ear pinna. The skin temperature gradually increase with increasing ambient temperature but there was not a strong correlation (R2 =53.53) between these two. The skin temperature had strong correlation with RH (p<0.05 R2 =70.84% ) but a significant relationship was not considered since the radiation heat load was not varying in large scale. The skin evaporative water loss had a weak negative correlation with ambient temperature (correlation coefficient= -0.01) whereas strong positive correlation with RH (correlation coefficient= 25.275 ) and no corelation with radiation heat load. It also appeared that skin water loss increases as the skin temperature increased. In the present study, it was observed that on average, skin of the baby elephant looses 403 g/m2/h of water. Based on these observations it can be concluded that a large volume of water is evaporated from the skin of baby elephants and evaporative heat loss may be contributing significantly to the thermoregulation. However, further investigation on the influence of environmental factors on evaporative heat loss has to be conducted to understand the thermoregulatory mechanisms of the baby elephant.

Keywords: thermoregulation, behavioral adaptations, evaporation, elephant

Procedia PDF Downloads 378
5110 Examination of the Relationship between Managerial Competence and Job Satisfacti̇on and Career Satisfacti̇on in Sports Managers'

Authors: Omur F. Karakullukcu, Bilal Okudan, Yusuf Can

Abstract:

The aim of this study is to analyze sports managers’ managerial competence levels and job satisfaction’s correlation with career satisfaction. In the study, it has also been analyzed if there is any significant difference in sports managers’ managerial competence, job and career satisfaction in terms of gender, age, duty status, year of service and level of education. 256 sports managers, who work at department of sports service’s central and field organization at least as a chief in the manager position, have been chosen with random sampling method and they have voluntarily participated in the study. In the study, the managerial competence scale which was developed by Cetinkaya (2009), job satisfaction scale developed by Weiss at al.(1967) and Career Satisfaction Scale developed by Vatansever (2008) have been used as a data collection tool. The questionnaire form used as a data collection tool in the study includes a personal information form consisting of 5 questions; questioning gender, age, duty status, years of service and level of education. In the study, pearson correlation analysis has been used for defining the correlation of managerial competence levels, job satisfaction, and career satisfaction levels of sports managers. T-test analysis for binary grouping and anova analysis for more than binary groups have been used in the level of self-efficacy, collective and managerial competence in terms of the participants’ duty status, year of service and level of education. According to the research results, it has been found that there is a positive correlation between sports managers’ managerial competence levels, job satisfaction, and career satisfaction levels. Also, the results show that there is a significant difference in managerial competence levels, job satisfaction and career satisfaction of sports managers in terms of duty status, year of service and level of education; however, the results reveal that there is no significant difference in terms of age groups and gender.

Keywords: sports manager, managerial competence, job satisfaction, career satisfaction

Procedia PDF Downloads 263
5109 Changes of pH and Pseudomonas Aeruginosa Growth in Liquid Media

Authors: Sayaka Ono, Ryutaro Imai, Tomoko Ehara, Tetsuya Matsumoto, Hajime Matsumura

Abstract:

Background: Wound pH affects a number of important factors in wound healing. We previously measured the pH value of the exudates collected from second-degree burns and found that the increase in pH was observed in the burn wounds in which colonized by Staphylococcus spp., and the increase in pH was evident prior to the clinical findings of local infection. To investigate the relationship between the changes of pH value and bacterial growth, we performed in vitro study using Pseudomonas aeruginosa and liquid medium as a locally infected wound equivalent model. Methods: Pseudomonas aeruginosa standard strain (ATCCR 10145TM) was cultured at 37 °C environment in Luria Broth Miller medium. The absorbance rate which means the amount of bacteria was measured by a microplate reader 2300EnSpireTM). The pH was measured using pH-indicator strips (MColorpHastTM). The statistical analysis was performed using the product-moment correlation coefficient of Pearson's. Results: The absorbance rate and pH value were increased along with culture period. There was a positive correlation between pH value and absorbance rate (n = 27, Pearson's r = 0.985). Moreover, there was a positive correlation between pH value and the culture period (n = 18, Pearson's r = 0.901). The bacteria was well growth in the media from pH 6.6 to pH 8.0 and the pH of culture media converged at 8 -9 along with the bacterial growth. Conclusion: From these results, we conclude that pH value of the wound is correlated with the number of viable bacteria and bacterial growth periods.

Keywords: colonization, potential of hydrogen, Pseudomonas aeruginosa, wound

Procedia PDF Downloads 279
5108 MSG Image Encryption Based on AES and RSA Algorithms "MSG Image Security"

Authors: Boukhatem Mohammed Belkaid, Lahdir Mourad

Abstract:

In this paper, we propose a new encryption system for security issues meteorological images from Meteosat Second Generation (MSG), which generates 12 images every 15 minutes. The hybrid encryption scheme is based on AES and RSA algorithms to validate the three security services are authentication, integrity and confidentiality. Privacy is ensured by AES, authenticity is ensured by the RSA algorithm. Integrity is assured by the basic function of the correlation between adjacent pixels. Our system generates a unique password every 15 minutes that will be used to encrypt each frame of the MSG meteorological basis to strengthen and ensure his safety. Several metrics have been used for various tests of our analysis. For the integrity test, we noticed the efficiencies of our system and how the imprint cryptographic changes at reception if a change affects the image in the transmission channel.

Keywords: AES, RSA, integrity, confidentiality, authentication, satellite MSG, encryption, decryption, key, correlation

Procedia PDF Downloads 382
5107 Probabilistic Slope Stability Analysis of Excavation Induced Landslides Using Hermite Polynomial Chaos

Authors: Schadrack Mwizerwa

Abstract:

The characterization and prediction of landslides are crucial for assessing geological hazards and mitigating risks to infrastructure and communities. This research aims to develop a probabilistic framework for analyzing excavation-induced landslides, which is fundamental for assessing geological hazards and mitigating risks to infrastructure and communities. The study uses Hermite polynomial chaos, a non-stationary random process, to analyze the stability of a slope and characterize the failure probability of a real landslide induced by highway construction excavation. The correlation within the data is captured using the Karhunen-Loève (KL) expansion theory, and the finite element method is used to analyze the slope's stability. The research contributes to the field of landslide characterization by employing advanced random field approaches, providing valuable insights into the complex nature of landslide behavior and the effectiveness of advanced probabilistic models for risk assessment and management. The data collected from the Baiyuzui landslide, induced by highway construction, is used as an illustrative example. The findings highlight the importance of considering the probabilistic nature of landslides and provide valuable insights into the complex behavior of such hazards.

Keywords: Hermite polynomial chaos, Karhunen-Loeve, slope stability, probabilistic analysis

Procedia PDF Downloads 76
5106 Correlation to Predict Thermal Performance According to Working Fluids of Vertical Closed-Loop Pulsating Heat Pipe

Authors: Niti Kammuang-lue, Kritsada On-ai, Phrut Sakulchangsatjatai, Pradit Terdtoon

Abstract:

The objectives of this paper are to investigate effects of dimensionless numbers on thermal performance of the vertical closed-loop pulsating heat pipe (VCLPHP) and to establish a correlation to predict the thermal performance of the VCLPHP. The CLPHPs were made of long copper capillary tubes with inner diameters of 1.50, 1.78, and 2.16mm and bent into 26 turns. Then, both ends were connected together to form a loop. The evaporator, adiabatic, and condenser sections length were equal to 50 and 150 mm. R123, R141b, acetone, ethanol, and water were chosen as variable working fluids with constant filling ratio of 50% by total volume. Inlet temperature of heating medium and adiabatic section temperature was constantly controlled at 80 and 50oC, respectively. Thermal performance was represented in a term of Kutateladze number (Ku). It can be concluded that when Prandtl number of liquid working fluid (Prl), and Karman number (Ka) increases, thermal performance increases. On contrary, when Bond number (Bo), Jacob number (Ja), and Aspect ratio (Le/Di) increases, thermal performance decreases. Moreover, the correlation to predict more precise thermal performance has been successfully established by analyzing on all dimensionless numbers that have effect on the thermal performance of the VCLPHP.

Keywords: vertical closed-loop pulsating heat pipe, working fluid, thermal performance, dimensionless parameter

Procedia PDF Downloads 414
5105 The Ability of Forecasting the Term Structure of Interest Rates Based on Nelson-Siegel and Svensson Model

Authors: Tea Poklepović, Zdravka Aljinović, Branka Marasović

Abstract:

Due to the importance of yield curve and its estimation it is inevitable to have valid methods for yield curve forecasting in cases when there are scarce issues of securities and/or week trade on a secondary market. Therefore in this paper, after the estimation of weekly yield curves on Croatian financial market from October 2011 to August 2012 using Nelson-Siegel and Svensson models, yield curves are forecasted using Vector auto-regressive model and Neural networks. In general, it can be concluded that both forecasting methods have good prediction abilities where forecasting of yield curves based on Nelson Siegel estimation model give better results in sense of lower Mean Squared Error than forecasting based on Svensson model Also, in this case Neural networks provide slightly better results. Finally, it can be concluded that most appropriate way of yield curve prediction is neural networks using Nelson-Siegel estimation of yield curves.

Keywords: Nelson-Siegel Model, neural networks, Svensson Model, vector autoregressive model, yield curve

Procedia PDF Downloads 333
5104 Variability of Surface Air Temperature in Sri Lanka and Its Relation to El Nino Southern Oscillation and Indian Ocean Dipole

Authors: Athdath Waduge Susantha Janaka Kumara, Xiefei Zhi, Zin Mie Mie Sein

Abstract:

Understanding the air temperature variability is crucially important for disaster risk reduction and management. In this study, we used 15 synoptic meteorological stations to assess the spatiotemporal variability of air temperature over Sri Lanka during 1972–2021. The empirical orthogonal function (EOF), Principal component analysis (PCA), Mann-Kendall test, power spectrum analysis and correlation coefficient analysis were used to investigate the long-term trends of air temperature and their possible relation to sea surface temperature (SST) over the region. The results indicate that an increasing trend in air temperature was observed with the abrupt climate change noted in the year 1994. The spatial distribution of EOF1 (63.5%) shows the positive and negative loading dipole patterns from south to northeast, while EOF2 (23.4%) explains warmer (colder) in some parts of central (south and east) areas. The power spectrum of PC1 (PC2) indicates that there is a significant period of 3-4 years (quasi-2 years). Moreover, Indian Ocean Dipole (IOD) provides a strong positive correlation with the air temperature of Sri Lanka, while the EL Nino Southern Oscillation (ENSO) presents a weak negative correlation. Therefore, IOD events led to higher temperatures in the region. This study’s findings can help disaster risk reduction and management in the country.

Keywords: air temperature, interannaul variability, ENSO, IOD

Procedia PDF Downloads 100
5103 The Correlation between Education, Food Intake, Exercise, and Medication Obedience with the Average of Blood Sugar in Indonesia

Authors: Aisyah Rahmatul Laily

Abstract:

Indonesia Ministry of Health is increasing their awareness on non communicable diseases. From the top ten causes of death, two of them are non communicable diseases. Diabetes Mellitus is one of the two non communicable diseases above that have the increasing number of patient from year to year. From that problem, this research is made to determine the correlation between education, food intake, exercise, and the medication obedience with the average of blood sugar. In this research, the researchers used observational and cross-sectional studies. The sample that used in this research were 50 patients in Puskesmas Gamping I Yogyakarta who have suffered from Diabetes Mellitus in long period. The researcher doing anamnesis by using questionnaire to collect the data, then analyzed it with Chi Square to determine the correlation between each variable. The dependent variable in this research is the average of blood sugar, whereas the independent variables are education, food intake, do exercise, and the obedience of medication. The result shows a relation between education and average blood sugar level (p=0.029), a relation between food intake and average blood sugar level (p=0.009), and a relation between exercise and average blood sugar level (p=0.023). There is also a relation between the medication obedience with the average of blood sugar (p=0,002). The conclusion is that the positive correlations exist between education and average blood sugar level, between food intake and average blood sugar level, and between medication obedience and average blood sugar level.

Keywords: average of blood sugar, education, exercise, food intake, medication obedience

Procedia PDF Downloads 275
5102 The Direct Deconvolution Model for the Large Eddy Simulation of Turbulence

Authors: Ning Chang, Zelong Yuan, Yunpeng Wang, Jianchun Wang

Abstract:

Large eddy simulation (LES) has been extensively used in the investigation of turbulence. LES calculates the grid-resolved large-scale motions and leaves small scales modeled by sub lfilterscale (SFS) models. Among the existing SFS models, the deconvolution model has been used successfully in the LES of the engineering flows and geophysical flows. Despite the wide application of deconvolution models, the effects of subfilter scale dynamics and filter anisotropy on the accuracy of SFS modeling have not been investigated in depth. The results of LES are highly sensitive to the selection of fi lters and the anisotropy of the grid, which has been overlooked in previous research. In the current study, two critical aspects of LES are investigated. Firstly, we analyze the influence of sub-fi lter scale (SFS) dynamics on the accuracy of direct deconvolution models (DDM) at varying fi lter-to-grid ratios (FGR) in isotropic turbulence. An array of invertible filters are employed, encompassing Gaussian, Helmholtz I and II, Butterworth, Chebyshev I and II, Cauchy, Pao, and rapidly decaying filters. The signi ficance of FGR becomes evident, as it acts as a pivotal factor in error control for precise SFS stress prediction. When FGR is set to 1, the DDM models cannot accurately reconstruct the SFS stress due to the insufficient resolution of SFS dynamics. Notably, prediction capabilities are enhanced at an FGR of 2, resulting in accurate SFS stress reconstruction, except for cases involving Helmholtz I and II fi lters. A remarkable precision close to 100% is achieved at an FGR of 4 for all DDM models. Additionally, the further exploration extends to the fi lter anisotropy to address its impact on the SFS dynamics and LES accuracy. By employing dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and direct deconvolution model (DDM) with the anisotropic fi lter, aspect ratios (AR) ranging from 1 to 16 in LES fi lters are evaluated. The findings highlight the DDM's pro ficiency in accurately predicting SFS stresses under highly anisotropic filtering conditions. High correlation coefficients exceeding 90% are observed in the a priori study for the DDM's reconstructed SFS stresses, surpassing those of the DSM and DMM models. However, these correlations tend to decrease as lter anisotropy increases. In the a posteriori studies, the DDM model consistently outperforms the DSM and DMM models across various turbulence statistics, encompassing velocity spectra, probability density functions related to vorticity, SFS energy flux, velocity increments, strain-rate tensors, and SFS stress. It is observed that as fi lter anisotropy intensify , the results of DSM and DMM become worse, while the DDM continues to deliver satisfactory results across all fi lter-anisotropy scenarios. The fi ndings emphasize the DDM framework's potential as a valuable tool for advancing the development of sophisticated SFS models for LES of turbulence.

Keywords: deconvolution model, large eddy simulation, subfilter scale modeling, turbulence

Procedia PDF Downloads 75
5101 Effect of Packaging Material and Water-Based Solutions on Performance of Radio Frequency Identification for Food Packaging Applications

Authors: Amelia Frickey, Timothy (TJ) Sheridan, Angelica Rossi, Bahar Aliakbarian

Abstract:

The growth of large food supply chains demanded improved end-to-end traceability of food products, which has led to companies being increasingly interested in using smart technologies such as Radio Frequency Identification (RFID)-enabled packaging to track items. As technology is being widely used, there are several technological or economic issues that should be overcome to facilitate the adoption of this track-and-trace technology. One of the technological challenges of RFID technology is its sensitivity to different environmental form factors, including packaging materials and the content of the packaging. Although researchers have assessed the performance loss due to the proximity of water and aqueous solutions, there is still the need to further investigate the impacts of food products on the reading range of RFID tags. However, to the best of our knowledge, there are not enough studies to determine the correlation between RFID tag performance and food beverages properties. The goal of this project was to investigate the effect of the solution properties (pH and conductivity) and different packaging materials filled with food-like water-based solutions on the performance of an RFID tag. Three commercially available ultra high-frequency RFID tags were placed on three different bottles and filled with different concentrations of water-based solutions, including sodium chloride, citric acid, sucrose, and ethanol. Transparent glass, Polyethylneterephtalate (PET), and Tetrapak® were used as the packaging materials commonly used in the beverage industries. Tag readability (Theoretical Read Range, TRR) and sensitivity (Power on Tag Forward, PoF) were determined using an anechoic chamber. First, the best place to attach the tag for each packaging material was investigated using empty and water-filled bottles. Then, the bottles were filled with the food-like solutions and tested with the three different tags and the PoF and TRR at the fixed frequency of 915MHz. In parallel, the pH and conductivity of solutions were measured. The best-performing tag was then selected to test the bottles filled with wine, orange, and apple juice. Despite various solutions altering the performance of each tag, the change in tag performance had no correlation with the pH or conductivity of the solution. Additionally, packaging material played a significant role in tag performance. Each tag tested performed optimally under different conditions. This study is the first part of comprehensive research to determine the regression model for the prediction of tag performance behavior based on the packaging material and the content. More investigations, including more tags and food products, are needed to be able to develop a robust regression model. The results of this study can be used by RFID tag manufacturers to design suitable tags for specific products with similar properties.

Keywords: smart food packaging, supply chain management, food waste, radio frequency identification

Procedia PDF Downloads 114
5100 The Study of Rapeseed Characteristics by Factor Analysis under Normal and Drought Stress Conditions

Authors: Ali Bakhtiari Gharibdosti, Mohammad Hosein Bijeh Keshavarzi, Samira Alijani

Abstract:

To understand internal characteristics relationships and determine factors which explain under consideration characteristics in rapeseed varieties, 10 rapeseed genotypes were implemented in complete accidental plot with three-time repetitions under drought stress in 2009-2010 in research field of agriculture college, Islamic Azad University, Karaj branch. In this research, 11 characteristics include of characteristics related to growth, production and functions stages was considered. Variance analysis results showed that there is a significant difference among rapeseed varieties characteristics. By calculating simple correlation coefficient under both conditions, normal and drought stress indicate that seed function characteristics in plant and pod number have positive and significant correlation in 1% probable level with seed function and selection on the base of these characteristics was effective for improving this function. Under normal and drought stress, analyzing the main factors showed that numbers of factors which have more than one amount, had five factors under normal conditions which were 82.72% of total variance totally, but under drought stress four factors diagnosed which were 76.78% of total variance. By considering total results of this research and by assessing effective characteristics for factor analysis and selecting different components of these characteristics, they can be used for modifying works to select applicable and tolerant genotypes in drought stress conditions.

Keywords: correlation, drought stress, factor analysis, rapeseed

Procedia PDF Downloads 190
5099 Experimental Evaluation of Most Sustainable Companies: Impact on Economic Growth, Return on Equity (ROE) and Methodological Comparison

Authors: Milena Serzante, Viktoriia Stankevich, Yousre Badir

Abstract:

Companies have a significant impact on the environment and society, and sustainability is important not only for ethical concerns but also for financial and economic reasons. The aim of the study is to analyze how the sustainable performance of the company impacts the economy and the business's economic performance. To achieve this goal, such methods as the Pearson correlation, Multiple Linear Regression, Cook's distance method, K-nearest neighbor and COPRAS technique were implemented. The results revealed that there is no significant correlation between different indicators of sustainable development of the company and both GDP and Return on Equity. It indicates that the methodology of evaluating sustainability causes the difference in ranking companies based on sustainable performance.

Keywords: economic impact, sustainability evaluation, sustainable companies, economic indicators, sustainability, GDP, return on equity

Procedia PDF Downloads 90