Search results for: cloud and channel discharges
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2094

Search results for: cloud and channel discharges

1284 Symbol Synchronization and Resource Reuse Schemes for Layered Video Multicast Service in Long Term Evolution Networks

Authors: Chung-Nan Lee, Sheng-Wei Chu, You-Chiun Wang

Abstract:

LTE (Long Term Evolution) employs the eMBMS (evolved Multimedia Broadcast/Multicast Service) protocol to deliver video streams to a multicast group of users. However, it requires all multicast members to receive a video stream in the same transmission rate, which would degrade the overall service quality when some users encounter bad channel conditions. To overcome this problem, this paper provides two efficient resource allocation schemes in such LTE network: The symbol synchronization (S2) scheme assumes that the macro and pico eNodeBs use the same frequency channel to deliver the video stream to all users. It then adopts a multicast transmission index to guarantee the fairness among users. On the other hand, the resource reuse (R2) scheme allows eNodeBs to transmit data on different frequency channels. Then, by introducing the concept of frequency reuse, it can further improve the overall service quality. Extensive simulation results show that the S2 and R2 schemes can respectively improve around 50% of fairness and 14% of video quality as compared with the common maximum throughput method.

Keywords: LTE networks, multicast, resource allocation, layered video

Procedia PDF Downloads 389
1283 Model of a Context-Aware Middleware for Mobile Workers

Authors: Esraa Moustafa, Gaetan Rey, Stephane Lavirotte, Jean-Yves Tigli

Abstract:

With the development of Internet of Things and Web of Things, computing becomes more pervasive, invisible and present everywhere. In fact, in our environment, we are surrounded by multiple devices that deliver (web) services that meet the needs of the users. However, the mobility of these devices as the users has important repercussions that challenge software design of these applications because the variability of the environment cannot be anticipated at the design time. Thus, it will be interesting to dynamically discover the environment and adapt the application during its execution to the new contextual conditions. We, therefore, propose a model of a context-aware middleware that can address this issue through a monitoring service that is capable of reasoning and observation channels capable of calculating the context during the runtime. The monitoring service evaluates the pre-defined X-Query predicates in the context manager and uses Prolog to deduce the services needed to respond back. An independent Observation Channel for each different predicate is then dynamically generated by the monitoring service depending on the current state of the environment. Each channel sends its result directly to the context manager which consequently calculates the context based on all the predicates’ results while preserving the reactivity of the self-adaptive system.

Keywords: auto-adaptation, context-awareness, middleware, reasoning engine

Procedia PDF Downloads 251
1282 Assessment of Exploitation Vulnerability of Quantum Communication Systems with Phase Encryption

Authors: Vladimir V. Nikulin, Bekmurza H. Aitchanov, Olimzhon A. Baimuratov

Abstract:

Quantum communication technology takes advantage of the intrinsic properties of laser carriers, such as very high data rates and low power requirements, to offer unprecedented data security. Quantum processes at the physical layer of encryption are used for signal encryption with very competitive performance characteristics. The ultimate range of applications for QC systems spans from fiber-based to free-space links and from secure banking operations to mobile airborne and space-borne networking where they are subjected to channel distortions. Under practical conditions, the channel can alter the optical wave front characteristics, including its phase. In addition, phase noise of the communication source and photo-detection noises alter the signal to bring additional ambiguity into the measurement process. If quantized values of photons are used to encrypt the signal, exploitation of quantum communication links becomes extremely difficult. In this paper, we present the results of analysis and simulation studies of the effects of noise on phase estimation for quantum systems with different number of encryption bases and operating at different power levels.

Keywords: encryption, phase distortion, quantum communication, quantum noise

Procedia PDF Downloads 553
1281 Transport of Analytes under Mixed Electroosmotic and Pressure Driven Flow of Power Law Fluid

Authors: Naren Bag, S. Bhattacharyya, Partha P. Gopmandal

Abstract:

In this study, we have analyzed the transport of analytes under a two dimensional steady incompressible flow of power-law fluids through rectangular nanochannel. A mathematical model based on the Cauchy momentum-Nernst-Planck-Poisson equations is considered to study the combined effect of mixed electroosmotic (EO) and pressure driven (PD) flow. The coupled governing equations are solved numerically by finite volume method. We have studied extensively the effect of key parameters, e.g., flow behavior index, concentration of the electrolyte, surface potential, imposed pressure gradient and imposed electric field strength on the net average flow across the channel. In addition to study the effect of mixed EOF and PD on the analyte distribution across the channel, we consider a nonlinear model based on general convective-diffusion-electromigration equation. We have also presented the retention factor for various values of electrolyte concentration and flow behavior index.

Keywords: electric double layer, finite volume method, flow behavior index, mixed electroosmotic/pressure driven flow, non-Newtonian power-law fluids, numerical simulation

Procedia PDF Downloads 311
1280 Improved Multi-Channel Separation Algorithm for Satellite-Based Automatic Identification System Signals Based on Artificial Bee Colony and Adaptive Moment Estimation

Authors: Peng Li, Luan Wang, Haifeng Fei, Renhong Xie, Yibin Rui, Shanhong Guo

Abstract:

The applications of satellite-based automatic identification system (S-AIS) pave the road for wide-range maritime traffic monitoring and management. But the coverage of satellite’s view includes multiple AIS self-organizing networks, which leads to the collision of AIS signals from different cells. The contribution of this work is to propose an improved multi-channel blind source separation algorithm based on Artificial Bee Colony (ABC) and advanced stochastic optimization to perform separation of the mixed AIS signals. The proposed approach adopts modified ABC algorithm to get an optimized initial separating matrix, which can expedite the initialization bias correction, and utilizes the Adaptive Moment Estimation (Adam) to update the separating matrix by adjusting the learning rate for each parameter dynamically. Simulation results show that the algorithm can speed up convergence and lead to better performance in separation accuracy.

Keywords: satellite-based automatic identification system, blind source separation, artificial bee colony, adaptive moment estimation

Procedia PDF Downloads 185
1279 Aerial Photogrammetry-Based Techniques to Rebuild the 30-Years Landform Changes of a Landslide-Dominated Watershed in Taiwan

Authors: Yichin Chen

Abstract:

Taiwan is an island characterized by an active tectonics and high erosion rates. Monitoring the dynamic landscape of Taiwan is an important issue for disaster mitigation, geomorphological research, and watershed management. Long-term and high spatiotemporal landform data is essential for quantifying and simulating the geomorphological processes and developing warning systems. Recently, the advances in unmanned aerial vehicle (UAV) and computational photogrammetry technology have provided an effective way to rebuild and monitor the topography changes in high spatio-temporal resolutions. This study rebuilds the 30-years landform change in the Aiyuzi watershed in 1986-2017 by using the aerial photogrammetry-based techniques. The Aiyuzi watershed, located in central Taiwan and has an area of 3.99 Km², is famous for its frequent landslide and debris flow disasters. This study took the aerial photos by using UAV and collected multi-temporal historical, stereo photographs, taken by the Aerial Survey Office of Taiwan’s Forestry Bureau. To rebuild the orthoimages and digital surface models (DSMs), Pix4DMapper, a photogrammetry software, was used. Furthermore, to control model accuracy, a set of ground control points was surveyed by using eGPS. The results show that the generated DSMs have the ground sampling distance (GSD) of ~10 cm and ~0.3 cm from the UAV’s and historical photographs, respectively, and vertical error of ~1 m. By comparing the DSMs, there are many deep-seated landslides (with depth over 20 m) occurred on the upstream in the Aiyuzi watershed. Even though a large amount of sediment is delivered from the landslides, the steep main channel has sufficient capacity to transport sediment from the channel and to erode the river bed to ~20 m in depth. Most sediments are transported to the outlet of watershed and deposits on the downstream channel. This case study shows that UAV and photogrammetry technology are useful for topography change monitoring effectively.

Keywords: aerial photogrammetry, landslide, landform change, Taiwan

Procedia PDF Downloads 157
1278 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 64
1277 Real-Time Neuroimaging for Rehabilitation of Stroke Patients

Authors: Gerhard Gritsch, Ana Skupch, Manfred Hartmann, Wolfgang Frühwirt, Hannes Perko, Dieter Grossegger, Tilmann Kluge

Abstract:

Rehabilitation of stroke patients is dominated by classical physiotherapy. Nowadays, a field of research is the application of neurofeedback techniques in order to help stroke patients to get rid of their motor impairments. Especially, if a certain limb is completely paralyzed, neurofeedback is often the last option to cure the patient. Certain exercises, like the imagination of the impaired motor function, have to be performed to stimulate the neuroplasticity of the brain, such that in the neighboring parts of the injured cortex the corresponding activity takes place. During the exercises, it is very important to keep the motivation of the patient at a high level. For this reason, the missing natural feedback due to a movement of the effected limb may be replaced by a synthetic feedback based on the motor-related brain function. To generate such a synthetic feedback a system is needed which measures, detects, localizes and visualizes the motor related µ-rhythm. Fast therapeutic success can only be achieved if the feedback features high specificity, comes in real-time and without large delay. We describe such an approach that offers a 3D visualization of µ-rhythms in real time with a delay of 500ms. This is accomplished by combining smart EEG preprocessing in the frequency domain with source localization techniques. The algorithm first selects the EEG channel featuring the most prominent rhythm in the alpha frequency band from a so-called motor channel set (C4, CZ, C3; CP6, CP4, CP2, CP1, CP3, CP5). If the amplitude in the alpha frequency band of this certain electrode exceeds a threshold, a µ-rhythm is detected. To prevent detection of a mixture of posterior alpha activity and µ-activity, the amplitudes in the alpha band outside the motor channel set are not allowed to be in the same range as the main channel. The EEG signal of the main channel is used as template for calculating the spatial distribution of the µ - rhythm over all electrodes. This spatial distribution is the input for a inverse method which provides the 3D distribution of the µ - activity within the brain which is visualized in 3D as color coded activity map. This approach mitigates the influence of lid artifacts on the localization performance. The first results of several healthy subjects show that the system is capable of detecting and localizing the rarely appearing µ-rhythm. In most cases the results match with findings from visual EEG analysis. Frequent eye-lid artifacts have no influence on the system performance. Furthermore, the system will be able to run in real-time. Due to the design of the frequency transformation the processing delay is 500ms. First results are promising and we plan to extend the test data set to further evaluate the performance of the system. The relevance of the system with respect to the therapy of stroke patients has to be shown in studies with real patients after CE certification of the system. This work was performed within the project ‘LiveSolo’ funded by the Austrian Research Promotion Agency (FFG) (project number: 853263).

Keywords: real-time EEG neuroimaging, neurofeedback, stroke, EEG–signal processing, rehabilitation

Procedia PDF Downloads 387
1276 Development of Piezoelectric Gas Micropumps with the PDMS Check Valve Design

Authors: Chiang-Ho Cheng, An-Shik Yang, Hon-Yi Cheng, Ming-Yu Lai

Abstract:

This paper presents the design and fabrication of a novel piezoelectric actuator for a gas micropump with check valve having the advantages of miniature size, light weight and low power consumption. The micropump is designed to have eight major components, namely a stainless steel upper cover layer, a piezoelectric actuator, a stainless steel diaphragm, a PDMS chamber layer, two stainless steel channel layers with two valve seats, a PDMS check valve layer with two cantilever-type check valves and an acrylic substrate. A prototype of the gas micropump, with a size of 52 mm × 50 mm × 5.0 mm, is fabricated by precise manufacturing. This device is designed to pump gases with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micropump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micropump and the displacement of the piezoelectric actuator, simultaneously. The gas micropump obtained higher output performance under the sinusoidal waveform of 250 Vpp. The micropump achieved the maximum pumping rates of 1185 ml/min and back pressure of 7.14 kPa at the corresponding frequency of 120 and 50 Hz.

Keywords: PDMS, check valve, micropump, piezoelectric

Procedia PDF Downloads 456
1275 Computational Study of Flow and Heat Transfer Characteristics of an Incompressible Fluid in a Channel Using Lattice Boltzmann Method

Authors: Imdat Taymaz, Erman Aslan, Kemal Cakir

Abstract:

The Lattice Boltzmann Method (LBM) is performed to computationally investigate the laminar flow and heat transfer of an incompressible fluid with constant material properties in a 2D channel with a built-in triangular prism. Both momentum and energy transport is modelled by the LBM. A uniform lattice structure with a single time relaxation rule is used. Interpolation methods are applied for obtaining a higher flexibility on the computational grid, where the information is transferred from the lattice structure to the computational grid by Lagrange interpolation. The flow is researched on for different Reynolds number, while Prandtl number is keeping constant as a 0.7. The results show how the presence of a triangular prism effects the flow and heat transfer patterns for the steady-state and unsteady-periodic flow regimes. As an evaluation of the accuracy of the developed LBM code, the results are compared with those obtained by a commercial CFD code. It is observed that the present LBM code produces results that have similar accuracy with the well-established CFD code, as an additionally, LBM needs much smaller CPU time for the prediction of the unsteady phonema.

Keywords: laminar forced convection, lbm, triangular prism

Procedia PDF Downloads 373
1274 Optimization of Geometric Parameters of Microfluidic Channels for Flow-Based Studies

Authors: Parth Gupta, Ujjawal Singh, Shashank Kumar, Mansi Chandra, Arnab Sarkar

Abstract:

Microfluidic devices have emerged as indispensable tools across various scientific disciplines, offering precise control and manipulation of fluids at the microscale. Their efficacy in flow-based research, spanning engineering, chemistry, and biology, relies heavily on the geometric design of microfluidic channels. This work introduces a novel approach to optimise these channels through Response Surface Methodology (RSM), departing from the conventional practice of addressing one parameter at a time. Traditionally, optimising microfluidic channels involved isolated adjustments to individual parameters, limiting the comprehensive understanding of their combined effects. In contrast, our approach considers the simultaneous impact of multiple parameters, employing RSM to efficiently explore the complex design space. The outcome is an innovative microfluidic channel that consumes an optimal sample volume and minimises flow time, enhancing overall efficiency. The relevance of geometric parameter optimization in microfluidic channels extends significantly in biomedical engineering. The flow characteristics of porous materials within these channels depend on many factors, including fluid viscosity, environmental conditions (such as temperature and humidity), and specific design parameters like sample volume, channel width, channel length, and substrate porosity. This intricate interplay directly influences the performance and efficacy of microfluidic devices, which, if not optimized, can lead to increased costs and errors in disease testing and analysis. In the context of biomedical applications, the proposed approach addresses the critical need for precision in fluid flow. it mitigate manufacturing costs associated with trial-and-error methodologies by optimising multiple geometric parameters concurrently. The resulting microfluidic channels offer enhanced performance and contribute to a streamlined, cost-effective process for testing and analyzing diseases. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing.

Keywords: microfluidic device, minitab, statistical optimization, response surface methodology

Procedia PDF Downloads 68
1273 Strategic Evaluation of Existing Drainage System in Apalit, Pampanga

Authors: Jennifer de Jesus, Ares Baron Talusan, Steven Valerio

Abstract:

This paper aims to conduct an evaluation of the drainage system in a specific village in Apalit, Pampanga using the geographic information system to easily identify inadequate drainage lines that needs rehabilitation to aid in flooding problem in the area. The researchers will be utilizing two methods and software to be able to strategically assess each drainage line in the village– the two methods were the rational method and the Manning's Formula for Open Channel Flow and compared it to each other, and the software to be used was Google Earth Pro by 2020 Google LLC. The results must satisfy the statement QManning > QRational to be able to see if the specific line and section is adequate; otherwise, it is inadequate; dimensions needed to be recomputed until it became adequate. The use of the software is the visualization of data collected from the computations to clearly see in which areas the drainage lines were adequate or not. The researchers were then able to conclude that the drainage system should be considered inadequate, seeing as most of the lines are unable to accommodate certain intensities of rainfall. The researchers have also concluded that line rehabilitation is a must to proceed.

Keywords: strategic evaluation, drainage system, as-built plans, inadequacy, rainfall intensity-duration-frequency data, rational method, manning’s equation for open channel flow

Procedia PDF Downloads 128
1272 A Vehicle Monitoring System Based on the LoRa Technique

Authors: Chao-Linag Hsieh, Zheng-Wei Ye, Chen-Kang Huang, Yeun-Chung Lee, Chih-Hong Sun, Tzai-Hung Wen, Jehn-Yih Juang, Joe-Air Jiang

Abstract:

Air pollution and climate warming become more and more intensified in many areas, especially in urban areas. Environmental parameters are critical information to air pollution and weather monitoring. Thus, it is necessary to develop a suitable air pollution and weather monitoring system for urban areas. In this study, a vehicle monitoring system (VMS) based on the IoT technique is developed. Cars are selected as the research tool because it can reach a greater number of streets to collect data. The VMS can monitor different environmental parameters, including ambient temperature and humidity, and air quality parameters, including PM2.5, NO2, CO, and O3. The VMS can provide other information, including GPS signals and the vibration information through driving a car on the street. Different sensor modules are used to measure the parameters and collect the measured data and transmit them to a cloud server through the LoRa protocol. A user interface is used to show the sensing data storing at the cloud server. To examine the performance of the system, a researcher drove a Nissan x-trail 1998 to the area close to the Da’an District office in Taipei to collect monitoring data. The collected data are instantly shown on the user interface. The four kinds of information are provided by the interface: GPS positions, weather parameters, vehicle information, and air quality information. With the VMS, users can obtain the information regarding air quality and weather conditions when they drive their car to an urban area. Also, government agencies can make decisions on traffic planning based on the information provided by the proposed VMS.

Keywords: LoRa, monitoring system, smart city, vehicle

Procedia PDF Downloads 416
1271 Passive Heat Exchanger for Proton Exchange Membrane Fuel Cell Cooling

Authors: Ivan Tolj

Abstract:

Water produced during electrochemical reaction in Proton Exchange Membrane (PEM) fuel cell can be used for internal humidification of reactant gases; hydrogen and air. On such a way it is possible to eliminate expensive external humidifiers and simplify fuel cell balance-of-plant (BoP). When fuel cell operates at constant temperature (usually between 60 °C and 80 °C) relatively cold and dry ambient air heats up quickly upon entering channels which cause further drop in relative humidity (below 20%). Low relative humidity of reactant gases dries up polymer membrane and decrease its proton conductivity which results in fuel cell performance drop. It is possible to maintain such temperature profile throughout fuel cell cathode channel which will result in close to 100 % RH. In order to achieve this, passive heat exchanger was designed using commercial CFD software (ANSYS Fluent). Such passive heat exchanger (with variable surface area) is suitable for small scale PEM fuel cells. In this study, passive heat exchanger for single PEM fuel cell segment (with 20 x 1 cm active area) was developed. Results show close to 100 % RH of air throughout cathode channel with increased fuel cell performance (mainly improved polarization curve) and improved durability.

Keywords: PEM fuel cell, passive heat exchange, relative humidity, thermal management

Procedia PDF Downloads 277
1270 The Physical Impact of Nano-Layer Due to Dispersions of Carbon Nano-Tubes through an Absorbent Channel: A Numerical Nano-Fluid Flow Model

Authors: Muhammad Zubair Akbar Qureshi, Abdul Bari Farooq

Abstract:

The intention of the current study to analyze the significance of nano-layer in incompressible magneto-hydrodynamics (MHD) flow of a Newtonian nano-fluid consisting of carbon nano-materials has been considered through an absorbent channel with moving porous walls. Using applicable similarity transforms, the governing equations are converted into a system of nonlinear ordinary differential equations which are solved by using the 4th-order Runge-Kutta technique together with shooting methodology. The phenomena of nano-layer have also been modeled mathematically. The inspiration behind this segment is to reveal the behavior of involved parameters on velocity and temperature profiles. A detailed table is presented in which the effects of involved parameters on shear stress and heat transfer rate are discussed. Specially presented the impact of the thickness of the nano-layer and radius of the particle on the temperature profile. We observed that due to an increase in the thickness of the nano-layer, the heat transfer rate increases rapidly. The consequences of this research may be advantageous to the applications of biotechnology and industrial motive.

Keywords: carbon nano-tubes, magneto-hydrodynamics, nano-layer, thermal conductivity

Procedia PDF Downloads 128
1269 Analysis of Tourism Development Level and Research on Improvement Strategies - Take Chongqing as an Example

Authors: Jiajun Lu, Yun Ma

Abstract:

As a member of the tertiary industry, tourism is an important driving factor for urban economic development. As a well-known tourist city in China, according to statistics, the added value of tourism and related industries in 2022 will reach 106.326 billion yuan, a year-on-year increase of 1.2%, accounting for 3.7% of the city's GDP. However, the overall tourism development level of Chongqing is seriously unbalanced, and the tourism strength of the main urban area is much higher than that of the southeast Chongqing, northeast Chongqing and the surrounding city tourism area, and the overall tourism strength of the other three regions is relatively balanced. Based on the estimation of tourism development level and the geographic detector method, this paper finds that the important factors affecting the tourism development level of non-main urban areas in Chongqing are A-level tourist attractions. Through GIS geospatial analysis technology and SPSS data correlation research method, the spatial distribution characteristics and influencing factors of A-level tourist attractions in Chongqing were quantitatively analyzed by using data such as geospatial data cloud, relevant documents of Chongqing Municipal Commission of Culture and Tourism Development, planning cloud, and relevant statistical yearbooks. The results show that: (1) The spatial distribution of tourist attractions in non-main urban areas of Chongqing is agglomeration and uneven. (2) The spatial distribution of A-level tourist attractions in non-main urban areas of Chongqing is affected by ecological factors, and the degree of influence is in the order of water factors> topographic factors > green space factors.

Keywords: tourist attractions, geographic detectors, quantitative research, ecological factors, GIS technology, SPSS analysis

Procedia PDF Downloads 9
1268 Stabilization of Expansive Soils with Polypropylene Fiber

Authors: Ali Sinan Soğancı

Abstract:

Expansive soils are often encountered in many parts of the world, especially in arid and semi-arid fields. Such kind of soils, generally including active clay minerals in low water content, enlarge in volume by absorbing the water through the surface and cause a great harm to the light structures such as channel coating, roads and airports. The expansive soils were encountered on the path of Apa-Hotamış conveyance channel belonging to the State Hydraulic Works in the region of Konya. In the research done in this area, it is predicted that the soil has a swollen nature and the soil should be filled with proper granular equipment by digging the ground to 50-60 cm. In this study, for purpose of helping the other research to be done in the same area, it is thought that instead of replacing swollen soil with the granular soil, by stabilizing it with polypropylene fiber and using it its original place decreases effect of swelling percent, in this way the cost will be decreased. Therefore, a laboratory tests were conducted to study the effects of polypropylene fiber on swelling characteristics of expansive soil. Test results indicated that inclusion of fiber reduced swell percent of expansive soil. As the fiber content increased, the unconfined compressive strength was increased. Finally, it can be say that stabilization of expansive soils with polypropylene fiber is an effective method.

Keywords: expansive soils, polypropylene fiber, stabilization, swelling percent

Procedia PDF Downloads 473
1267 Numerical Solution of Transient Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates

Authors: Djalal Hamed

Abstract:

The aim of this paper is to perform, by mean of the finite volume method, a numerical solution of the transient natural convection in a narrow rectangular channel between two vertical parallel Material Testing Reactor (MTR)-type fuel plates, imposed under a heat flux with a cosine shape to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not reach a specific safety limits (90 °C). For this purpose, a computer program is developed to determine the principal parameters related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor core power. Throughout the obtained results, we noticed that the core power should not reach 400 kW, to ensure a safe passive residual heat removing from the nuclear core by the upward natural convection cooling mode.

Keywords: buoyancy force, friction force, finite volume method, transient natural convection

Procedia PDF Downloads 196
1266 Fire and Explosion Consequence Modeling Using Fire Dynamic Simulator: A Case Study

Authors: Iftekhar Hassan, Sayedil Morsalin, Easir A Khan

Abstract:

Accidents involving fire occur frequently in recent times and their causes showing a great deal of variety which require intervention methods and risk assessment strategies are unique in each case. On September 4, 2020, a fire and explosion occurred in a confined space caused by a methane gas leak from an underground pipeline in Baitus Salat Jame mosque during Night (Esha) prayer in Narayanganj District, Bangladesh that killed 34 people. In this research, this incident is simulated using Fire Dynamics Simulator (FDS) software to analyze and understand the nature of the accident and associated consequences. FDS is an advanced computational fluid dynamics (CFD) system of fire-driven fluid flow which solves numerically a large eddy simulation form of the Navier–Stokes’s equations for simulation of the fire and smoke spread and prediction of thermal radiation, toxic substances concentrations and other relevant parameters of fire. This study focuses on understanding the nature of the fire and consequence evaluation due to thermal radiation caused by vapor cloud explosion. An evacuation modeling was constructed to visualize the effect of evacuation time and fractional effective dose (FED) for different types of agents. The results were presented by 3D animation, sliced pictures and graphical representation to understand fire hazards caused by thermal radiation or smoke due to vapor cloud explosion. This study will help to design and develop appropriate respond strategy for preventing similar accidents.

Keywords: consequence modeling, fire and explosion, fire dynamics simulation (FDS), thermal radiation

Procedia PDF Downloads 225
1265 Automated Detection of Targets and Retrieve the Corresponding Analytics Using Augmented Reality

Authors: Suvarna Kumar Gogula, Sandhya Devi Gogula, P. Chanakya

Abstract:

Augmented reality is defined as the collection of the digital (or) computer generated information like images, audio, video, 3d models, etc. and overlay them over the real time environment. Augmented reality can be thought as a blend between completely synthetic and completely real. Augmented reality provides scope in a wide range of industries like manufacturing, retail, gaming, advertisement, tourism, etc. and brings out new dimensions in the modern digital world. As it overlays the content, it makes the users enhance the knowledge by providing the content blended with real world. In this application, we integrated augmented reality with data analytics and integrated with cloud so the virtual content will be generated on the basis of the data present in the database and we used marker based augmented reality where every marker will be stored in the database with corresponding unique ID. This application can be used in wide range of industries for different business processes, but in this paper, we mainly focus on the marketing industry which helps the customer in gaining the knowledge about the products in the market which mainly focus on their prices, customer feedback, quality, and other benefits. This application also focuses on providing better market strategy information for marketing managers who obtain the data about the stocks, sales, customer response about the product, etc. In this paper, we also included the reports from the feedback got from different people after the demonstration, and finally, we presented the future scope of Augmented Reality in different business processes by integrating with new technologies like cloud, big data, artificial intelligence, etc.

Keywords: augmented reality, data analytics, catch room, marketing and sales

Procedia PDF Downloads 237
1264 A Comprehensive Safety Analysis for a Pressurized Water Reactor Fueled with Mixed-Oxide Fuel as an Accident Tolerant Fuel

Authors: Mohamed Y. M. Mohsen

Abstract:

The viability of utilising mixed-oxide fuel (MOX) ((U₀.₉, rgPu₀.₁) O₂) as an accident-tolerant fuel (ATF) has been thoroughly investigated. MOX fuel provides the best example of a nuclear waste recycling process. The MCNPX 2.7 code was used to determine the main neutronic features, especially the radial power distribution, to identify the hot channel on which the thermal-hydraulic (TH) study was performed. Based on the computational fluid dynamics technique, the simulation of the rod-centered thermal-hydraulic subchannel model was implemented using COMSOL Multiphysics. TH analysis was utilised to determine the axially and radially distributed temperatures of the fuel and cladding materials, as well as the departure from the nucleate boiling ratio (DNBR) along the coolant channel. COMSOL Multiphysics can simulate reality by coupling multiphysics, such as coupling between heat transfer and solid mechanics. The main solid structure parameters, such as the von Mises stress, volumetric strain, and displacement, were simulated using this coupling. When the neutronic, TH, and solid structure performances of UO₂ and ((U₀.₉, rgPu₀.₁) O₂) were compared, the results showed considerable improvement and an increase in safety margins with the use of ((U₀.₉, rgPu₀.₁) O₂).

Keywords: mixed-oxide, MCNPX, neutronic analysis, COMSOL-multiphysics, thermal-hydraulic, solid structure

Procedia PDF Downloads 106
1263 Development of Colorimetric Based Microfluidic Platform for Quantification of Fluid Contaminants

Authors: Sangeeta Palekar, Mahima Rana, Jayu Kalambe

Abstract:

In this paper, a microfluidic-based platform for the quantification of contaminants in the water is proposed. The proposed system uses microfluidic channels with an embedded environment for contaminants detection in water. Microfluidics-based platforms present an evident stage of innovation for fluid analysis, with different applications advancing minimal efforts and simplicity of fabrication. Polydimethylsiloxane (PDMS)-based microfluidics channel is fabricated using a soft lithography technique. Vertical and horizontal connections for fluid dispensing with the microfluidic channel are explored. The principle of colorimetry, which incorporates the use of Griess reagent for the detection of nitrite, has been adopted. Nitrite has high water solubility and water retention, due to which it has a greater potential to stay in groundwater, endangering aquatic life along with human health, hence taken as a case study in this work. The developed platform also compares the detection methodology, containing photodetectors for measuring absorbance and image sensors for measuring color change for quantification of contaminants like nitrite in water. The utilization of image processing techniques offers the advantage of operational flexibility, as the same system can be used to identify other contaminants present in water by introducing minor software changes.

Keywords: colorimetric, fluid contaminants, nitrite detection, microfluidics

Procedia PDF Downloads 198
1262 The Effect of Polypropylene Fiber in the Stabilization of Expansive Soils

Authors: Ali Sinan Soğancı

Abstract:

Expansive soils are often encountered in many parts of the world, especially in arid and semi-arid fields. Such kind of soils, generally including active clay minerals in low water content, enlarge in volume by absorbing the water through the surface and cause a great harm to the light structures such as channel coating, roads and airports. The expansive soils were encountered on the path of Apa-Hotamış conveyance channel belonging to the State Hydraulic Works in the region of Konya. In the research done in this area, it is predicted that the soil has a swollen nature and the soil should be filled with proper granular equipment by digging the ground to 50-60 cm. In this study, for purpose of helping the other research to be done in the same area, it is thought that instead of replacing swollen soil with the granular soil, by stabilizing it with polypropylene fiber and using it its original place decreases effect of swelling percent, in this way the cost will be decreased. Therefore, a laboratory tests were conducted to study the effects of polypropylene fiber on swelling characteristics of expansive soil. Test results indicated that inclusion of fiber reduced swell percent of expansive soil. As the fiber content increased, the unconfined compressive strength was increased. Finally, it can be say that stabilization of expansive soils with polypropylene fiber is an effective method.

Keywords: expansive soils, polypropylene fiber, stabilization, swelling percent

Procedia PDF Downloads 519
1261 Effect of Atmospheric Turbulence on Hybrid FSO/RF Link Availability under Qatar's Harsh Climate

Authors: Abir Touati, Syed Jawad Hussain, Farid Touati, Ammar Bouallegue

Abstract:

Although there has been a growing interest in the hybrid free-space optical link and radio frequency FSO/RF communication system, the current literature is limited to results obtained in moderate or cold environment. In this paper, using a soft switching approach, we investigate the effect of weather inhomogeneities on the strength of turbulence hence the channel refractive index under Qatar harsh environment and their influence on the hybrid FSO/RF availability. In this approach, either FSO/RF or simultaneous or none of them can be active. Based on soft switching approach and a finite state Markov Chain (FSMC) process, we model the channel fading for the two links and derive a mathematical expression for the outage probability of the hybrid system. Then, we evaluate the behavior of the hybrid FSO/RF under hazy and harsh weather. Results show that the FSO/RF soft switching renders the system outage probability less than that of each link individually. A soft switching algorithm is being implemented on FPGAs using Raptor code interfaced to the two terminals of a 1Gbps/100 Mbps FSO/RF hybrid system, the first being implemented in the region. Experimental results are compared to the above simulation results.

Keywords: atmospheric turbulence, haze, hybrid FSO/RF, outage probability, refractive index

Procedia PDF Downloads 419
1260 Design Flood Estimation in Satluj Basin-Challenges for Sunni Dam Hydro Electric Project, Himachal Pradesh-India

Authors: Navneet Kalia, Lalit Mohan Verma, Vinay Guleria

Abstract:

Introduction: Design Flood studies are essential for effective planning and functioning of water resource projects. Design flood estimation for Sunni Dam Hydro Electric Project located in State of Himachal Pradesh, India, on the river Satluj, was a big challenge in view of the river flowing in the Himalayan region from Tibet to India, having a large catchment area of varying topography, climate, and vegetation. No Discharge data was available for the part of the river in Tibet, whereas, for India, it was available only at Khab, Rampur, and Luhri. The estimation of Design Flood using standard methods was not possible. This challenge was met using two different approaches for upper (snow-fed) and lower (rainfed) catchment using Flood Frequency Approach and Hydro-metrological approach. i) For catchment up to Khab Gauging site (Sub-Catchment, C1), Flood Frequency approach was used. Around 90% of the catchment area (46300 sqkm) up to Khab is snow-fed which lies above 4200m. In view of the predominant area being snow-fed area, 1 in 10000 years return period flood estimated using Flood Frequency analysis at Khab was considered as Probable Maximum Flood (PMF). The flood peaks were taken from daily observed discharges at Khab, which were increased by 10% to make them instantaneous. Design Flood of 4184 cumec thus obtained was considered as PMF at Khab. ii) For catchment between Khab and Sunni Dam (Sub-Catchment, C2), Hydro-metrological approach was used. This method is based upon the catchment response to the rainfall pattern observed (Probable Maximum Precipitation - PMP) in a particular catchment area. The design flood computation mainly involves the estimation of a design storm hyetograph and derivation of the catchment response function. A unit hydrograph is assumed to represent the response of the entire catchment area to a unit rainfall. The main advantage of the hydro-metrological approach is that it gives a complete flood hydrograph which allows us to make a realistic determination of its moderation effect while passing through a reservoir or a river reach. These studies were carried out to derive PMF for the catchment area between Khab and Sunni Dam site using a 1-day and 2-day PMP values of 232 and 416 cm respectively. The PMF so obtained was 12920.60 cumec. Final Result: As the Catchment area up to Sunni Dam has been divided into 2 sub-catchments, the Flood Hydrograph for the Catchment C1 has been routed through the connecting channel reach (River Satluj) using Muskingum method and accordingly, the Design Flood was computed after adding the routed flood ordinates with flood ordinates of catchment C2. The total Design Flood (i.e. 2-Day PMF) with a peak of 15473 cumec was obtained. Conclusion: Even though, several factors are relevant while deciding the method to be used for design flood estimation, data availability and the purpose of study are the most important factors. Since, generally, we cannot wait for the hydrological data of adequate quality and quantity to be available, flood estimation has to be done using whatever data is available. Depending upon the type of data available for a particular catchment, the method to be used is to be selected.

Keywords: design flood, design storm, flood frequency, PMF, PMP, unit hydrograph

Procedia PDF Downloads 326
1259 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery

Authors: Forouzan Salehi Fergeni

Abstract:

Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.

Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine

Procedia PDF Downloads 50
1258 When Ideological Intervention Backfires: The Case of the Iranian Clerical System’s Intervention in the Pandemic-Era Elementary Education

Authors: Hasti Ebrahimi

Abstract:

This study sheds light on the challenges and difficulties caused by the Iranian clerical system’s intervention in the country’s school education during the COVID-19 pandemic, when schools remained closed for almost two years. The pandemic brought Iranian elementary school education to a standstill for almost 6 months before the country developed a nationwide learning platform – a customized television network. While the initiative seemed to have been welcomed by the majority of Iranian parents, it resented some of the more traditional strata of the society, including the influential Friday Prayer Leaders who found the televised version of the elementary education ‘less spiritual’ and ‘more ‘material’ or science-based. That prompted the Iranian Channel of Education, the specialized television network that had been chosen to serve as a nationally televised school during the pandemic, to try to redefine much of its online elementary school educational content within the religious ideology of the Islamic Republic of Iran. As a result, young clergies appeared on the television screen as preachers of Islamic morality, religious themes and even sociology, history, and arts. The present research delves into the consequences of such an intervention, how it might have impacted the infrastructure of Iranian elementary education and whether or not the new ideology-infused curricula would withstand the opposition of students and mainstream teachers. The main methodology used in this study is Critical Discourse Analysis with a cognitive approach. It systematically finds and analyzes the alternative ideological structures of discourse in the Iranian Channel of Education from September 2021 to July 2022, when the clergy ‘teachers’ replaced ‘regular’ history and arts teachers on the television screen for the first time. It has aimed to assess how the various uses of the alternative ideological discourse in elementary school content have influenced the processes of learning: the acquisition of knowledge, beliefs, opinions, attitudes, abilities, and other cognitive and emotional changes, which are the goals of institutional education. This study has been an effort aimed at understanding and perhaps clarifying the relationships between the traditional textual structures and processing on the one hand and socio-cultural contexts created by the clergy teachers on the other. This analysis shows how the clerical portion of elementary education on the Channel of Education that seemed to have dominated the entire televised teaching and learning process faded away as the pandemic was contained and mainstream classes were restored. It nevertheless reflects the deep ideological rifts between the clerical approach to school education and the mainstream teaching process in Iranian schools. The semantic macrostructures of social content in the current Iranian elementary school education, this study suggests, have remained intact despite the temporary ideological intervention of the ruling clerical elite in their formulation and presentation. Finally, using thematic and schematic frameworks, the essay suggests that the ‘clerical’ social content taught on the Channel of Education during the pandemic cannot have been accepted cognitively by the channel’s target audience, including students and mainstream teachers.

Keywords: televised elementary school learning, Covid 19, critical discourse analysis, Iranian clerical ideology

Procedia PDF Downloads 54
1257 Optimizing Data Integration and Management Strategies for Upstream Oil and Gas Operations

Authors: Deepak Singh, Rail Kuliev

Abstract:

The abstract highlights the critical importance of optimizing data integration and management strategies in the upstream oil and gas industry. With its complex and dynamic nature generating vast volumes of data, efficient data integration and management are essential for informed decision-making, cost reduction, and maximizing operational performance. Challenges such as data silos, heterogeneity, real-time data management, and data quality issues are addressed, prompting the proposal of several strategies. These strategies include implementing a centralized data repository, adopting industry-wide data standards, employing master data management (MDM), utilizing real-time data integration technologies, and ensuring data quality assurance. Training and developing the workforce, “reskilling and upskilling” the employees and establishing robust Data Management training programs play an essential role and integral part in this strategy. The article also emphasizes the significance of data governance and best practices, as well as the role of technological advancements such as big data analytics, cloud computing, Internet of Things (IoT), and artificial intelligence (AI) and machine learning (ML). To illustrate the practicality of these strategies, real-world case studies are presented, showcasing successful implementations that improve operational efficiency and decision-making. In present study, by embracing the proposed optimization strategies, leveraging technological advancements, and adhering to best practices, upstream oil and gas companies can harness the full potential of data-driven decision-making, ultimately achieving increased profitability and a competitive edge in the ever-evolving industry.

Keywords: master data management, IoT, AI&ML, cloud Computing, data optimization

Procedia PDF Downloads 70
1256 Multiphase Flow Regime Detection Algorithm for Gas-Liquid Interface Using Ultrasonic Pulse-Echo Technique

Authors: Serkan Solmaz, Jean-Baptiste Gouriet, Nicolas Van de Wyer, Christophe Schram

Abstract:

Efficiency of the cooling process for cryogenic propellant boiling in engine cooling channels on space applications is relentlessly affected by the phase change occurs during the boiling. The effectiveness of the cooling process strongly pertains to the type of the boiling regime such as nucleate and film. Geometric constraints like a non-transparent cooling channel unable to use any of visualization methods. The ultrasonic (US) technique as a non-destructive method (NDT) has therefore been applied almost in every engineering field for different purposes. Basically, the discontinuities emerge between mediums like boundaries among different phases. The sound wave emitted by the US transducer is both transmitted and reflected through a gas-liquid interface which makes able to detect different phases. Due to the thermal and structural concerns, it is impractical to sustain a direct contact between the US transducer and working fluid. Hence the transducer should be located outside of the cooling channel which results in additional interfaces and creates ambiguities on the applicability of the present method. In this work, an exploratory research is prompted so as to determine detection ability and applicability of the US technique on the cryogenic boiling process for a cooling cycle where the US transducer is taken place outside of the channel. Boiling of the cryogenics is a complex phenomenon which mainly brings several hindrances for experimental protocol because of thermal properties. Thus substitute materials are purposefully selected based on such parameters to simplify experiments. Aside from that, nucleate and film boiling regimes emerging during the boiling process are simply simulated using non-deformable stainless steel balls, air-bubble injection apparatuses and air clearances instead of conducting a real-time boiling process. A versatile detection algorithm is perennially developed concerning exploratory studies afterward. According to the algorithm developed, the phases can be distinguished 99% as no-phase, air-bubble, and air-film presences. The results show the detection ability and applicability of the US technique for an exploratory purpose.

Keywords: Ultrasound, ultrasonic, multiphase flow, boiling, cryogenics, detection algorithm

Procedia PDF Downloads 170
1255 Contribution to the Study of Automatic Epileptiform Pattern Recognition in Long Term EEG Signals

Authors: Christine F. Boos, Fernando M. Azevedo

Abstract:

Electroencephalogram (EEG) is a record of the electrical activity of the brain that has many applications, such as monitoring alertness, coma and brain death; locating damaged areas of the brain after head injury, stroke and tumor; monitoring anesthesia depth; researching physiology and sleep disorders; researching epilepsy and localizing the seizure focus. Epilepsy is a chronic condition, or a group of diseases of high prevalence, still poorly explained by science and whose diagnosis is still predominantly clinical. The EEG recording is considered an important test for epilepsy investigation and its visual analysis is very often applied for clinical confirmation of epilepsy diagnosis. Moreover, this EEG analysis can also be used to help define the types of epileptic syndrome, determine epileptiform zone, assist in the planning of drug treatment and provide additional information about the feasibility of surgical intervention. In the context of diagnosis confirmation the analysis is made using long term EEG recordings with at least 24 hours long and acquired by a minimum of 24 electrodes in which the neurophysiologists perform a thorough visual evaluation of EEG screens in search of specific electrographic patterns called epileptiform discharges. Considering that the EEG screens usually display 10 seconds of the recording, the neurophysiologist has to evaluate 360 screens per hour of EEG or a minimum of 8,640 screens per long term EEG recording. Analyzing thousands of EEG screens in search patterns that have a maximum duration of 200 ms is a very time consuming, complex and exhaustive task. Because of this, over the years several studies have proposed automated methodologies that could facilitate the neurophysiologists’ task of identifying epileptiform discharges and a large number of methodologies used neural networks for the pattern classification. One of the differences between all of these methodologies is the type of input stimuli presented to the networks, i.e., how the EEG signal is introduced in the network. Five types of input stimuli have been commonly found in literature: raw EEG signal, morphological descriptors (i.e. parameters related to the signal’s morphology), Fast Fourier Transform (FFT) spectrum, Short-Time Fourier Transform (STFT) spectrograms and Wavelet Transform features. This study evaluates the application of these five types of input stimuli and compares the classification results of neural networks that were implemented using each of these inputs. The performance of using raw signal varied between 43 and 84% efficiency. The results of FFT spectrum and STFT spectrograms were quite similar with average efficiency being 73 and 77%, respectively. The efficiency of Wavelet Transform features varied between 57 and 81% while the descriptors presented efficiency values between 62 and 93%. After simulations we could observe that the best results were achieved when either morphological descriptors or Wavelet features were used as input stimuli.

Keywords: Artificial neural network, electroencephalogram signal, pattern recognition, signal processing

Procedia PDF Downloads 528