Search results for: ant colony algorithms
1450 A Generalized Weighted Loss for Support Vextor Classification and Multilayer Perceptron
Authors: Filippo Portera
Abstract:
Usually standard algorithms employ a loss where each error is the mere absolute difference between the true value and the prediction, in case of a regression task. In the present, we present several error weighting schemes that are a generalization of the consolidated routine. We study both a binary classification model for Support Vextor Classification and a regression net for Multylayer Perceptron. Results proves that the error is never worse than the standard procedure and several times it is better.Keywords: loss, binary-classification, MLP, weights, regression
Procedia PDF Downloads 951449 Early Prediction of Diseases in a Cow for Cattle Industry
Authors: Ghufran Ahmed, Muhammad Osama Siddiqui, Shahbaz Siddiqui, Rauf Ahmad Shams Malick, Faisal Khan, Mubashir Khan
Abstract:
In this paper, a machine learning-based approach for early prediction of diseases in cows is proposed. Different ML algos are applied to extract useful patterns from the available dataset. Technology has changed today’s world in every aspect of life. Similarly, advanced technologies have been developed in livestock and dairy farming to monitor dairy cows in various aspects. Dairy cattle monitoring is crucial as it plays a significant role in milk production around the globe. Moreover, it has become necessary for farmers to adopt the latest early prediction technologies as the food demand is increasing with population growth. This highlight the importance of state-ofthe-art technologies in analyzing how important technology is in analyzing dairy cows’ activities. It is not easy to predict the activities of a large number of cows on the farm, so, the system has made it very convenient for the farmers., as it provides all the solutions under one roof. The cattle industry’s productivity is boosted as the early diagnosis of any disease on a cattle farm is detected and hence it is treated early. It is done on behalf of the machine learning output received. The learning models are already set which interpret the data collected in a centralized system. Basically, we will run different algorithms on behalf of the data set received to analyze milk quality, and track cows’ health, location, and safety. This deep learning algorithm draws patterns from the data, which makes it easier for farmers to study any animal’s behavioral changes. With the emergence of machine learning algorithms and the Internet of Things, accurate tracking of animals is possible as the rate of error is minimized. As a result, milk productivity is increased. IoT with ML capability has given a new phase to the cattle farming industry by increasing the yield in the most cost-effective and time-saving manner.Keywords: IoT, machine learning, health care, dairy cows
Procedia PDF Downloads 701448 Personalization of Context Information Retrieval Model via User Search Behaviours for Ranking Document Relevance
Authors: Kehinde Agbele, Longe Olumide, Daniel Ekong, Dele Seluwa, Akintoye Onamade
Abstract:
One major problem of most existing information retrieval systems (IRS) is that they provide even access and retrieval results to individual users specially based on the query terms user issued to the system. When using IRS, users often present search queries made of ad-hoc keywords. It is then up to IRS to obtain a precise representation of user’s information need, and the context of the information. In effect, the volume and range of the Internet documents is growing exponentially and consequently causes difficulties for a user to obtain information that precisely matches the user interest. Diverse combination techniques are used to achieve the specific goal. This is due, firstly, to the fact that users often do not present queries to IRS that optimally represent the information they want, and secondly, the measure of a document's relevance is highly subjective between diverse users. In this paper, we address the problem by investigating the optimization of IRS to individual information needs in order of relevance. The paper addressed the development of algorithms that optimize the ranking of documents retrieved from IRS. This paper addresses this problem with a two-fold approach in order to retrieve domain-specific documents. Firstly, the design of context of information. The context of a query determines retrieved information relevance using personalization and context-awareness. Thus, executing the same query in diverse contexts often leads to diverse result rankings based on the user preferences. Secondly, the relevant context aspects should be incorporated in a way that supports the knowledge domain representing users’ interests. In this paper, the use of evolutionary algorithms is incorporated to improve the effectiveness of IRS. A context-based information retrieval system that learns individual needs from user-provided relevance feedback is developed whose retrieval effectiveness is evaluated using precision and recall metrics. The results demonstrate how to use attributes from user interaction behavior to improve the IR effectiveness.Keywords: context, document relevance, information retrieval, personalization, user search behaviors
Procedia PDF Downloads 4631447 Brain-Computer Interfaces That Use Electroencephalography
Authors: Arda Ozkurt, Ozlem Bozkurt
Abstract:
Brain-computer interfaces (BCIs) are devices that output commands by interpreting the data collected from the brain. Electroencephalography (EEG) is a non-invasive method to measure the brain's electrical activity. Since it was invented by Hans Berger in 1929, it has led to many neurological discoveries and has become one of the essential components of non-invasive measuring methods. Despite the fact that it has a low spatial resolution -meaning it is able to detect when a group of neurons fires at the same time-, it is a non-invasive method, making it easy to use without possessing any risks. In EEG, electrodes are placed on the scalp, and the voltage difference between a minimum of two electrodes is recorded, which is then used to accomplish the intended task. The recordings of EEGs include, but are not limited to, the currents along dendrites from synapses to the soma, the action potentials along the axons connecting neurons, and the currents through the synaptic clefts connecting axons with dendrites. However, there are some sources of noise that may affect the reliability of the EEG signals as it is a non-invasive method. For instance, the noise from the EEG equipment, the leads, and the signals coming from the subject -such as the activity of the heart or muscle movements- affect the signals detected by the electrodes of the EEG. However, new techniques have been developed to differentiate between those signals and the intended ones. Furthermore, an EEG device is not enough to analyze the data from the brain to be used by the BCI implication. Because the EEG signal is very complex, to analyze it, artificial intelligence algorithms are required. These algorithms convert complex data into meaningful and useful information for neuroscientists to use the data to design BCI devices. Even though for neurological diseases which require highly precise data, invasive BCIs are needed; non-invasive BCIs - such as EEGs - are used in many cases to help disabled people's lives or even to ease people's lives by helping them with basic tasks. For example, EEG is used to detect before a seizure occurs in epilepsy patients, which can then prevent the seizure with the help of a BCI device. Overall, EEG is a commonly used non-invasive BCI technique that has helped develop BCIs and will continue to be used to detect data to ease people's lives as more BCI techniques will be developed in the future.Keywords: BCI, EEG, non-invasive, spatial resolution
Procedia PDF Downloads 711446 AI for Efficient Geothermal Exploration and Utilization
Authors: Velimir Monty Vesselinov, Trais Kliplhuis, Hope Jasperson
Abstract:
Artificial intelligence (AI) is a powerful tool in the geothermal energy sector, aiding in both exploration and utilization. Identifying promising geothermal sites can be challenging due to limited surface indicators and the need for expensive drilling to confirm subsurface resources. Geothermal reservoirs can be located deep underground and exhibit complex geological structures, making traditional exploration methods time-consuming and imprecise. AI algorithms can analyze vast datasets of geological, geophysical, and remote sensing data, including satellite imagery, seismic surveys, geochemistry, geology, etc. Machine learning algorithms can identify subtle patterns and relationships within this data, potentially revealing hidden geothermal potential in areas previously overlooked. To address these challenges, a SIML (Science-Informed Machine Learning) technology has been developed. SIML methods are different from traditional ML techniques. In both cases, the ML models are trained to predict the spatial distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g., permeability, porosity, etc.). The traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes. In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models). This results in ML models that have a physical meaning and satisfy physics laws and constraints. The prototype of the developed software, called GeoTGO, is accessible through the cloud. Our software prototype demonstrates how different data sources can be made available for processing, executed demonstrative SIML analyses, and presents the results in a table and graphic form.Keywords: science-informed machine learning, artificial inteligence, exploration, utilization, hidden geothermal
Procedia PDF Downloads 531445 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization
Authors: Taha Benarbia
Abstract:
The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metricsKeywords: automated vehicles, connected vehicles, deep learning, smart transportation network
Procedia PDF Downloads 781444 PPRA Regulates DNA Replication Initiation and Cell Morphology in Escherichia coli
Authors: Ganesh K. Maurya, Reema Chaudhary, Neha Pandey, Hari S. Misra
Abstract:
PprA, a pleiotropic protein participating in radioresistance, has been reported for its roles in DNA replication initiation, genome segregation, cell division and DNA repair in polyextremophile Deinococcus radiodurans. Interestingly, expression of deinococcal PprA in E. coli suppresses its growth by reducing the number of colony forming units and provides better resistance against γ-radiation than control. We employed different biochemical and cell biology studies using PprA and its DNA binding/polymerization mutants (K133E & W183R) in E. coli. Cells expressing wild type PprA or its K133E mutant showed reduction in the amount of genomic DNA as well as chromosome copy number in comparison to W183R mutant of PprA and control cells, which suggests the role of PprA protein in regulation of DNA replication initiation in E. coli. Further, E. coli cells expressing PprA or its mutants exhibited different impact on cell morphology than control. Expression of PprA or K133E mutant displayed a significant increase in cell length upto 5 folds while W183R mutant showed cell length similar to uninduced control cells. We checked the interaction of deinococcal PprA and its mutants with E. coli DnaA using Bacterial two-hybrid system and co-immunoprecipitation. We observed a functional interaction of EcDnaA with PprA and K133E mutant but not with W183R mutant of PprA. Further, PprA or K133E mutant has suppressed the ATPase activity of EcDnaA but W183R mutant of PprA failed to do so. These observations suggested that PprA protein regulates DNA replication initiation and cell morphology of surrogate E. coli.Keywords: DNA replication, radioresistance, protein-protein interaction, cell morphology, ATPase activity
Procedia PDF Downloads 681443 Maximum Power Point Tracking Using FLC Tuned with GA
Authors: Mohamed Amine Haraoubia, Abdelaziz Hamzaoui, Najib Essounbouli
Abstract:
The pursuit of the MPPT has led to the development of many kinds of controllers, one of which is the Fuzzy Logic Controller, which has proven its worth. To further tune this controller this paper will discuss and analyze the use of Genetic Algorithms to tune the Fuzzy Logic Controller. It will provide an introduction to both systems, and test their compatibility and performance.Keywords: fuzzy logic controller, fuzzy logic, genetic algorithm, maximum power point, maximum power point tracking
Procedia PDF Downloads 3731442 PPRA Controls DNA Replication and Cell Growth in Escherichia Coli
Authors: Ganesh K. Maurya, Reema Chaudhary, Neha Pandey, Hari S. Misra
Abstract:
PprA, a pleiotropic protein participating in radioresistance, has been reported for its roles in DNA replication initiation, genome segregation, cell division and DNA repair in polyextremophile Deinococcus radiodurans. Interestingly, expression of deinococcal PprA in E. coli suppresses its growth by reducing the number of colony forming units and provide better resistance against γ-radiation than control. We employed different biochemical and cell biology studies using PprA and its DNA binding/polymerization mutants (K133E & W183R) in E. coli. Cells expressing wild type PprA or its K133E mutant showed reduction in the amount of genomic DNA as well as chromosome copy number in comparison to W183R mutant of PprA and control cells, which suggests the role of PprA protein in regulation of DNA replication initiation in E. coli. Further, E. coli cells expressing PprA or its mutants exhibited different impact on cell morphology than control. Expression of PprA or K133E mutant displayed a significant increase in cell length upto 5 folds while W183R mutant showed cell length similar to uninduced control cells. We checked the interaction of deinococcal PprA and its mutants with E. coli DnaA using Bacterial two-hybrid system and co-immunoprecipitation. We observed a functional interaction of EcDnaA with PprA and K133E mutant but not with W183R mutant of PprA. Further, PprA or K133E mutant has suppressed the ATPase activity of EcDnaA but W183R mutant of PprA failed to do so. These observations suggested that PprA protein regulates DNA replication initiation and cell morphology of surrogate E. coli.Keywords: DNA replication, radioresistance, protein-protein interaction, cell morphology, ATPase activity
Procedia PDF Downloads 691441 Sensitivity of Acanthamoeba castellanii-Grown Francisella to Three Different Disinfectants
Authors: M. Knezevic, V. Marecic, M. Ozanic, I. Kelava, M. Mihelcic, M. Santic
Abstract:
Francisella tularensis is a highly infectious, gram-negative intracellular bacterium and the causative agent of tularemia. The bacterium has been isolated from more than 250 wild species, including protozoa cells. Since Francisella is very virulent and persists in the environment for years, the aim of this study was to investigate whether Acanthamoeba castellanii-grown F. novicida exhibits an alteration in the resistance to disinfectants. It has been shown by other intracellular pathogens, including Legionella pneumophila that bacteria grown in amoeba exhibit more resistance to disinfectants. However, there is no data showing Francisella viability behaviour after intracellular life cycle in A. castellani. In this study, the bacterial suspensions of A. castellanii-grown or in vitro-grown Francisella were treated with three different disinfectants, and the bacterial viability after disinfection treatment was determined by a colony-forming unit (CFU) counting method, transmission electron microscopy (TEM), fluorescence microscopy as well as the leakage of intracellular fluid. Our results have shown that didecyldimethylammonium chloride (DDAC) combined with isopropyl alcohol was the most effective in bacterial killing; all in vitro-grown and A. castellanii-grown F. novicida were killed after only 10s. Surprisingly, in comparison to in vitro-grown bacteria, A. castellanii-grown F. novicida was more sensitive to decontamination by the benzalkonium chloride combined with DDAC and formic acid and the polyhexamethylene biguanide (PHMB). We can conclude that the tested disinfectants exhibit antimicrobial activity by causing a loss of structural organization and integrity of the Francisella cell wall and membrane and the subsequent leakage of the intracellular contents. Finally, the results of this study clearly demonstrate that Francisella grown in A. castellanii had become more susceptible to many disinfectants.Keywords: Acanthamoeba, disinfectant, Francisella, sensitivity
Procedia PDF Downloads 1001440 Transforming Data Science Curriculum Through Design Thinking
Authors: Samar Swaid
Abstract:
Today, corporates are moving toward the adoption of Design-Thinking techniques to develop products and services, putting their consumer as the heart of the development process. One of the leading companies in Design-Thinking, IDEO (Innovation, Design, Engineering Organization), defines Design-Thinking as an approach to problem-solving that relies on a set of multi-layered skills, processes, and mindsets that help people generate novel solutions to problems. Design thinking may result in new ideas, narratives, objects or systems. It is about redesigning systems, organizations, infrastructures, processes, and solutions in an innovative fashion based on the users' feedback. Tim Brown, president and CEO of IDEO, sees design thinking as a human-centered approach that draws from the designer's toolkit to integrate people's needs, innovative technologies, and business requirements. The application of design thinking has been witnessed to be the road to developing innovative applications, interactive systems, scientific software, healthcare application, and even to utilizing Design-Thinking to re-think business operations, as in the case of Airbnb. Recently, there has been a movement to apply design thinking to machine learning and artificial intelligence to ensure creating the "wow" effect on consumers. The Association of Computing Machinery task force on Data Science program states that" Data scientists should be able to implement and understand algorithms for data collection and analysis. They should understand the time and space considerations of algorithms. They should follow good design principles developing software, understanding the importance of those principles for testability and maintainability" However, this definition hides the user behind the machine who works on data preparation, algorithm selection and model interpretation. Thus, the Data Science program includes design thinking to ensure meeting the user demands, generating more usable machine learning tools, and developing ways of framing computational thinking. Here, describe the fundamentals of Design-Thinking and teaching modules for data science programs.Keywords: data science, design thinking, AI, currculum, transformation
Procedia PDF Downloads 811439 Systematic and Meta-Analysis of Navigation in Oral and Maxillofacial Trauma and Impact of Machine Learning and AI in Management
Authors: Shohreh Ghasemi
Abstract:
Introduction: Managing oral and maxillofacial trauma is a multifaceted challenge, as it can have life-threatening consequences and significant functional and aesthetic impact. Navigation techniques have been introduced to improve surgical precision to meet this challenge. A machine learning algorithm was also developed to support clinical decision-making regarding treating oral and maxillofacial trauma. Given these advances, this systematic meta-analysis aims to assess the efficacy of navigational techniques in treating oral and maxillofacial trauma and explore the impact of machine learning on their management. Methods: A detailed and comprehensive analysis of studies published between January 2010 and September 2021 was conducted through a systematic meta-analysis. This included performing a thorough search of Web of Science, Embase, and PubMed databases to identify studies evaluating the efficacy of navigational techniques and the impact of machine learning in managing oral and maxillofacial trauma. Studies that did not meet established entry criteria were excluded. In addition, the overall quality of studies included was evaluated using Cochrane risk of bias tool and the Newcastle-Ottawa scale. Results: Total of 12 studies, including 869 patients with oral and maxillofacial trauma, met the inclusion criteria. An analysis of studies revealed that navigation techniques effectively improve surgical accuracy and minimize the risk of complications. Additionally, machine learning algorithms have proven effective in predicting treatment outcomes and identifying patients at high risk for complications. Conclusion: The introduction of navigational technology has great potential to improve surgical precision in oral and maxillofacial trauma treatment. Furthermore, developing machine learning algorithms offers opportunities to improve clinical decision-making and patient outcomes. Still, further studies are necessary to corroborate these results and establish the optimal use of these technologies in managing oral and maxillofacial traumaKeywords: trauma, machine learning, navigation, maxillofacial, management
Procedia PDF Downloads 581438 Machine Learning in Agriculture: A Brief Review
Authors: Aishi Kundu, Elhan Raza
Abstract:
"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting
Procedia PDF Downloads 1041437 Evolutional Substitution Cipher on Chaotic Attractor
Authors: Adda Ali-Pacha, Naima Hadj-Said
Abstract:
Nowadays, the security of information is primarily founded on the calculation of algorithms that confidentiality depend on the number of bits necessary to define a cryptographic key. In this work, we introduce a new chaotic cryptosystem that we call evolutional substitution cipher on a chaotic attractor. In this research paper, we take the Henon attractor. The evolutional substitution cipher on Henon attractor is based on the principle of monoalphabetic cipher and it associates the plaintext at a succession of real numbers calculated from the attractor equations.Keywords: cryptography, substitution cipher, chaos theory, Henon attractor, evolutional substitution cipher
Procedia PDF Downloads 4291436 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy
Authors: Kemal Efe Eseller, Göktuğ Yazici
Abstract:
Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing
Procedia PDF Downloads 871435 Financial Ethics: A Review of 2010 Flash Crash
Authors: Omer Farooq, Salman Ahmed Khan, Sadaf Khalid
Abstract:
Modern day stock markets have almost entirely became automated. Even though it means increased profits for the investors by algorithms acting upon the slightest price change in order of microseconds, it also has given birth to many ethical dilemmas in the sense that slightest mistake can cause people to lose all of their livelihoods. This paper reviews one such event that happened on May 06, 2010 in which $1 trillion dollars disappeared from the Dow Jones Industrial Average. We are going to discuss its various aspects and the ethical dilemmas that have arisen due to it.Keywords: flash crash, market crash, stock market, stock market crash
Procedia PDF Downloads 5191434 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes
Authors: Madushani Rodrigo, Banuka Athuraliya
Abstract:
In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16
Procedia PDF Downloads 1191433 Performance Evaluation of Packet Scheduling with Channel Conditioning Aware Based on Wimax Networks
Authors: Elmabruk Laias, Abdalla M. Hanashi, Mohammed Alnas
Abstract:
Worldwide Interoperability for Microwave Access (WiMAX) became one of the most challenging issues, since it was responsible for distributing available resources of the network among all users this leaded to the demand of constructing and designing high efficient scheduling algorithms in order to improve the network utilization, to increase the network throughput, and to minimize the end-to-end delay. In this study, the proposed algorithm focuses on an efficient mechanism to serve non-real time traffic in congested networks by considering channel status.Keywords: WiMAX, Quality of Services (QoS), OPNE, Diff-Serv (DS).
Procedia PDF Downloads 2851432 Study and Analysis of the Factors Affecting Road Safety Using Decision Tree Algorithms
Authors: Naina Mahajan, Bikram Pal Kaur
Abstract:
The purpose of traffic accident analysis is to find the possible causes of an accident. Road accidents cannot be totally prevented but by suitable traffic engineering and management the accident rate can be reduced to a certain extent. This paper discusses the classification techniques C4.5 and ID3 using the WEKA Data mining tool. These techniques use on the NH (National highway) dataset. With the C4.5 and ID3 technique it gives best results and high accuracy with less computation time and error rate.Keywords: C4.5, ID3, NH(National highway), WEKA data mining tool
Procedia PDF Downloads 3381431 Key Transfer Protocol Based on Non-invertible Numbers
Authors: Luis A. Lizama-Perez, Manuel J. Linares, Mauricio Lopez
Abstract:
We introduce a method to perform remote user authentication on what we call non-invertible cryptography. It exploits the fact that the multiplication of an invertible integer and a non-invertible integer in a ring Zn produces a non-invertible integer making infeasible to compute factorization. The protocol requires the smallest key size when is compared with the main public key algorithms as Diffie-Hellman, Rivest-Shamir-Adleman or Elliptic Curve Cryptography. Since we found that the unique opportunity for the eavesdropper is to mount an exhaustive search on the keys, the protocol seems to be post-quantum.Keywords: invertible, non-invertible, ring, key transfer
Procedia PDF Downloads 1791430 MIMO Radar-Based System for Structural Health Monitoring and Geophysical Applications
Authors: Davide D’Aria, Paolo Falcone, Luigi Maggi, Aldo Cero, Giovanni Amoroso
Abstract:
The paper presents a methodology for real-time structural health monitoring and geophysical applications. The key elements of the system are a high performance MIMO RADAR sensor, an optical camera and a dedicated set of software algorithms encompassing interferometry, tomography and photogrammetry. The MIMO Radar sensor proposed in this work, provides an extremely high sensitivity to displacements making the system able to react to tiny deformations (up to tens of microns) with a time scale which spans from milliseconds to hours. The MIMO feature of the system makes the system capable of providing a set of two-dimensional images of the observed scene, each mapped on the azimuth-range directions with noticeably resolution in both the dimensions and with an outstanding repetition rate. The back-scattered energy, which is distributed in the 3D space, is projected on a 2D plane, where each pixel has as coordinates the Line-Of-Sight distance and the cross-range azimuthal angle. At the same time, the high performing processing unit allows to sense the observed scene with remarkable refresh periods (up to milliseconds), thus opening the way for combined static and dynamic structural health monitoring. Thanks to the smart TX/RX antenna array layout, the MIMO data can be processed through a tomographic approach to reconstruct the three-dimensional map of the observed scene. This 3D point cloud is then accurately mapped on a 2D digital optical image through photogrammetric techniques, allowing for easy and straightforward interpretations of the measurements. Once the three-dimensional image is reconstructed, a 'repeat-pass' interferometric approach is exploited to provide the user of the system with high frequency three-dimensional motion/vibration estimation of each point of the reconstructed image. At this stage, the methodology leverages consolidated atmospheric correction algorithms to provide reliable displacement and vibration measurements.Keywords: interferometry, MIMO RADAR, SAR, tomography
Procedia PDF Downloads 1951429 Unsupervised Part-of-Speech Tagging for Amharic Using K-Means Clustering
Authors: Zelalem Fantahun
Abstract:
Part-of-speech tagging is the process of assigning a part-of-speech or other lexical class marker to each word into naturally occurring text. Part-of-speech tagging is the most fundamental and basic task almost in all natural language processing. In natural language processing, the problem of providing large amount of manually annotated data is a knowledge acquisition bottleneck. Since, Amharic is one of under-resourced language, the availability of tagged corpus is the bottleneck problem for natural language processing especially for POS tagging. A promising direction to tackle this problem is to provide a system that does not require manually tagged data. In unsupervised learning, the learner is not provided with classifications. Unsupervised algorithms seek out similarity between pieces of data in order to determine whether they can be characterized as forming a group. This paper explicates the development of unsupervised part-of-speech tagger using K-Means clustering for Amharic language since large amount of data is produced in day-to-day activities. In the development of the tagger, the following procedures are followed. First, the unlabeled data (raw text) is divided into 10 folds and tokenization phase takes place; at this level, the raw text is chunked at sentence level and then into words. The second phase is feature extraction which includes word frequency, syntactic and morphological features of a word. The third phase is clustering. Among different clustering algorithms, K-means is selected and implemented in this study that brings group of similar words together. The fourth phase is mapping, which deals with looking at each cluster carefully and the most common tag is assigned to a group. This study finds out two features that are capable of distinguishing one part-of-speech from others these are morphological feature and positional information and show that it is possible to use unsupervised learning for Amharic POS tagging. In order to increase performance of the unsupervised part-of-speech tagger, there is a need to incorporate other features that are not included in this study, such as semantic related information. Finally, based on experimental result, the performance of the system achieves a maximum of 81% accuracy.Keywords: POS tagging, Amharic, unsupervised learning, k-means
Procedia PDF Downloads 4511428 A Novel Machine Learning Approach to Aid Agrammatism in Non-fluent Aphasia
Authors: Rohan Bhasin
Abstract:
Agrammatism in non-fluent Aphasia Cases can be defined as a language disorder wherein a patient can only use content words ( nouns, verbs and adjectives ) for communication and their speech is devoid of functional word types like conjunctions and articles, generating speech of with extremely rudimentary grammar . Past approaches involve Speech Therapy of some order with conversation analysis used to analyse pre-therapy speech patterns and qualitative changes in conversational behaviour after therapy. We describe this approach as a novel method to generate functional words (prepositions, articles, ) around content words ( nouns, verbs and adjectives ) using a combination of Natural Language Processing and Deep Learning algorithms. The applications of this approach can be used to assist communication. The approach the paper investigates is : LSTMs or Seq2Seq: A sequence2sequence approach (seq2seq) or LSTM would take in a sequence of inputs and output sequence. This approach needs a significant amount of training data, with each training data containing pairs such as (content words, complete sentence). We generate such data by starting with complete sentences from a text source, removing functional words to get just the content words. However, this approach would require a lot of training data to get a coherent input. The assumptions of this approach is that the content words received in the inputs of both text models are to be preserved, i.e, won't alter after the functional grammar is slotted in. This is a potential limit to cases of severe Agrammatism where such order might not be inherently correct. The applications of this approach can be used to assist communication mild Agrammatism in non-fluent Aphasia Cases. Thus by generating these function words around the content words, we can provide meaningful sentence options to the patient for articulate conversations. Thus our project translates the use case of generating sentences from content-specific words into an assistive technology for non-Fluent Aphasia Patients.Keywords: aphasia, expressive aphasia, assistive algorithms, neurology, machine learning, natural language processing, language disorder, behaviour disorder, sequence to sequence, LSTM
Procedia PDF Downloads 1641427 Price Prediction Line, Investment Signals and Limit Conditions Applied for the German Financial Market
Authors: Cristian Păuna
Abstract:
In the first decades of the 21st century, in the electronic trading environment, algorithmic capital investments became the primary tool to make a profit by speculations in financial markets. A significant number of traders, private or institutional investors are participating in the capital markets every day using automated algorithms. The autonomous trading software is today a considerable part in the business intelligence system of any modern financial activity. The trading decisions and orders are made automatically by computers using different mathematical models. This paper will present one of these models called Price Prediction Line. A mathematical algorithm will be revealed to build a reliable trend line, which is the base for limit conditions and automated investment signals, the core for a computerized investment system. The paper will guide how to apply these tools to generate entry and exit investment signals, limit conditions to build a mathematical filter for the investment opportunities, and the methodology to integrate all of these in automated investment software. The paper will also present trading results obtained for the leading German financial market index with the presented methods to analyze and to compare different automated investment algorithms. It was found that a specific mathematical algorithm can be optimized and integrated into an automated trading system with good and sustained results for the leading German Market. Investment results will be compared in order to qualify the presented model. In conclusion, a 1:6.12 risk was obtained to reward ratio applying the trigonometric method to the DAX Deutscher Aktienindex on 24 months investment. These results are superior to those obtained with other similar models as this paper reveal. The general idea sustained by this paper is that the Price Prediction Line model presented is a reliable capital investment methodology that can be successfully applied to build an automated investment system with excellent results.Keywords: algorithmic trading, automated trading systems, high-frequency trading, DAX Deutscher Aktienindex
Procedia PDF Downloads 1301426 Adaptive Power Control of the City Bus Integrated Photovoltaic System
Authors: Piotr Kacejko, Mariusz Duk, Miroslaw Wendeker
Abstract:
This paper presents an adaptive controller to track the maximum power point of a photovoltaic modules (PV) under fast irradiation change on the city-bus roof. Photovoltaic systems have been a prominent option as an additional energy source for vehicles. The Municipal Transport Company (MPK) in Lublin has installed photovoltaic panels on its buses roofs. The solar panels turn solar energy into electric energy and are used to load the buses electric equipment. This decreases the buses alternators load, leading to lower fuel consumption and bringing both economic and ecological profits. A DC–DC boost converter is selected as the power conditioning unit to coordinate the operating point of the system. In addition to the conversion efficiency of a photovoltaic panel, the maximum power point tracking (MPPT) method also plays a main role to harvest most energy out of the sun. The MPPT unit on a moving vehicle must keep tracking accuracy high in order to compensate rapid change of irradiation change due to dynamic motion of the vehicle. Maximum power point track controllers should be used to increase efficiency and power output of solar panels under changing environmental factors. There are several different control algorithms in the literature developed for maximum power point tracking. However, energy performances of MPPT algorithms are not clarified for vehicle applications that cause rapid changes of environmental factors. In this study, an adaptive MPPT algorithm is examined at real ambient conditions. PV modules are mounted on a moving city bus designed to test the solar systems on a moving vehicle. Some problems of a PV system associated with a moving vehicle are addressed. The proposed algorithm uses a scanning technique to determine the maximum power delivering capacity of the panel at a given operating condition and controls the PV panel. The aim of control algorithm was matching the impedance of the PV modules by controlling the duty cycle of the internal switch, regardless of changes of the parameters of the object of control and its outer environment. Presented algorithm was capable of reaching the aim of control. The structure of an adaptive controller was simplified on purpose. Since such a simple controller, armed only with an ability to learn, a more complex structure of an algorithm can only improve the result. The presented adaptive control system of the PV system is a general solution and can be used for other types of PV systems of both high and low power. Experimental results obtained from comparison of algorithms by a motion loop are presented and discussed. Experimental results are presented for fast change in irradiation and partial shading conditions. The results obtained clearly show that the proposed method is simple to implement with minimum tracking time and high tracking efficiency proving superior to the proposed method. This work has been financed by the Polish National Centre for Research and Development, PBS, under Grant Agreement No. PBS 2/A6/16/2013.Keywords: adaptive control, photovoltaic energy, city bus electric load, DC-DC converter
Procedia PDF Downloads 2111425 Transport Medium That Prevents the Conversion of Helicobacter Pylori to the Coccoid Form
Authors: Eldar Mammadov, Konul Mammadova, Aytaj Ilyaszada
Abstract:
Background: According to many studies, it is known that H. pylori transform into the coccoid form, which cannot be cultured and has poor metabolic activity.In this study, we succeeded in preserving the spiral shape of H.pylori for a long time by preparing a biphase transport medium with a hard bottom (Muller Hinton with 7% HRBC (horse red blood cells) agar 5ml) and liquid top part (BH (brain heart) broth + HS (horse serum)+7% HRBC+antibiotics (Vancomycin 5 mg, Trimethoprim lactate 25 mg, Polymyxin B 1250 I.U.)) in cell culture flasks with filter caps. For comparison, we also used a BH broth medium with 7% HRBC used for the transport of H.pylori. Methods: Rapid urease test positive 7 biopsy specimens were also inoculated into biphasic and BH broth medium with 7% HRBC, then put in CO2 Gaspak packages and sent to the laboratory. Then both mediums were kept in the thermostat at 37 °C for 1 day. After microscopic, PCR and urease test diagnosis, they were transferred to Columbia Agar with 7% HRBC. Incubated at 37°C for 5-7 days, cultures were examined for colony characteristics and bacterial morphology. E-test antimicrobial susceptibility test was performed. Results: There were 3 growths from biphasic transport medium passed to Columbia agar with 7% HRBC and only 1 growth from BH broth medium with 7% HRBC. It was also observed that after the first 3 days in BH broth medium with 7%, H.pylori passed into coccoid form and its biochemical activity weakened, while its spiral shape did not change for 2-3 weeks in the biphase transport medium. Conclusions: By using the biphase transport medium we have prepared; we can culture the bacterium by preventing H.pylori from spiraling into the coccoid form. In our opinion, this may result in the wide use of culture method for diagnosis of H.pylori, study of antibiotic susceptibility and molecular genetic analysis.Keywords: clinical trial, H.pylori, coccoid form, transport medium
Procedia PDF Downloads 731424 Unravelling the Knot: Towards a Definition of ‘Digital Labor’
Authors: Marta D'Onofrio
Abstract:
The debate on the digitalization of the economy has raised questions about how both labor and the regulation of work processes are changing due to the introduction of digital technologies in the productive system. Within the literature, the term ‘digital labor’ is commonly used to identify the impact of digitalization on labor. Despite the wide use of this term, it is still not available an unambiguous definition of it, and this could create confusion in the use of terminology and in the attempts of classification. As a consequence, the purpose of this paper is to provide for a definition and to propose a classification of ‘digital labor’, resorting to the theoretical approach of organizational studies.Keywords: digital labor, digitalization, data-driven algorithms, big data, organizational studies
Procedia PDF Downloads 1531423 Comfort Needs and Energy Practices in Low-Income, Tropical Housing from a Socio-Technical Perspective
Authors: Tania Sharmin
Abstract:
Energy use, overheating and thermal discomfort in low-income tropical housing remains an under-researched area. This research attempts to explore these aspects in the Loving Community, a housing colony created for former leprosy patients and their families in Ahmedabad in India. The living conditions in these households and working practices of the inhabitants in terms of how the building and its internal and external spaces are used, will be explored through interviews and monitoring which will be based on a household survey and a focus group discussion (FGD). The findings from the study will provide a unique and in-depth account of how the relocation of the affected households to the new, flood-resistant and architecturally-designed buildings may have affected the dwellers’ household routines (health and well-being, comfort, satisfaction and working practices) and overall living conditions compared to those living in poorly-designed, existing low-income housings. The new houses were built under an innovative building project supported by De Montfort University Leicester (DMU)’s Square Mile India project. A comparison of newly-built and existing building typologies will reveal how building design can affect people’s use of space and energy use. The findings will be helpful to design healthier, energy efficient and socially acceptable low-income housing in future, thus addressing United Nation’s sustainable development goals on three aspects: 3 (health and well-being), 7 (energy) and 11 (safe, resilient and sustainable human settlements). This will further facilitate knowledge exchange between policy makers, developers, designers and occupants focused on strategies to increase stakeholders’ participation in the design process.Keywords: thermal comfort, energy use, low-income housing, tropical climate
Procedia PDF Downloads 1231422 Krill-Herd Step-Up Approach Based Energy Efficiency Enhancement Opportunities in the Offshore Mixed Refrigerant Natural Gas Liquefaction Process
Authors: Kinza Qadeer, Muhammad Abdul Qyyum, Moonyong Lee
Abstract:
Natural gas has become an attractive energy source in comparison with other fossil fuels because of its lower CO₂ and other air pollutant emissions. Therefore, compared to the demand for coal and oil, that for natural gas is increasing rapidly world-wide. The transportation of natural gas over long distances as a liquid (LNG) preferable for several reasons, including economic, technical, political, and safety factors. However, LNG production is an energy-intensive process due to the tremendous amount of power requirements for compression of refrigerants, which provide sufficient cold energy to liquefy natural gas. Therefore, one of the major issues in the LNG industry is to improve the energy efficiency of existing LNG processes through a cost-effective approach that is 'optimization'. In this context, a bio-inspired Krill-herd (KH) step-up approach was examined to enhance the energy efficiency of a single mixed refrigerant (SMR) natural gas liquefaction (LNG) process, which is considered as a most promising candidate for offshore LNG production (FPSO). The optimal design of a natural gas liquefaction processes involves multivariable non-linear thermodynamic interactions, which lead to exergy destruction and contribute to process irreversibility. As key decision variables, the optimal values of mixed refrigerant flow rates and process operating pressures were determined based on the herding behavior of krill individuals corresponding to the minimum energy consumption for LNG production. To perform the rigorous process analysis, the SMR process was simulated in Aspen Hysys® software and the resulting model was connected with the Krill-herd approach coded in MATLAB. The optimal operating conditions found by the proposed approach significantly reduced the overall energy consumption of the SMR process by ≤ 22.5% and also improved the coefficient of performance in comparison with the base case. The proposed approach was also compared with other well-proven optimization algorithms, such as genetic and particle swarm optimization algorithms, and was found to exhibit a superior performance over these existing approaches.Keywords: energy efficiency, Krill-herd, LNG, optimization, single mixed refrigerant
Procedia PDF Downloads 1551421 Adaptive Process Monitoring for Time-Varying Situations Using Statistical Learning Algorithms
Authors: Seulki Lee, Seoung Bum Kim
Abstract:
Statistical process control (SPC) is a practical and effective method for quality control. The most important and widely used technique in SPC is a control chart. The main goal of a control chart is to detect any assignable changes that affect the quality output. Most conventional control charts, such as Hotelling’s T2 charts, are commonly based on the assumption that the quality characteristics follow a multivariate normal distribution. However, in modern complicated manufacturing systems, appropriate control chart techniques that can efficiently handle the nonnormal processes are required. To overcome the shortcomings of conventional control charts for nonnormal processes, several methods have been proposed to combine statistical learning algorithms and multivariate control charts. Statistical learning-based control charts, such as support vector data description (SVDD)-based charts, k-nearest neighbors-based charts, have proven their improved performance in nonnormal situations compared to that of the T2 chart. Beside the nonnormal property, time-varying operations are also quite common in real manufacturing fields because of various factors such as product and set-point changes, seasonal variations, catalyst degradation, and sensor drifting. However, traditional control charts cannot accommodate future condition changes of the process because they are formulated based on the data information recorded in the early stage of the process. In the present paper, we propose a SVDD algorithm-based control chart, which is capable of adaptively monitoring time-varying and nonnormal processes. We reformulated the SVDD algorithm into a time-adaptive SVDD algorithm by adding a weighting factor that reflects time-varying situations. Moreover, we defined the updating region for the efficient model-updating structure of the control chart. The proposed control chart simultaneously allows efficient model updates and timely detection of out-of-control signals. The effectiveness and applicability of the proposed chart were demonstrated through experiments with the simulated data and the real data from the metal frame process in mobile device manufacturing.Keywords: multivariate control chart, nonparametric method, support vector data description, time-varying process
Procedia PDF Downloads 299