Search results for: analysis data
41249 Clinical Feature Analysis and Prediction on Recurrence in Cervical Cancer
Authors: Ravinder Bahl, Jamini Sharma
Abstract:
The paper demonstrates analysis of the cervical cancer based on a probabilistic model. It involves technique for classification and prediction by recognizing typical and diagnostically most important test features relating to cervical cancer. The main contributions of the research include predicting the probability of recurrences in no recurrence (first time detection) cases. The combination of the conventional statistical and machine learning tools is applied for the analysis. Experimental study with real data demonstrates the feasibility and potential of the proposed approach for the said cause.Keywords: cervical cancer, recurrence, no recurrence, probabilistic, classification, prediction, machine learning
Procedia PDF Downloads 36041248 Preparing Data for Calibration of Mechanistic-Empirical Pavement Design Guide in Central Saudi Arabia
Authors: Abdulraaof H. Alqaili, Hamad A. Alsoliman
Abstract:
Through progress in pavement design developments, a pavement design method was developed, which is titled the Mechanistic Empirical Pavement Design Guide (MEPDG). Nowadays, the evolution in roads network and highways is observed in Saudi Arabia as a result of increasing in traffic volume. Therefore, the MEPDG currently is implemented for flexible pavement design by the Saudi Ministry of Transportation. Implementation of MEPDG for local pavement design requires the calibration of distress models under the local conditions (traffic, climate, and materials). This paper aims to prepare data for calibration of MEPDG in Central Saudi Arabia. Thus, the first goal is data collection for the design of flexible pavement from the local conditions of the Riyadh region. Since, the modifying of collected data to input data is needed; the main goal of this paper is the analysis of collected data. The data analysis in this paper includes processing each: Trucks Classification, Traffic Growth Factor, Annual Average Daily Truck Traffic (AADTT), Monthly Adjustment Factors (MAFi), Vehicle Class Distribution (VCD), Truck Hourly Distribution Factors, Axle Load Distribution Factors (ALDF), Number of axle types (single, tandem, and tridem) per truck class, cloud cover percent, and road sections selected for the local calibration. Detailed descriptions of input parameters are explained in this paper, which leads to providing of an approach for successful implementation of MEPDG. Local calibration of MEPDG to the conditions of Riyadh region can be performed based on the findings in this paper.Keywords: mechanistic-empirical pavement design guide (MEPDG), traffic characteristics, materials properties, climate, Riyadh
Procedia PDF Downloads 22641247 Data Disorders in Healthcare Organizations: Symptoms, Diagnoses, and Treatments
Authors: Zakieh Piri, Shahla Damanabi, Peyman Rezaii Hachesoo
Abstract:
Introduction: Healthcare organizations like other organizations suffer from a number of disorders such as Business Sponsor Disorder, Business Acceptance Disorder, Cultural/Political Disorder, Data Disorder, etc. As quality in healthcare care mostly depends on the quality of data, we aimed to identify data disorders and its symptoms in two teaching hospitals. Methods: Using a self-constructed questionnaire, we asked 20 questions in related to quality and usability of patient data stored in patient records. Research population consisted of 150 managers, physicians, nurses, medical record staff who were working at the time of study. We also asked their views about the symptoms and treatments for any data disorders they mentioned in the questionnaire. Using qualitative methods we analyzed the answers. Results: After classifying the answers, we found six main data disorders: incomplete data, missed data, late data, blurred data, manipulated data, illegible data. The majority of participants believed in their important roles in treatment of data disorders while others believed in health system problems. Discussion: As clinicians have important roles in producing of data, they can easily identify symptoms and disorders of patient data. Health information managers can also play important roles in early detection of data disorders by proactively monitoring and periodic check-ups of data.Keywords: data disorders, quality, healthcare, treatment
Procedia PDF Downloads 43341246 Form of Distribution of Traffic Accident and Environment Factors of Road Affecting of Traffic Accident in Dusit District, Only Area Responsible of Samsen Police Station
Authors: Musthaya Patchanee
Abstract:
This research aimed to study form of traffic distribution and environmental factors of road that affect traffic accidents in Dusit District, only areas responsible of Samsen Police Station. Data used in this analysis is the secondary data of traffic accident case from year 2011. Observed area units are 15 traffic lines that are under responsible of Samsen Police Station. Technique and method used are the Cartographic Method, the Correlation Analysis, and the Multiple Regression Analysis. The results of form of traffic accidents show that, the Samsen Road area had most traffic accidents (24.29%), second was Rachvithi Road (18.10%), third was Sukhothai Road (15.71%), fourth was Rachasrima Road (12.38%), and fifth was Amnuaysongkram Road (7.62%). The result from Dusit District, only areas responsible of Samsen police station, has suggested that the scale of accidents have high positive correlation with statistic significant at level 0.05 and the frequency of travel (r=0.857). Traffic intersection point (r=0.763)and traffic control equipments (r=0.713) are relevant factors respectively. By using the Multiple Regression Analysis, travel frequency is the only one that has considerable influences on traffic accidents in Dusit district only Samsen Police Station area. Also, a factor in frequency of travel can explain the change in traffic accidents scale to 73.40 (R2 = 0.734). By using the Multiple regression summation from analysis was Y ̂=-7.977+0.044X6.Keywords: form of traffic distribution, environmental factors of road, traffic accidents, Dusit district
Procedia PDF Downloads 39141245 Economic Analysis of Cassava Value Chain by Farmers in Ilesa West Local Government Area of Osun State
Authors: Maikasuwa Mohammed Abubakar, Okebiorun Ola, M. H. Sidi, Ala Ahmed Ladan, Ango Aabdullahi Kamba
Abstract:
The study examines the economic analysis of cassava value chain by farmers in Ilesa West Local Government Area of Osun State. Simple random sampling technique was used to collect data from 200 respondents from purposively selected wards in the L.G.A. The data collected were analyzed using budgetary analysis and value addition model. The result shows that an average total cost incurred by the input dealers was ₦9,062,127.74 while the average net profit realized was ₦1,038,102.40. Other actors such as producers, processors and marketers incurred an average total cost of ₦23,324.00, ₦130,177.00 and ₦523,755.00 per production season, respectively and the average net profit realized was ₦102,614.00 for cassava producers, ₦51,131.00 for cassava processors and ₦79,045.00 for cassava marketers during cassava production season. Further analysis shows the rate of investment for cassava input dealers was ₦0.1, for cassava producers was ₦4.4, for cassava processors were ₦0.40 and for cassava marketers was ₦0.20. This indicated that rate of return on cassava was higher in cassava production than in others corridors along the value chain of cassava. However, value added the cassava producers (₦102,536.16/season) was the highest when compared with value added by cassava processors (₦51,853.82/season) and cassava marketers (₦100,885.56/season).Keywords: Cassava, value chain, Ilesa West, Nigeria
Procedia PDF Downloads 33341244 Laban Movement Analysis Using Kinect
Authors: Bernstein Ran, Shafir Tal, Tsachor Rachelle, Studd Karen, Schuster Assaf
Abstract:
Laban Movement Analysis (LMA), developed in the dance community over the past seventy years, is an effective method for observing, describing, notating, and interpreting human movement to enhance communication and expression in everyday and professional life. Many applications that use motion capture data might be significantly leveraged if the Laban qualities will be recognized automatically. This paper presents an automated recognition method of Laban qualities from motion capture skeletal recordings and it is demonstrated on the output of Microsoft’s Kinect V2 sensor.Keywords: Laban movement analysis, multitask learning, Kinect sensor, machine learning
Procedia PDF Downloads 34141243 Big Data and Analytics in Higher Education: An Assessment of Its Status, Relevance and Future in the Republic of the Philippines
Authors: Byron Joseph A. Hallar, Annjeannette Alain D. Galang, Maria Visitacion N. Gumabay
Abstract:
One of the unique challenges provided by the twenty-first century to Philippine higher education is the utilization of Big Data. The higher education system in the Philippines is generating burgeoning amounts of data that contains relevant data that can be used to generate the information and knowledge needed for accurate data-driven decision making. This study examines the status, relevance and future of Big Data and Analytics in Philippine higher education. The insights gained from the study may be relevant to other developing nations similarly situated as the Philippines.Keywords: big data, data analytics, higher education, republic of the philippines, assessment
Procedia PDF Downloads 34841242 Body Composition Analysis of University Students by Anthropometry and Bioelectrical Impedance Analysis
Authors: Vinti Davar
Abstract:
Background: Worldwide, at least 2.8 million people die each year as a result of being overweight or obese, and 35.8 million (2.3%) of global DALYs are caused by overweight or obesity. Obesity is acknowledged as one of the burning public health problems reducing life expectancy and quality of life. The body composition analysis of the university population is essential in assessing the nutritional status, as well as the risk of developing diseases associated with abnormal body fat content so as to make nutritional recommendations. Objectives: The main aim was to determine the prevalence of obesity and overweight in University students using Anthropometric analysis and BIA methods Material and Methods: In this cross-sectional study, 283 university students participated. The body composition analysis was undertaken by using mainly: i) Anthropometric Measurement: Height, Weight, BMI, waist circumference, hip circumference and skin fold thickness, ii) Bio-electrical impedance was used for analysis of body fat mass, fat percent and visceral fat which was measured by Tanita SC-330P Professional Body Composition Analyzer. The data so collected were compiled in MS Excel and analyzed for males and females using SPSS 16.Results and Discussion: The mean age of the male (n= 153) studied subjects was 25.37 ±2.39 year and females (n=130) was 22.53 ±2.31. The data of BIA revealed very high mean fat per cent of the female subjects i.e. 30.3±6.5 per cent whereas mean fat per cent of the male subjects was 15.60±6.02 per cent indicating a normal body fat range. The findings showed high visceral fat of both males (12.92±3.02) and females (16.86±4.98). BMI, BF% and WHR were higher among females, and BMI was higher among males. The most evident correlation was verified between BF% and WHR for female students (r=0.902; p<0.001). The correlation of BFM and BF% with thickness of triceps, sub scapular and abdominal skin folds and BMI was significant (P<0.001). Conclusion: The studied data made it obvious that there is a need to initiate lifestyle changing strategies especially for adult females and encourage them to improve their dietary intake to prevent incidence of non communicable diseases due to obesity and high fat percentage.Keywords: anthropometry, bioelectrical impedance, body fat percentage, obesity
Procedia PDF Downloads 38041241 Discriminating Between Energy Drinks and Sports Drinks Based on Their Chemical Properties Using Chemometric Methods
Authors: Robert Cazar, Nathaly Maza
Abstract:
Energy drinks and sports drinks are quite popular among young adults and teenagers worldwide. Some concerns regarding their health effects – particularly those of the energy drinks - have been raised based on scientific findings. Differentiating between these two types of drinks by means of their chemical properties seems to be an instructive task. Chemometrics provides the most appropriate strategy to do so. In this study, a discrimination analysis of the energy and sports drinks has been carried out applying chemometric methods. A set of eleven samples of available commercial brands of drinks – seven energy drinks and four sports drinks – were collected. Each sample was characterized by eight chemical variables (carbohydrates, energy, sugar, sodium, pH, degrees Brix, density, and citric acid). The data set was standardized and examined by exploratory chemometric techniques such as clustering and principal component analysis. As a preliminary step, a variable selection was carried out by inspecting the variable correlation matrix. It was detected that some variables are redundant, so they can be safely removed, leaving only five variables that are sufficient for this analysis. They are sugar, sodium, pH, density, and citric acid. Then, a hierarchical clustering `employing the average – linkage criterion and using the Euclidian distance metrics was performed. It perfectly separates the two types of drinks since the resultant dendogram, cut at the 25% similarity level, assorts the samples in two well defined groups, one of them containing the energy drinks and the other one the sports drinks. Further assurance of the complete discrimination is provided by the principal component analysis. The projection of the data set on the first two principal components – which retain the 71% of the data information – permits to visualize the distribution of the samples in the two groups identified in the clustering stage. Since the first principal component is the discriminating one, the inspection of its loadings consents to characterize such groups. The energy drinks group possesses medium to high values of density, citric acid, and sugar. The sports drinks group, on the other hand, exhibits low values of those variables. In conclusion, the application of chemometric methods on a data set that features some chemical properties of a number of energy and sports drinks provides an accurate, dependable way to discriminate between these two types of beverages.Keywords: chemometrics, clustering, energy drinks, principal component analysis, sports drinks
Procedia PDF Downloads 10841240 Data Management and Analytics for Intelligent Grid
Authors: G. Julius P. Roy, Prateek Saxena, Sanjeev Singh
Abstract:
Power distribution utilities two decades ago would collect data from its customers not later than a period of at least one month. The origin of SmartGrid and AMI has subsequently increased the sampling frequency leading to 1000 to 10000 fold increase in data quantity. This increase is notable and this steered to coin the tern Big Data in utilities. Power distribution industry is one of the largest to handle huge and complex data for keeping history and also to turn the data in to significance. Majority of the utilities around the globe are adopting SmartGrid technologies as a mass implementation and are primarily focusing on strategic interdependence and synergies of the big data coming from new information sources like AMI and intelligent SCADA, there is a rising need for new models of data management and resurrected focus on analytics to dissect data into descriptive, predictive and dictatorial subsets. The goal of this paper is to is to bring load disaggregation into smart energy toolkit for commercial usage.Keywords: data management, analytics, energy data analytics, smart grid, smart utilities
Procedia PDF Downloads 77941239 Developing a Toolkit of Undergraduate Nursing Student’ Desirable Characteristics (TNDC) : An application Item Response Theory
Authors: Parinyaporn Thanaboonpuang, Siridej Sujiva, Shotiga Pasiphul
Abstract:
The higher education reform that integration of nursing programmes into the higher education system. Learning outcomes represent one of the essential building blocks for transparency within higher education systems and qualifications. The purpose of this study is to develop a toolkit of undergraduate nursing student’desirable characteristics assessment on Thai Qualifications Framework for Higher education and to test psychometric property for this instrument. This toolkit seeks to improve on the Computer Multimedia test. There are three skills to be examined: Cognitive skill, Responsibility and Interpersonal Skill, and Information Technology Skill. The study was conduct in 4 phases. In Phase 1. Based on developed a measurement model and Computer Multimedia test. Phase 2 two round focus group were conducted, to determine the content validity of measurement model and the toolkit. In Phase 3, data were collected using a multistage random sampling of 1,156 senior undergraduate nursing student were recruited to test psychometric property. In Phase 4 data analysis was conducted by descriptive statistics, item analysis, inter-rater reliability, exploratory factor analysis and confirmatory factor analysis. The resulting TNDC consists of 74 items across the following four domains: Cognitive skill, Interpersonal Skill, Responsibility and Information Technology Skill. The value of Cronbach’ s alpha for the four domains were .781, 807, .831, and .865, respectively. The final model in confirmatory factor analysis fit quite well with empirical data. The TNDC was found to be appropriate, both theoretically and statistically. Due to these results, it is recommended that the toolkit could be used in future studies for Nursing Program in Thailand.Keywords: toolkit, nursing student’ desirable characteristics, Thai qualifications framework
Procedia PDF Downloads 53541238 Review on Effective Texture Classification Techniques
Authors: Sujata S. Kulkarni
Abstract:
Effective and efficient texture feature extraction and classification is an important problem in image understanding and recognition. This paper gives a review on effective texture classification method. The objective of the problem of texture representation is to reduce the amount of raw data presented by the image, while preserving the information needed for the task. Texture analysis is important in many applications of computer image analysis for classification include industrial and biomedical surface inspection, for example for defects and disease, ground classification of satellite or aerial imagery and content-based access to image databases.Keywords: compressed sensing, feature extraction, image classification, texture analysis
Procedia PDF Downloads 43441237 Combined Analysis of Sudoku Square Designs with Same Treatments
Authors: A. Danbaba
Abstract:
Several experiments are conducted at different environments such as locations or periods (seasons) with identical treatments to each experiment purposely to study the interaction between the treatments and environments or between the treatments and periods (seasons). The commonly used designs of experiments for this purpose are randomized block design, Latin square design, balanced incomplete block design, Youden design, and one or more factor designs. The interest is to carry out a combined analysis of the data from these multi-environment experiments, instead of analyzing each experiment separately. This paper proposed combined analysis of experiments conducted via Sudoku square design of odd order with same experimental treatments.Keywords: combined analysis, sudoku design, common treatment, multi-environment experiments
Procedia PDF Downloads 34541236 Comparison of Developed Statokinesigram and Marker Data Signals by Model Approach
Authors: Boris Barbolyas, Kristina Buckova, Tomas Volensky, Cyril Belavy, Ladislav Dedik
Abstract:
Background: Based on statokinezigram, the human balance control is often studied. Approach to human postural reaction analysis is based on a combination of stabilometry output signal with retroreflective marker data signal processing, analysis, and understanding, in this study. The study shows another original application of Method of Developed Statokinesigram Trajectory (MDST), too. Methods: In this study, the participants maintained quiet bipedal standing for 10 s on stabilometry platform. Consequently, bilateral vibration stimuli to Achilles tendons in 20 s interval was applied. Vibration stimuli caused that human postural system took the new pseudo-steady state. Vibration frequencies were 20, 60 and 80 Hz. Participant's body segments - head, shoulders, hips, knees, ankles and little fingers were marked by 12 retroreflective markers. Markers positions were scanned by six cameras system BTS SMART DX. Registration of their postural reaction lasted 60 s. Sampling frequency was 100 Hz. For measured data processing were used Method of Developed Statokinesigram Trajectory. Regression analysis of developed statokinesigram trajectory (DST) data and retroreflective marker developed trajectory (DMT) data were used to find out which marker trajectories most correlate with stabilometry platform output signals. Scaling coefficients (λ) between DST and DMT by linear regression analysis were evaluated, too. Results: Scaling coefficients for marker trajectories were identified for all body segments. Head markers trajectories reached maximal value and ankle markers trajectories had a minimal value of scaling coefficient. Hips, knees and ankles markers were approximately symmetrical in the meaning of scaling coefficient. Notable differences of scaling coefficient were detected in head and shoulders markers trajectories which were not symmetrical. The model of postural system behavior was identified by MDST. Conclusion: Value of scaling factor identifies which body segment is predisposed to postural instability. Hypothetically, if statokinesigram represents overall human postural system response to vibration stimuli, then markers data represented particular postural responses. It can be assumed that cumulative sum of particular marker postural responses is equal to statokinesigram.Keywords: center of pressure (CoP), method of developed statokinesigram trajectory (MDST), model of postural system behavior, retroreflective marker data
Procedia PDF Downloads 35041235 Privacy Preserving Data Publishing Based on Sensitivity in Context of Big Data Using Hive
Authors: P. Srinivasa Rao, K. Venkatesh Sharma, G. Sadhya Devi, V. Nagesh
Abstract:
Privacy Preserving Data Publication is the main concern in present days because the data being published through the internet has been increasing day by day. This huge amount of data was named as Big Data by its size. This project deals the privacy preservation in the context of Big Data using a data warehousing solution called hive. We implemented Nearest Similarity Based Clustering (NSB) with Bottom-up generalization to achieve (v,l)-anonymity. (v,l)-Anonymity deals with the sensitivity vulnerabilities and ensures the individual privacy. We also calculate the sensitivity levels by simple comparison method using the index values, by classifying the different levels of sensitivity. The experiments were carried out on the hive environment to verify the efficiency of algorithms with Big Data. This framework also supports the execution of existing algorithms without any changes. The model in the paper outperforms than existing models.Keywords: sensitivity, sensitive level, clustering, Privacy Preserving Data Publication (PPDP), bottom-up generalization, Big Data
Procedia PDF Downloads 29541234 Arabic Light Word Analyser: Roles with Deep Learning Approach
Authors: Mohammed Abu Shquier
Abstract:
This paper introduces a word segmentation method using the novel BP-LSTM-CRF architecture for processing semantic output training. The objective of web morphological analysis tools is to link a formal morpho-syntactic description to a lemma, along with morpho-syntactic information, a vocalized form, a vocalized analysis with morpho-syntactic information, and a list of paradigms. A key objective is to continuously enhance the proposed system through an inductive learning approach that considers semantic influences. The system is currently under construction and development based on data-driven learning. To evaluate the tool, an experiment on homograph analysis was conducted. The tool also encompasses the assumption of deep binary segmentation hypotheses, the arbitrary choice of trigram or n-gram continuation probabilities, language limitations, and morphology for both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), which provide justification for updating this system. Most Arabic word analysis systems are based on the phonotactic morpho-syntactic analysis of a word transmitted using lexical rules, which are mainly used in MENA language technology tools, without taking into account contextual or semantic morphological implications. Therefore, it is necessary to have an automatic analysis tool taking into account the word sense and not only the morpho-syntactic category. Moreover, they are also based on statistical/stochastic models. These stochastic models, such as HMMs, have shown their effectiveness in different NLP applications: part-of-speech tagging, machine translation, speech recognition, etc. As an extension, we focus on language modeling using Recurrent Neural Network (RNN); given that morphological analysis coverage was very low in dialectal Arabic, it is significantly important to investigate deeply how the dialect data influence the accuracy of these approaches by developing dialectal morphological processing tools to show that dialectal variability can support to improve analysis.Keywords: NLP, DL, ML, analyser, MSA, RNN, CNN
Procedia PDF Downloads 4241233 Potential of Tourism Logistic Service Business in the Border Areas of Chong Anma, Chong Sa-Ngam, and Chong Jom Checkpoints in Thailand to Increase Competitive Efficiency among the ASEAN Community
Authors: Pariwat Somnuek
Abstract:
This study focused on tourism logistic services in the border areas of Thailand by an analysis and comparison of the opinions of tourists, villagers, and entrepreneurs of these services. Sample representatives of this study were a total of 600 villagers and 15 entrepreneurs in the three border areas consisting of Chong Anma, Chong Sa-Ngam, and Chong Jom checkpoints. For methodology, survey questionnaires, situation analysis, TOWS matrix, and focus group discussions were used for data collection, as well as descriptive analysis and statistics such as arithmetic means and standard deviations, were employed for data analysis. The findings revealed that business potential was at the medium level and entrepreneurs were satisfied with their turnovers. However, perspectives of transportation and tourism services provided for tourists need to be immediately improved. Recommendations for the potential development included promotion of border tourism destinations and foreign investments into accommodation, restaurants, and transport, as well as the establishment of business networks between Thailand and Cambodia, along with the introduction of new tourism destinations by co-operation between entrepreneurs in both countries. These initiatives may lead to increased visitors, collaboration of security offices, and an improved image of tourism security.Keywords: business potential, potential development, tourism logistics, services
Procedia PDF Downloads 30841232 Pre-Service Science Teachers' Perceptions Related to the Concept of Laboratory: A Metaphorical Analysis
Authors: Salih Uzun
Abstract:
The laboratory activities are seen an indispensable part of science, teaching, and learning. In this study, the aim was to identify pre-service science teachers’ perceptions related to the concept of laboratory through metaphors. It is expressed that metaphors can be used as a powerful research tool in order to understand personal perceptions. Therefore, metaphors were used with the aim of revealing a picture regarding how pre-service science teachers perceive laboratory. Within the scope of this aim, phenomenographic research design was adopted for this study and an answer was sought to the question; ‘What are pre-service science teachers’ perceptions about the concept of laboratory?’. The sample of this study was a total of 80 pre-service science teachers at various grade levels in Turkey. Participants were asked to complete the sentence; ‘Laboratory is like…; because…’. Documents including pre-service science teachers’ answers to the open-ended questions were used as data sources and the data were analysed with content analysis.Keywords: laboratory, metaphor, phenomenology, pre-service science teachers
Procedia PDF Downloads 43141231 Handling, Exporting and Archiving Automated Mineralogy Data Using TESCAN TIMA
Authors: Marek Dosbaba
Abstract:
Within the mining sector, SEM-based Automated Mineralogy (AM) has been the standard application for quickly and efficiently handling mineral processing tasks. Over the last decade, the trend has been to analyze larger numbers of samples, often with a higher level of detail. This has necessitated a shift from interactive sample analysis performed by an operator using a SEM, to an increased reliance on offline processing to analyze and report the data. In response to this trend, TESCAN TIMA Mineral Analyzer is designed to quickly create a virtual copy of the studied samples, thereby preserving all the necessary information. Depending on the selected data acquisition mode, TESCAN TIMA can perform hyperspectral mapping and save an X-ray spectrum for each pixel or segment, respectively. This approach allows the user to browse through elemental distribution maps of all elements detectable by means of energy dispersive spectroscopy. Re-evaluation of the existing data for the presence of previously unconsidered elements is possible without the need to repeat the analysis. Additional tiers of data such as a secondary electron or cathodoluminescence images can also be recorded. To take full advantage of these information-rich datasets, TIMA utilizes a new archiving tool introduced by TESCAN. The dataset size can be reduced for long-term storage and all information can be recovered on-demand in case of renewed interest. TESCAN TIMA is optimized for network storage of its datasets because of the larger data storage capacity of servers compared to local drives, which also allows multiple users to access the data remotely. This goes hand in hand with the support of remote control for the entire data acquisition process. TESCAN also brings a newly extended open-source data format that allows other applications to extract, process and report AM data. This offers the ability to link TIMA data to large databases feeding plant performance dashboards or geometallurgical models. The traditional tabular particle-by-particle or grain-by-grain export process is preserved and can be customized with scripts to include user-defined particle/grain properties.Keywords: Tescan, electron microscopy, mineralogy, SEM, automated mineralogy, database, TESCAN TIMA, open format, archiving, big data
Procedia PDF Downloads 10941230 Ranking of Provinces in Iran for Capital Formation in Spatial Planning with Numerical Taxonomy Technique (An Improvement) Case Study: Agriculture Sector
Authors: Farhad Nouparast
Abstract:
For more production we need more capital formation. Capital formation in each country should be based on comparative advantages in different economic sectors due to the different production possibility curves. In regional planning, recognizing the relative advantages and consequently investing in more production requires identifying areas with the necessary capabilities and location of each region compared to other regions. In this article, ranking of Iran's provinces is done according to the specific and given variables as the best investment position in agricultural activity. So we can provide the necessary background for investment analysis in different regions of the country to formulate national and regional planning and execute investment projects. It is used factor analysis technique and numerical taxonomy analysis to do this in thisarticle. At first, the provinces are homogenized and graded according to the variables using cross-sectional data obtained from the agricultural census and population and housing census of Iran as data matrix. The results show that which provinces have the most potential for capital formation in agronomy sub-sector. Taxonomy classifies organisms based on similar genetic traits in biology and botany. Numerical taxonomy using quantitative methods controls large amounts of information and get the number of samples and categories and take them based on inherent characteristics and differences indirectly accommodates. Numerical taxonomy is related to multivariate statistics.Keywords: Capital Formation, Factor Analysis, Multivariate statistics, Numerical Taxonomy Analysis, Production, Ranking, Spatial Planning
Procedia PDF Downloads 14041229 A Fuzzy Kernel K-Medoids Algorithm for Clustering Uncertain Data Objects
Authors: Behnam Tavakkol
Abstract:
Uncertain data mining algorithms use different ways to consider uncertainty in data such as by representing a data object as a sample of points or a probability distribution. Fuzzy methods have long been used for clustering traditional (certain) data objects. They are used to produce non-crisp cluster labels. For uncertain data, however, besides some uncertain fuzzy k-medoids algorithms, not many other fuzzy clustering methods have been developed. In this work, we develop a fuzzy kernel k-medoids algorithm for clustering uncertain data objects. The developed fuzzy kernel k-medoids algorithm is superior to existing fuzzy k-medoids algorithms in clustering data sets with non-linearly separable clusters.Keywords: clustering algorithm, fuzzy methods, kernel k-medoids, uncertain data
Procedia PDF Downloads 21541228 Crop Leaf Area Index (LAI) Inversion and Scale Effect Analysis from Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Data
Authors: Xiaohua Zhu, Lingling Ma, Yongguang Zhao
Abstract:
Leaf Area Index (LAI) is a key structural characteristic of crops and plays a significant role in precision agricultural management and farmland ecosystem modeling. However, LAI retrieved from different resolution data contain a scaling bias due to the spatial heterogeneity and model non-linearity, that is, there is scale effect during multi-scale LAI estimate. In this article, a typical farmland in semi-arid regions of Chinese Inner Mongolia is taken as the study area, based on the combination of PROSPECT model and SAIL model, a multiple dimensional Look-Up-Table (LUT) is generated for multiple crops LAI estimation from unmanned aerial vehicle (UAV) hyperspectral data. Based on Taylor expansion method and computational geometry model, a scale transfer model considering both difference between inter- and intra-class is constructed for scale effect analysis of LAI inversion over inhomogeneous surface. The results indicate that, (1) the LUT method based on classification and parameter sensitive analysis is useful for LAI retrieval of corn, potato, sunflower and melon on the typical farmland, with correlation coefficient R2 of 0.82 and root mean square error RMSE of 0.43m2/m-2. (2) The scale effect of LAI is becoming obvious with the decrease of image resolution, and maximum scale bias is more than 45%. (3) The scale effect of inter-classes is higher than that of intra-class, which can be corrected efficiently by the scale transfer model established based Taylor expansion and Computational geometry. After corrected, the maximum scale bias can be reduced to 1.2%.Keywords: leaf area index (LAI), scale effect, UAV-based hyperspectral data, look-up-table (LUT), remote sensing
Procedia PDF Downloads 44041227 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness
Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers
Abstract:
The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning
Procedia PDF Downloads 28641226 Measuring Financial Asset Return and Volatility Spillovers, with Application to Sovereign Bond, Equity, Foreign Exchange and Commodity Markets
Authors: Petra Palic, Maruska Vizek
Abstract:
We provide an in-depth analysis of interdependence of asset returns and volatilities in developed and developing countries. The analysis is split into three parts. In the first part, we use multivariate GARCH model in order to provide stylized facts on cross-market volatility spillovers. In the second part, we use a generalized vector autoregressive methodology developed by Diebold and Yilmaz (2009) in order to estimate separate measures of return spillovers and volatility spillovers among sovereign bond, equity, foreign exchange and commodity markets. In particular, our analysis is focused on cross-market return, and volatility spillovers in 19 developed and developing countries. In order to estimate named spillovers, we use daily data from 2008 to 2017. In the third part of the analysis, we use a generalized vector autoregressive framework in order to estimate total and directional volatility spillovers. We use the same daily data span for one developed and one developing country in order to characterize daily volatility spillovers across stock, bond, foreign exchange and commodities markets.Keywords: cross-market spillovers, sovereign bond markets, equity markets, value at risk (VAR)
Procedia PDF Downloads 26141225 Analyzing Environmental Emotive Triggers in Terrorist Propaganda
Authors: Travis Morris
Abstract:
The purpose of this study is to measure the intersection of environmental security entities in terrorist propaganda. To the best of author’s knowledge, this is the first study of its kind to examine this intersection within terrorist propaganda. Rosoka, natural language processing software and frame analysis are used to advance our understanding of how environmental frames function as emotive triggers. Violent jihadi demagogues use frames to suggest violent and non-violent solutions to their grievances. Emotive triggers are framed in a way to leverage individual and collective attitudes in psychological warfare. A comparative research design is used because of the differences and similarities that exist between two variants of violent jihadi propaganda that target western audiences. Analysis is based on salience and network text analysis, which generates violent jihadi semantic networks. Findings indicate that environmental frames are used as emotive triggers across both data sets, but also as tactical and information data points. A significant finding is that certain core environmental emotive triggers like “water,” “soil,” and “trees” are significantly salient at the aggregate level across both data sets. All environmental entities can be classified into two categories, symbolic and literal. Importantly, this research illustrates how demagogues use environmental emotive triggers in cyber space from a subcultural perspective to mobilize target audiences to their ideology and praxis. Understanding the anatomy of propaganda construction is necessary in order to generate effective counter narratives in information operations. This research advances an additional method to inform practitioners and policy makers of how environmental security and propaganda intersect.Keywords: propaganda analysis, emotive triggers environmental security, frames
Procedia PDF Downloads 13841224 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection
Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada
Abstract:
With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.Keywords: machine learning, imbalanced data, data mining, big data
Procedia PDF Downloads 13041223 Automatic Detection of Traffic Stop Locations Using GPS Data
Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell
Abstract:
Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data
Procedia PDF Downloads 27541222 Geographic Information System for District Level Energy Performance Simulations
Authors: Avichal Malhotra, Jerome Frisch, Christoph van Treeck
Abstract:
The utilization of semantic, cadastral and topological data from geographic information systems (GIS) has exponentially increased for building and urban-scale energy performance simulations. Urban planners, simulation scientists, and researchers use virtual 3D city models for energy analysis, algorithms and simulation tools. For dynamic energy simulations at city and district level, this paper provides an overview of the available GIS data models and their levels of detail. Adhering to different norms and standards, these models also intend to describe building and construction industry data. For further investigations, CityGML data models are considered for simulations. Though geographical information modelling has considerably many different implementations, extensions of virtual city data can also be made for domain specific applications. Highlighting the use of the extended CityGML models for energy researches, a brief introduction to the Energy Application Domain Extension (ADE) along with its significance is made. Consequently, addressing specific input simulation data, a workflow using Modelica underlining the usage of GIS information and the quantification of its significance over annual heating energy demand is presented in this paper.Keywords: CityGML, EnergyADE, energy performance simulation, GIS
Procedia PDF Downloads 16841221 Democracy Bytes: Interrogating the Exploitation of Data Democracy by Radical Terrorist Organizations
Authors: Nirmala Gopal, Sheetal Bhoola, Audecious Mugwagwa
Abstract:
This paper discusses the continued infringement and exploitation of data by non-state actors for destructive purposes, emphasizing radical terrorist organizations. It will discuss how terrorist organizations access and use data to foster their nefarious agendas. It further examines how cybersecurity, designed as a tool to curb data exploitation, is ineffective in raising global citizens' concerns about how their data can be kept safe and used for its acquired purpose. The study interrogates several policies and data protection instruments, such as the Data Protection Act, Cyber Security Policies, Protection of Personal Information(PPI) and General Data Protection Regulations (GDPR), to understand data use and storage in democratic states. The study outcomes point to the fact that international cybersecurity and cybercrime legislation, policies, and conventions have not curbed violations of data access and use by radical terrorist groups. The study recommends ways to enhance cybersecurity and reduce cyber risks using democratic principles.Keywords: cybersecurity, data exploitation, terrorist organizations, data democracy
Procedia PDF Downloads 20441220 Corporate Governance and Bank Performance: A Study of Selected Deposit Money Banks in Nigeria
Authors: Ayodele Ajayi, John Ajayi
Abstract:
This paper investigates the effect of corporate governance with a view to determining the relationship between board size and bank performance. Data for the study were obtained from the audited financial statements of five sampled banks listed on the Nigerian Stock Exchange. Panel data technique was adopted and analysis was carried out with the use of multiple regression and pooled ordinary least square. Results from the study show that the larger the board size, the greater the profit implying that corporate governance is positively correlated with bank performance.Keywords: corporate governance, banks performance, board size, pooled data
Procedia PDF Downloads 360