Search results for: Bearing steel
1690 Corrosive Bacteria Attached to Carbon Steel Used in Oil and Gas Company
Authors: Hadjer Didouh, Mohammed Hadj Melliani, Izzeddine Sameut Bouhaik
Abstract:
Microbiologically influenced corrosion (MIC) is a major cause of pipeline failure in the oil and gas industry, particularly affecting carbon steel, which is widely used for its cost-effectiveness and mechanical properties. This study investigates the adhesion of sulfate-reducing bacteria (SRB) and other corrosive microbial species on API 5L X52 carbon steel in crude oil and injection water environments. Experimental results showed that after 72 hours of exposure, biofilm formed extensively, leading to significant corrosion rates. Weight loss measurements indicated a corrosion rate of 0.39 mm/year, with localized pitting observed at depths reaching 120 μm. Electrochemical impedance spectroscopy (EIS) revealed a drastic decrease in charge transfer resistance, from 1200 Ω/cm² for sterile samples to 240 Ω/cm² in the presence of SRB biofilm. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses confirmed the presence of iron sulfide deposits, indicating active bacterial colonization and biofilm-induced pitting corrosion. This study highlights the severe impact of MIC on pipeline infrastructure, emphasizing the need for efficient microbial control strategies. Furthermore, the results provide a framework for the development of enhanced protective coatings and environmentally friendly biocides to mitigate the economic and environmental risks associated with MIC in oilfield operations in Algeria.Keywords: MIC, corrosion, bacteria, API 5L X52
Procedia PDF Downloads 311689 Synthesis of Temperature Sensitive Nano/Microgels by Soap-Free Emulsion Polymerization and Their Application in Hydrate Sediments Drilling Operations
Authors: Xuan Li, Weian Huang, Jinsheng Sun, Fuhao Zhao, Zhiyuan Wang, Jintang Wang
Abstract:
Natural gas hydrates (NGHs) as promising alternative energy sources have gained increasing attention. Hydrate-bearing formation in marine areas is highly unconsolidated formation and is fragile, which is composed of weakly cemented sand-clay and silty sediments. During the drilling process, the invasion of drilling fluid can easily lead to excessive water content in the formation. It will change the soil liquid plastic limit index, which significantly affects the formation quality, leading to wellbore instability due to the metastable character of hydrate-bearing sediments. Therefore, controlling the filtrate loss into the formation in the drilling process has to be highly regarded for protecting the stability of the wellbore. In this study, the temperature-sensitive nanogel of P(NIPAM-co-AMPS-co-tBA) was prepared by soap-free emulsion polymerization, and the temperature-sensitive behavior was employed to achieve self-adaptive plugging in hydrate sediments. First, the effects of additional amounts of AMPS, tBA, and cross-linker MBA on the microgel synthesis process and temperature-sensitive behaviors were investigated. Results showed that, as a reactive emulsifier, AMPS can not only participate in the polymerization reaction but also act as an emulsifier to stabilize micelles and enhance the stability of nanoparticles. The volume phase transition temperature (VPTT) of nanogels gradually decreased with the increase of the contents of hydrophobic monomer tBA. An increase in the content of the cross-linking agent MBA can lead to a rise in the coagulum content and instability of the emulsion. The plugging performance of nanogel was evaluated in a core sample with a pore size distribution range of 100-1000nm. The temperature-sensitive nanogel can effectively improve the microfiltration performance of drilling fluid. Since a combination of a series of nanogels could have a wide particle size distribution at any temperature, around 200nm to 800nm, the self-adaptive plugging capacity of nanogels for the hydrate sediments was revealed. Thermosensitive nanogel is a potential intelligent plugging material for drilling operations in natural gas hydrate-bearing sediments.Keywords: temperature-sensitive nanogel, NIPAM, self-adaptive plugging performance, drilling operations, hydrate-bearing sediments
Procedia PDF Downloads 1701688 Corrosion Resistance of Mild Steel Coated with Different Polyimides/h-Boron Nitride Composite Films
Authors: Tariku Nefo Duke
Abstract:
Herein, we synthesized three PIs/h-boron nitride composite films for corrosion resistance of mild steel material. The structures of these three polyimide/h-boron nitride composite films were confirmed using (FTIR, 1H NMR, 13C NMR, and 2D NMR) spectroscopy techniques. The synthesized PIs composite films have high mechanical properties, thermal stability, high glass-transition temperature (Tg), and insulating properties. It has been shown that the presence of electroactive TiO2, SiO2, and h-BN, in polymer coatings effectively inhibits corrosion. The h-BN displays an admirable anti-corrosion barrier for the 6F-OD and BT-OD films. PI/ h-BN composite films of 6F-OD exhibited better resistance to water vapor, high corrosion resistance, and positive corrosion voltage. Only four wt. percentage of h-BN in the composite is adequate.Keywords: polyimide, corrosion resistance, electroactive, Tg
Procedia PDF Downloads 2001687 Fatigue Tests of New Assembly Bolt Connections for Perspective Temporary Steel Railway Bridges
Authors: Marcela Karmazínová, Michal Štrba, Miln Pilgr
Abstract:
The paper deals with the problems of the actual behavior, failure mechanism and load-carrying capacity of the special bolt connection developed and intended for the assembly connections of truss main girders of perspective railway temporary steel bridges. Within the framework of this problem solution, several types of structural details of assembly joints have been considered as the conceptual structural design. Based on the preliminary evaluation of advantages or disadvantages of these ones, in principle two basic structural configurations so-called “tooth” and “splice-plate” connections have been selected for the subsequent detailed investigation. This investigation is mainly based on the experimental verification of the actual behavior, strain and failure mechanism and corresponding strength of the connection, and on its numerical modeling using FEM. This paper is focused only on the cyclic loading (fatigue) tests results of “splice-plate” connections and their evaluation, which have already been finished. Simultaneously with the fatigue tests, the static loading tests have been realized too, but these ones, as well as FEM numerical modeling, are not the subject of this paper.Keywords: Bolt assembly connection, cyclic loading, failure mechanisms, fatigue strength, steel structure, structural detail category, temporary railway bridge
Procedia PDF Downloads 4441686 Numerical Simulation and Laboratory Tests for Rebar Detection in Reinforced Concrete Structures using Ground Penetrating Radar
Authors: Maha Al-Soudani, Gilles Klysz, Jean-Paul Balayssac
Abstract:
The aim of this paper is to use Ground Penetrating Radar (GPR) as a non-destructive testing (NDT) method to increase its accuracy in recognizing the geometric reinforced concrete structures and in particular, the position of steel bars. This definition will help the managers to assess the state of their structures on the one hand vis-a-vis security constraints and secondly to quantify the need for maintenance and repair. Several configurations of acquisition and processing of the simulated signal were tested to propose and develop an appropriate imaging algorithm in the propagation medium to locate accurately the rebar. A subsequent experimental validation was used by testing the imaging algorithm on real reinforced concrete structures. The results indicate that, this algorithm is capable of estimating the reinforcing steel bar position to within (0-1) mm.Keywords: GPR, NDT, Reinforced concrete structures, Rebar location.
Procedia PDF Downloads 5041685 Quality Assessment of Hollow Sandcrete Blocks in Minna, Nigeria
Authors: M. Abdullahi, S. Sadiku, Bashar S. Mohammed, J. I. Aguwa
Abstract:
The properties of hollow sandcrete blocks produced in Minna, Nigeria are presented. Sandcrete block is made of cement, water and sand bound together in certain mix proportions. For the purpose of this work, fifty (50) commercial sandcrete block industries were visited in Minna, Nigeria to obtain block samples and aggregates used for the manufacture, and to also take inventory of the mix composition and the production process. Sieve analysis tests were conduction on the soil sample from various block industries to ascertain their quality to be used for block making. The mix ratios were also investigated. Five (5) nine inches (9’’ or 225mm) blocks were obtained from each block industry and tested for dimensional compliance and compressive strength. The result of test shows that the grading of the sand falls within the limit required by BS 882: 1990. The sand particles generally satisfy the grading requirement of overall grading and also fall in at least one of the classification of coarse grading, medium grading or fine grading. This clearly indicates that the quality of the aggregates used for the production of sandcrete blocks in Minna, Nigeria are of good quality in terms of grading and workable mix can easily be achieved to obtain high quality product. Physical examinations of the block sizes show slight deviation from the standard requirement in NIS 87:2000. Compressive strength of hollow sandcrete blocks in range of 0.12 N/mm2 to 0.54 N/mm2 was obtained which is below the recommendable value of 3.45 N/mm2 for load bearing hollow sandcrete blocks. This indicates that these blocks are below the standard for load-bearing sandcrete blocks and cannot be used as load bearing walling units. The mix composition also indicated low cement content resulting in low compressive strength. Most of the commercial block industries visited do not take curing very serious. Water were only sprinkled ones or twice before the blocks were stacked and made readily available for sale. It is recommended that a mix ratio of 1:4 to 1:6 should be used for the production of sandcrete blocks and proper curing practice should be adhered to. Blocks should also be cured for 14 days before making them available for consumers.Keywords: compressive strength, dimensions, mix proportions, sandcrete blocks
Procedia PDF Downloads 3881684 Monte Carlo Simulation Study on Improving the Flatting Filter-Free Radiotherapy Beam Quality Using Filters from Low- z Material
Authors: H. M. Alfrihidi, H.A. Albarakaty
Abstract:
Flattening filter-free (FFF) photon beam radiotherapy has increased in the last decade, which is enabled by advancements in treatment planning systems and radiation delivery techniques like multi-leave collimators. FFF beams have higher dose rates, which reduces treatment time. On the other hand, FFF beams have a higher surface dose, which is due to the loss of beam hardening effect caused by the presence of the flatting filter (FF). The possibility of improving FFF beam quality using filters from low-z materials such as steel and aluminium (Al) was investigated using Monte Carlo (MC) simulations. The attenuation coefficient of low-z materials for low-energy photons is higher than that of high-energy photons, which leads to the hardening of the FFF beam and, consequently, a reduction in the surface dose. BEAMnrc user code, based on Electron Gamma Shower (EGSnrc) MC code, is used to simulate the beam of a 6 MV True-Beam linac. A phase-space (phosphor) file provided by Varian Medical Systems was used as a radiation source in the simulation. This phosphor file was scored just above the jaws at 27.88 cm from the target. The linac from the jaw downward was constructed, and radiation passing was simulated and scored at 100 cm from the target. To study the effect of low-z filters, steel and Al filters with a thickness of 1 cm were added below the jaws, and the phosphor file was scored at 100 cm from the target. For comparison, the FF beam was simulated using a similar setup. (BEAM Data Processor (BEAMdp) is used to analyse the energy spectrum in the phosphorus files. Then, the dose distribution resulting from these beams was simulated in a homogeneous water phantom using DOSXYZnrc. The dose profile was evaluated according to the surface dose, the lateral dose distribution, and the percentage depth dose (PDD). The energy spectra of the beams show that the FFF beam is softer than the FF beam. The energy peaks for the FFF and FF beams are 0.525 MeV and 1.52 MeV, respectively. The FFF beam's energy peak becomes 1.1 MeV using a steel filter, while the Al filter does not affect the peak position. Steel and Al's filters reduced the surface dose by 5% and 1.7%, respectively. The dose at a depth of 10 cm (D10) rises by around 2% and 0.5% due to using a steel and Al filter, respectively. On the other hand, steel and Al filters reduce the dose rate of the FFF beam by 34% and 14%, respectively. However, their effect on the dose rate is less than that of the tungsten FF, which reduces the dose rate by about 60%. In conclusion, filters from low-z material decrease the surface dose and increase the D10 dose, allowing for a high-dose delivery to deep tumors with a low skin dose. Although using these filters affects the dose rate, this effect is much lower than the effect of the FF.Keywords: flattening filter free, monte carlo, radiotherapy, surface dose
Procedia PDF Downloads 731683 Physicochemical and Bacteriological Quality Characterization of Some Selected Wells in Ado-Ekiti, Nigeria
Authors: Olu Ale, Olugbenga Aribisala, Sanmi Awopetu
Abstract:
Groundwater (Wells) is obtained from several well-defined and different water-bearing geological layers or strata. The physical, chemical and bacteriological quality of the water contributed from each of these water-bearing formations and resultant effects of indiscriminate wastes disposal will be dependent on the dissolution of material within the formation. Therefore, water withdrawn from any ground water source will be a composite of these individual aquifers. The water quality was determined by actual sampling and analysis of the completed wells. This study attempted to examine the physicochemical and bacteriological water quality of twenty five selected wells comprising twenty boreholes (deep wells) and five hand dug wells (shallow wells). The twenty five wells cut across the entire Ado Ekiti Metropolitan area. The water samples collected using standard method was promptly taken to water laboratory at the Federal Polytechnic Ado-Ekiti for analysis, physical, chemical and bacteriological tests were carried out. Quality characteristics tested were found to meet WHO’s standard and generally acceptable, making it potable for drinking in most situations, thus encouraging the use of groundwater. Possible improvement strategies to groundwater exploitation were highlighted while remedies to poor quality water were suggested.Keywords: bacteriological, physicochemical, quality, wells, Ado Ekiti
Procedia PDF Downloads 3681682 DSF Elements in High-Rise Timber Buildings
Authors: Miroslav Premrov, Andrej Štrukelj, Erika Kozem Šilih
Abstract:
The utilization of prefabricated timber-wall elements with double glazing, called as double-skin façade element (DSF), represents an innovative structural approach in the context of new high-rise timber construction, simultaneously combining sustainable solutions with improved energy efficiency and living quality. In addition to the minimum energy needs of buildings, the design of modern buildings is also increasingly focused on the optimal indoor comfort, in particular on sufficient natural light indoors. An optimally energy-designed building with an optimal layout of glazed areas around the building envelope represents a great potential in modern timber construction. Usually, all these transparent façade elements, because of energy benefits, are primary asymmetrical oriented and if they are considered as non-resisting against a horizontal load impact, a strong torsion effects in the building can appear. The problem of structural stability against a strong horizontal load impact of such modern timber buildings especially increase in a case of high-rise structures where additional bracing elements have to be used. In such a case, special diagonal bracing systems or other bracing solutions with common timber wall elements have to be incorporated into the structure of the building to satisfy all prescribed resisting requirements given by the standards. However, all such structural solutions are usually not environmentally friendly and also not contribute to an improved living comfort, or they are not accepted by the architects at all. Consequently, it is a special need to develop innovative load-bearing timber-glass wall elements which are in the same time environmentally friendly, can increase internal comfort in the building, but are also load-bearing. The new developed load-bearing DSF elements can be a good answer on all these requirements. Timber-glass façade elements DSF wall elements consist of two transparent layers, thermal-insulated three-layered glass pane on the internal side and an additional single-layered glass pane on the external side of the wall. The both panes are separated by an air channel which can be of any dimensions and can have a significant influence on the thermal insulation or acoustic response of such a wall element. Most already published studies on DSF elements primarily deal only with energy and LCA solutions and do not address any structural problems. In previous studies according to experimental analysis and mathematical modeling it was already presented a possible benefit of such load-bearing DSF elements, especially comparing with previously developed load-bearing single-skin timber wall elements, but they were not applicate yet in any high-rise timber structure. Therefore, in the presented study specially selected 10-storey prefabricated timber building constructed in a cross-laminated timber (CLT) structural wall system is analyzed using the developed DSF elements in a sense to increase a structural lateral stability of the whole building. The results evidently highlight the importance the load-bearing DSF elements, as their incorporation can have a significant impact on the overall behavior of the structure through their influence on the stiffness properties. Taking these considerations into account is crucial to ensure compliance with seismic design codes and to improve the structural resilience of high-rise timber buildings.Keywords: glass, high-rise buildings, numerical analysis, timber
Procedia PDF Downloads 461681 The Effect of Metal Transfer Modes on Mechanical Properties of 3CR12 Stainless Steel
Authors: Abdullah Kaymakci, Daniel M. Madyira, Ntokozo Nkwanyana
Abstract:
The effect of metal transfer modes on mechanical properties of welded 3CR12 stainless steel were investigated. This was achieved by butt welding 10 mm thick plates of 3CR12 in different positions while varying the welding positions for different metal transfer modes. The ASME IX: 2010 (Welding and Brazing Qualifications) code was used as a basis for welding variables. The material and the thickness of the base metal were kept constant together with the filler metal, shielding gas and joint types. The effect of the metal transfer modes on the microstructure and the mechanical properties of the 3CR12 steel was then investigated as it was hypothesized that the change in welding positions will affect the transfer modes partly due to the effect of gravity. The microscopic examination revealed that the substrate was characterized by dual phase microstructure, that is, alpha phase and beta phase grain structures. Using the spectroscopic examination results and the ferritic factor calculation had shown that the microstructure was expected to be ferritic-martensitic during air cooling process. The tested tensile strength and Charpy impact energy were measured to be 498 MPa and 102 J which were in line with mechanical properties given in the material certificate. The heat input in the material was observed to be greater than 1 kJ/mm which is the limiting factor for grain growth during the welding process. Grain growths were observed in the heat affected zone of the welded materials. Ferritic-martensitic microstructure was observed in the microstructure during the microscopic examination. The grain growth altered the mechanical properties of the test material. Globular down hand had higher mechanical properties than spray down hand. Globular vertical up had better mechanical properties than globular vertical down.Keywords: welding, metal transfer modes, stainless steel, microstructure, hardness, tensile strength
Procedia PDF Downloads 2521680 Lapped Gussets Joints in Compression
Authors: K. R. Tshunza, A. Elvin, A. Gabremmeskel
Abstract:
Final results of an extensive laboratory research program on “lapped gusset joints in compression” are presented. The investigation was carried out at the Heavy structures laboratory at the University of the Witwatersrand in Johannesburg, South Africa. A proposed, relatively easy to use analytical equation was found to be reasonably adequate in determining the global compressive capacity of lapped gussets joints under compressive load. A wide range of lapped mild steel plates of varying slenderness, welded on 219*10 and 127*6 Mild steel circular hollow sections of 1m length were tested in compression and the formula was validated with experimental results. The investigation show that the connection’s capacity is controlled by flexure due to the eccentricity between the plates that are connected side to side.Keywords: compression, eccentricity, lapped gussets joints, moment resistance
Procedia PDF Downloads 3081679 Application of Stabilized Polyaniline Microparticles for Better Protective Ability of Zinc Coatings
Authors: N. Boshkova, K. Kamburova, N. Tabakova, N. Boshkov, Ts. Radeva
Abstract:
Coatings based on polyaniline (PANI) can improve the resistance of steel against corrosion. In this work, the preparation of stable suspensions of colloidal PANI-SiO2 particles, suitable for obtaining of composite anticorrosive coating on steel, is described. Electrokinetic data as a function of pH are presented, showing that the zeta potentials of the PANI-SiO2 particles are governed primarily by the charged groups at the silica oxide surface. Electrosteric stabilization of the PANI-SiO2 particles’ suspension against aggregation is realized at pH>5.5 (EB form of PANI) by adsorption of positively charged polyelectrolyte molecules onto negatively charged PANI-SiO2 particles. The PANI-SiO2 particles are incorporated by electrodeposition into the metal matrix of zinc in order to obtain composite (hybrid) coatings. The latter are aimed to ensure sacrificial protection of steel mainly in aggressive media leading to local corrosion damages. The surface morphology of the composite zinc coatings is investigated with SEM. The influence of PANI-SiO2 particles on the cathodic and anodic processes occurring in the starting electrolyte for obtaining of the coatings is followed with cyclic voltammetry. The electrochemical and corrosion behavior is evaluated with potentiodynamic polarization curves and polarization resistance measurements. The beneficial effect of the stabilized PANI-SiO2 particles for the increased protective ability of the composites is commented and discussed.Keywords: corrosion, polyaniline-silica particles, zinc, protective ability
Procedia PDF Downloads 1721678 Separation of Water/Organic Mixtures Using Micro- and Nanostructured Membranes of Special Type of Wettability
Authors: F. R. Sultanov Ch. Daulbayev, B. Bakbolat, Z. A. Mansurov, A. A. Zhurintaeva, R. I. Gadilshina, A. B. Dugali
Abstract:
Both hydrophilic-oleophobic and hydrophobic-oleophilic membranes were obtained by coating of the substrate of membranes, presented by stainless steel meshes with various dimensions of their openings, with a composition that forms the special type of their surface wettability via spray-coating method. The surface morphology of resulting membranes was studied using SEM, the type of their wettability was identified by measuring the contact angle between the surface of membrane and a drop of studied liquid (water or organic liquid) and efficiency of continuous separation of water and organic liquid was studied on self-assembled setup.Keywords: membrane, stainless steel mesh, oleophobicity, hydrophobicity, separation, water, organic liquids
Procedia PDF Downloads 1671677 Mineralogy and Classification of Altered Host Rocks in the Zaghia Iron Oxide Deposit, East of Bafq, Central Iran
Authors: Azat Eslamizadeh, Neda Akbarian
Abstract:
The Zaghia Iron ore, in 15 km east of a town named Bafq, is located in Precambrian formation of Central Iran in form of a small local deposit. The Volcano-sedimentary rocks of Precambrian-Cambrian age, belonging to Rizu series have spread through the region. Substantial portion of the deposit is covered by alluvial deposits. The rocks hosting the Zaghia iron ore have a main combination of rhyolitic tuffs along with clastic sediments, carbonate include sandstone, limestone, dolomite, conglomerate and is somewhat metamorphed causing them to have appeared as slate and phyllite. Moreover, carbonate rocks are in existence as skarn compound of marble bearing tremolite with mineralization of magnetite-hematite. The basic igneous rocks have dramatically altered into green rocks consist of actinolite-tremolite and chlorite along with amount of iron (magnetite + Martite). The youngest units of ore-bearing rocks in the area are found as dolerite - diabase dikes. The dikes are cutting the rhyolitic tuffs and carbonate rocks.Keywords: Zaghia, iron ore deposite, mineralogy, petrography Bafq, Iran
Procedia PDF Downloads 5241676 Development of Equivalent Inelastic Springs to Model C-Devices
Authors: Oday Al-Mamoori, J. Enrique Martinez-Rueda
Abstract:
'C' shape yielding devices (C-devices) are effective tools for introducing supplemental sources of energy dissipation by hysteresis. Studies have shown that C-devices made of mild steel can be successfully applied as integral parts of seismic retrofitting schemes. However, explicit modelling of these devices can become cumbersome, expensive and time consuming. The device under study in this article has been previously used in non-invasive dissipative bracing for seismic retrofitting. The device is cut from a mild steel plate and has an overall shape that resembles that of a rectangular portal frame with circular interior corner transitions to avoid stress concentration and to control the extension of the dissipative region of the device. A number of inelastic finite element (FE) analyses using either inelastic 2D plane stress elements or inelastic fibre frame elements are reported and used to calibrate a 1D equivalent inelastic spring model that effectively reproduces the cyclic response of the device. The more elaborate FE model accounts for the frictional forces developed between the steel plate and the bolts used to connect the C-device to structural members. FE results also allow the visualization of the inelastic regions of the device where energy dissipation is expected to occur. FE analysis results are in a good agreement with experimental observations.Keywords: C-device, equivalent nonlinear spring, FE analyses, reversed cyclic tests
Procedia PDF Downloads 1521675 Torsional Behavior of Reinforced Concrete (RC) Beams Strengthened by Fiber Reinforced Cementitious Materials– a Review
Authors: Sifatullah Bahij, Safiullah Omary, Francoise Feugeas, Amanullah Faqiri
Abstract:
Reinforced concrete (RC) is commonly used material in the construction sector, due to its low-cost and durability, and allowed the architectures and designers to construct structural members with different shapes and finishing. Usually, RC members are designed to sustain service loads efficiently without any destruction. However, because of the faults in the design phase, overloading, materials deficiencies, and environmental effects, most of the structural elements will require maintenance and repairing over their lifetime. Therefore, strengthening and repair of the deteriorated and/or existing RC structures are much important to extend their life cycle. Various techniques are existing to retrofit and strengthen RC structural elements such as steel plate bonding, external pre-stressing, section enlargement, fiber reinforced polymer (FRP) wrapping, etc. Although these configurations can successfully improve the load bearing capacity of the beams, they are still prone to corrosion damage which results in failure of the strengthened elements. Therefore, many researchers used fiber reinforced cementitious materials due to its low-cost, corrosion resistance, and result in improvement of the tensile and fatigue behaviors. Various types of cementitious materials have been used to strengthen or repair structural elements. This paper has summarized to accumulate data regarding on previously published research papers concerning the torsional behaviors of RC beams strengthened by various types of cementitious materials.Keywords: reinforced concrete beams, strengthening techniques, cementitious materials, torsional strength, twisting angle
Procedia PDF Downloads 1201674 Numerical Analysis of Wire Laser Additive Manufacturing for Low Carbon Steels+
Authors: Juan Manuel Martinez Alvarez, Michele Chiumenti
Abstract:
This work explores the benefit of the thermo-metallurgical simulation to tackle the Wire Laser Additive Manufacturing (WLAM) of low-carbon steel components. The Finite Element Analysis is calibrated by process monitoring via thermal imaging and thermocouples measurements, to study the complex thermo-metallurgical behavior inherent to the WLAM process of low carbon steel parts.A critical aspect is the analysis of the heterogeneity in the resulting microstructure. This heterogeneity depends on both the thermal history and the residual stresses experienced during the WLAM process. Because of low carbon grades are highly sensitive to quenching, a high-gradient microstructure often arises due to the layer-by-layer metal deposition in WLAM. The different phases have been identified by scanning electron microscope. A clear influence of the heterogeneities on the final mechanical performance has been established by the subsequent mechanical characterization. The thermo-metallurgical analysis has been used to determine the actual thermal history and the corresponding thermal gradients during the printing process. The correlation between the thermos-mechanical evolution, the printing parameters and scanning sequence has been established. Therefore, an enhanced printing strategy, including optimized process window has been used to minimize the microstructure heterogeneity at ArcelorMittal.Keywords: additive manufacturing, numerical simulation, metallurgy, steel
Procedia PDF Downloads 711673 “BUM629” Special Hybrid Reinforcement Materials for Mega Structures
Authors: Gautam, Arjun, V. R. Sharma
Abstract:
In the civil construction steel and concrete plays a different role but the same purposes dealing with the design of structures that support or resist loads. Concrete has been used in construction since long time from now. Being brittle and weak in tension, concrete is always reinforced with steel bars for the purposes in beams and columns etc. The paper deals with idea of special designed 3D materials which we named as “BUM629” to be placed/anchored in the structural member and mixed with concrete later on, so as to resist the developments of cracks due to shear failure , buckling,tension and compressive load in concrete. It had cutting edge technology through Draft, Analysis and Design the “BUM629”. The results show that “BUM629” has the great results in Mechanical application. Its material properties are design according to the need of structure; we apply the material such as Mild Steel and Magnesium Alloy. “BUM629” are divided into two parts one is applied at the middle section of concrete member where bending movements are maximum and the second part is laying parallel to vertical bars near clear cover, so we design this material and apply in Reinforcement of Civil Structures. “BUM629” is analysis and design for use in the mega structures like skyscrapers, dams and bridges.Keywords: BUM629, magnesium alloy, cutting edge technology, mechanical application, draft, analysis and design, mega structures
Procedia PDF Downloads 3841672 A New Approach to Retrofit Steel Moment Resisting Frame Structures after Mainshock
Authors: Amir H. Farivarrad, Kiarash M. Dolatshahi
Abstract:
During earthquake events, aftershocks can significantly increase the probability of collapse of buildings, especially for those with induced damages during the mainshock. In this paper, a practical approach is proposed for seismic rehabilitation of mainshock-damaged buildings that can be easily implemented within few days after the mainshock. To show the efficacy of the proposed method, a case study nine story steel moment frame building is chosen which was designed to pre-Northridge codes. The collapse fragility curve for the aftershock is presented for both the retrofitted and non-retrofitted structures. Comparison of the collapse fragility curves shows that the proposed method is indeed applicable to reduce the seismic collapse risk.Keywords: aftershock, the collapse fragility curve, seismic rehabilitation, seismic retrofitting
Procedia PDF Downloads 4331671 A Finite Element Analysis of Hexagonal Double-Arrowhead Auxetic Structure with Enhanced Energy Absorption Characteristics and Stiffness
Abstract:
Auxetic materials, as an emerging artificial designed metamaterial has attracted growing attention due to their promising negative Poisson’s ratio behaviors and tunable properties. The conventional auxetic lattice structures for which the deformation process is governed by a bending-dominated mechanism have faced the limitation of poor mechanical performance for many potential engineering applications. Recently, both load-bearing and energy absorption capabilities have become a crucial consideration in auxetic structure design. This study reports the finite element analysis of a class of hexagonal double-arrowhead auxetic structures with enhanced stiffness and energy absorption performance. The structure design was developed by extending the traditional double-arrowhead honeycomb to a hexagon frame, the stretching-dominated deformation mechanism was determined according to Maxwell’s stability criterion. The finite element (FE) models of 2D lattice structures established with stainless steel material were analyzed in ABAQUS/Standard for predicting in-plane structural deformation mechanism, failure process, and compressive elastic properties. Based on the computational simulation, the parametric analysis was studied to investigate the effect of the structural parameters on Poisson’s ratio and mechanical properties. The geometrical optimization was then implemented to achieve the optimal Poisson’s ratio for the maximum specific energy absorption. In addition, the optimized 2D lattice structure was correspondingly converted into a 3D geometry configuration by using the orthogonally splicing method. The numerical results of 2D and 3D structures under compressive quasi-static loading conditions were compared separately with the traditional double-arrowhead re-entrant honeycomb in terms of specific Young's moduli, Poisson's ratios, and specified energy absorption. As a result, the energy absorption capability and stiffness are significantly reinforced with a wide range of Poisson’s ratio compared to traditional double-arrowhead re-entrant honeycomb. The auxetic behaviors, energy absorption capability, and yield strength of the proposed structure are adjustable with different combinations of joint angle, struts thickness, and the length-width ratio of the representative unit cell. The numerical prediction in this study suggests the proposed concept of hexagonal double-arrowhead structure could be a suitable candidate for the energy absorption applications with a constant request of load-bearing capacity. For future research, experimental analysis is required for the validation of the numerical simulation.Keywords: auxetic, energy absorption capacity, finite element analysis, negative Poisson's ratio, re-entrant hexagonal honeycomb
Procedia PDF Downloads 871670 Comparison of Safety Factor Evaluation Methods for Buckling of High Strength Steel Welded Box Section Columns
Authors: Balazs Somodi, Balazs Kovesdi
Abstract:
In the research praxis of civil engineering the statistical evaluation of experimental and numerical investigations is an essential task in order to compare the experimental and numerical resistances of a specific structural problem with the proposed resistances of the standards. However, in the standards and in the international literature there are several different safety factor evaluation methods that can be used to check the necessary safety level (e.g.: 5% quantile level, 2.3% quantile level, 1‰ quantile level, γM partial safety factor, γM* partial safety factor, β reliability index). Moreover, in the international literature different calculation methods could be found even for the same safety factor as well. In the present study the flexural buckling resistance of high strength steel (HSS) welded closed sections are analyzed. The authors investigated the flexural buckling resistances of the analyzed columns by laboratory experiments. In the present study the safety levels of the obtained experimental resistances are calculated based on several safety approaches and compared with the EN 1990. The results of the different safety approaches are compared and evaluated. Based on the evaluation tendencies are identified and the differences between the statistical evaluation methods are explained.Keywords: flexural buckling, high strength steel, partial safety factor, statistical evaluation
Procedia PDF Downloads 1601669 Effects of Gamma-Tocotrienol Supplementation on T-Regulatory Cells in Syngeneic Mouse Model of Breast Cancer
Authors: S. Subramaniam, J. S. A. Rao, P. Ramdas, K. R. Selvaduray, N. M. Han, M. K. Kutty, A. K. Radhakrishnan
Abstract:
Immune system is a complex system where the immune cells have the capability to respond against a wide range of immune challenges including cancer progression. However, in the event of cancer development, tumour cells trigger immunosuppressive environment via activation of myeloid-derived suppressor cells and T regulatory (Treg) cells. The Treg cells are subset of CD4+ T lymphocytes, known to have crucial roles in regulating immune homeostasis and promoting the establishment and maintenance of peripheral tolerance. Dysregulation of these mechanisms could lead to cancer progression and immune suppression. Recently, there are many studies reporting on the effects of natural bioactive compounds on immune responses against cancer. It was known that tocotrienol-rich-fraction consisting 70% tocotrienols and 30% α-tocopherol is able to exhibit immunomodulatory as well as anti-cancer properties. Hence, this study was designed to evaluate the effects of gamma-tocotrienol (G-T3) supplementation on T-reg cells in a syngeneic mouse model of breast cancer. In this study, female BALB/c mice were divided into two groups and fed with either soy oil (vehicle) or gamma-tocotrienol (G-T3) for two weeks followed by inoculation with tumour cells. All the mice continued to receive the same supplementation until day 49. The results showed a significant reduction in tumour volume and weight in G-T3 fed mice compared to vehicle-fed mice. Lung and liver histology showed reduced evidence of metastasis in tumour-bearing G-T3 fed mice. Besides that, flow cytometry analysis revealed T-helper cell population was increased, and T-regulatory cell population was suppressed following G-T3 supplementation. Moreover, immunohistochemistry analysis showed that there was a marked decrease in the expression of FOXP3 in the G-T3 fed tumour bearing mice. In conclusion, the G-T3 supplementation showed good prognosis towards breast cancer by enhancing the immune response in tumour-bearing mice. Therefore, gamma-T3 can be used as immunotherapy agent for the treatment of breast cancer.Keywords: breast cancer, gamma tocotrienol, immune suppression, supplement
Procedia PDF Downloads 2221668 Crack Opening Investigation in Fiberconcrete
Authors: Arturs Macanovskis, Vitalijs Lusis, Andrejs Krasnikovs
Abstract:
Work has three stages. In the first stage was examined pull-out process for steel fiber was embedded into a concrete by one end and was pulled out of concrete under the angle to pulling out force direction. Angle was varied. Length of steel fiber was 26 mm, diameter 0.5 mm. On the obtained force- displacement diagrams were observed jumps. For such mechanical behavior explanation, fiber channel in concrete surface microscopical experimental investigation, using microscope KEYENCE VHX2000, was performed. Surface of fiber channel in concrete matrix after pull-out test (fiber angle to pulling out force direction 70°). At the second stage were obtained diagrams for load- crack opening displacement for breaking homogeneously reinforced and layered fiber concrete prisms (with dimensions 10x10x40 cm) subjected to 4-point bending. After testing was analyzed main crack. On the main crack’s both surfaces were recognized all pulled out fibers their locations, angles to crack surface and lengths of pull-out fibers parts. At the third stage elaborated prediction model for the fiber-concrete beam, failure under bending, using the following data: a) diagrams for fibers pulling out at different angles; b) experimental data about steel-straight fibers locations in the main crack.Keywords: fiberconcrete, pull-out, fiber channel, layered fiberconcrete
Procedia PDF Downloads 4391667 Geoelectric Survey for Groundwater Potential in Waziri Umaru Federal Polytechnic, Birnin Kebbi, Nigeria
Authors: Ibrahim Mohammed, Suleiman Taofiq, Muhammad Naziru Yahya
Abstract:
Geoelectrical measurements using Schlumberger Vertical Electrical Sounding (VES) method were carried out in Waziri Umaru Federal Polytechnic, Birnin Kebbi, Nigeria, with the aim of determining the groundwater potential in the area. Twelve (12) Vertical Electric Sounding (VES) data were collected using Terrameter (ABEM SAS 300c) and analyzed using computer software (IPI2win), which gives an automatic interpretation of the apparent resistivity. The results of the interpretation of VES data were used in the characterization of three to five geo-electric layers from which the aquifer units were delineated. Data analysis indicated that water bearing formation exists in the third and fourth layers having resistivity range of 312 to 767 Ωm and 9.51 to 681 Ωm, respectively. The thickness of the formation ranges from 14.7 to 41.8 m, while the depth is from 8.22 to 53.7 m. Based on the result obtained from the interpretation of the data, five (5) VES stations were recommended as the most viable locations for groundwater exploration in the study area. The VES stations include VES A4, A5, A6, B1, and B2. The VES results of the entire area indicated that the water bearing formation occurs at maximum depth of 53.7 m at the time of this survey.Keywords: aquifer, depth, groundwater, resistivity, Schlumberger
Procedia PDF Downloads 1661666 Behavior of Cold Formed Steel in Trusses
Authors: Reinhard Hermawan Lasut, Henki Wibowo Ashadi
Abstract:
The use of materials in Indonesia's construction sector requires engineers and practitioners to develop efficient construction technology, one of the materials used in cold-formed steel. Generally, the use of cold-formed steel is used in the construction of roof trusses found in houses or factories. The failure of the roof truss structure causes errors in the calculation analysis in the form of cross-sectional dimensions or frame configuration. The roof truss structure, vertical distance effect to the span length at the edge of the frame carries the compressive load. If the span is too long, local buckling will occur which causes problems in the frame strength. The model analysis uses various shapes of roof trusses, span lengths and angles with analysis of the structural stiffness matrix method. Model trusses with one-fifth shortened span and one-sixth shortened span also The trusses model is reviewed with increasing angles. It can be concluded that the trusses model by shortening the span in the compression area can reduce deflection and the model by increasing the angle does not get good results because the higher the roof, the heavier the load carried by the roof so that the force is not channeled properly. The shape of the truss must be calculated correctly so the truss is able to withstand the working load so that there is no structural failure.Keywords: cold-formed, trusses, deflection, stiffness matrix method
Procedia PDF Downloads 1661665 The Study of Aluminum Effects Layer Austenite Twins Adjacent to K-Carbide Plates in the Cellular Structure of a Mn-Al Alloy Steel
Authors: Wu Wei-Ting, Liu Po-Yen, Chang Chin-Tzu, Cheng Wei-Chun
Abstract:
Three types of low-temperature phase transformations in an Fe-12.5 Mn-6.53 Al-1.28 C (wt %) alloy have been studied. The steel underwent solution heat treatment at 1100℃ and isothermal holding at low temperatures. γ’ phase appears in the austenite matrix in the air-cooled steel. Coherent ultra-fine particles of γ’ phase precipitated uniformly in the austenite matrix after the air-cooling process. These ultra-fine particles were very small and only could be detected by TEM through dark-field images. After short periods of isothermal holding at low temperatures these particles of γ’ phase grew and could be easily detected by TEM. A pro-eutectoid reaction happened after isothermal holding at temperatures below 875 ℃. Proeutectoid κ-carbide and ferrite appear in the austenite matrix as grain boundary precipitates and cellular precipitates. The cellular precipitates are composed of lamellar κ-carbide and austenite. The lamellar κ-carbide grains are always accompanied by layers of austenite twins. The presence of twin layers adhering to the κ-carbide plates might be attributed to the lower activation energy for the precipitation of κ-carbide plates in the austenite. The final form of phase transformation is the eutectoid reaction for the decomposition of supersaturated austenite into stable κ-carbide and ferrite phases at temperatures below 700℃. The ferrite and κ-carbide are in the form of pearlite lamellae.Keywords: austenite, austenite twin layers, κ-carbide, twins
Procedia PDF Downloads 2271664 Progressive Damage Analysis of Mechanically Connected Composites
Authors: Şeyma Saliha Fidan, Ozgur Serin, Ata Mugan
Abstract:
While performing verification analyses under static and dynamic loads that composite structures used in aviation are exposed to, it is necessary to obtain the bearing strength limit value for mechanically connected composite structures. For this purpose, various tests are carried out in accordance with aviation standards. There are many companies in the world that perform these tests in accordance with aviation standards, but the test costs are very high. In addition, due to the necessity of producing coupons, the high cost of coupon materials, and the long test times, it is necessary to simulate these tests on the computer. For this purpose, various test coupons were produced by using reinforcement and alignment angles of the composite radomes, which were integrated into the aircraft. Glass fiber reinforced and Quartz prepreg is used in the production of the coupons. The simulations of the tests performed according to the American Society for Testing and Materials (ASTM) D5961 Procedure C standard were performed on the computer. The analysis model was created in three dimensions for the purpose of modeling the bolt-hole contact surface realistically and obtaining the exact bearing strength value. The finite element model was carried out with the Analysis System (ANSYS). Since a physical break cannot be made in the analysis studies carried out in the virtual environment, a hypothetical break is realized by reducing the material properties. The material properties reduction coefficient was determined as 10%, which is stated to give the most realistic approach in the literature. There are various theories in this method, which is called progressive failure analysis. Because the hashin theory does not match our experimental results, the puck progressive damage method was used in all coupon analyses. When the experimental and numerical results are compared, the initial damage and the resulting force drop points, the maximum damage load values , and the bearing strength value are very close. Furthermore, low error rates and similar damage patterns were obtained in both test and simulation models. In addition, the effects of various parameters such as pre-stress, use of bushing, the ratio of the distance between the bolt hole center and the plate edge to the hole diameter (E/D), the ratio of plate width to hole diameter (W/D), hot-wet environment conditions were investigated on the bearing strength of the composite structure.Keywords: puck, finite element, bolted joint, composite
Procedia PDF Downloads 1021663 Finite Element Analysis of Connecting Rod
Authors: Mohammed Mohsin Ali H., Mohamed Haneef
Abstract:
The connecting rod transmits the piston load to the crank causing the latter to turn, thus converting the reciprocating motion of the piston into a rotary motion of the crankshaft. Connecting rods are subjected to forces generated by mass and fuel combustion. This study investigates and compares the fatigue behavior of forged steel, powder forged and ASTM a 514 steel cold quenched connecting rods. The objective is to suggest for a new material with reduced weight and cost with the increased fatigue life. This has entailed performing a detailed load analysis. Therefore, this study has dealt with two subjects: first, dynamic load and stress analysis of the connecting rod, and second, optimization for material, weight and cost. In the first part of the study, the loads acting on the connecting rod as a function of time were obtained. Based on the observations of the dynamic FEA, static FEA, and the load analysis results, the load for the optimization study was selected. It is the conclusion of this study that the connecting rod can be designed and optimized under a load range comprising tensile load and compressive load. Tensile load corresponds to 360o crank angle at the maximum engine speed. The compressive load is corresponding to the peak gas pressure. Furthermore, the existing connecting rod can be replaced with a new connecting rod made of ASTM a 514 steel cold quenched that is 12% lighter and 28% cheaper.Keywords: connecting rod, ASTM a514 cold quenched material, static analysis, fatigue analysis, stress life approach
Procedia PDF Downloads 3001662 Assessment of Rock Masses Performance as a Support of Lined Rock Cavern for Isothermal Compressed Air Energy Storage
Authors: Vathna Suy, Ki-Il Song
Abstract:
In order to store highly pressurized gas such as an isothermal compressed air energy storage, Lined Rock Caverns (LRC) are constructed underground and supported by layers of concrete, steel and rock masses. This study aims to numerically investigate the performance of rock masses which serve as a support of Lined Rock Cavern subjected to high cyclic pressure loadings. FLAC3D finite different software is used for the simulation since the software can effectively model the behavior of concrete lining and steel plate with its built-in structural elements. Cyclic pressure loadings are applied onto the inner surface of the cavern which then transmitted to concrete, steel and eventually to the surrounding rock masses. Changes of stress and strain are constantly monitored throughout all the process of loading operations. The results at various monitoring locations are then extracted and analyzed to assess the response of the rock masses, specifically on its ability to absorb energy during loadings induced by the changes of cyclic pressure loadings inside the cavern. By analyzing the obtained data of stress-strain relation and taking into account the behavior of materials under the effect of strain-dependency, conclusions on the performance of rock masses subjected to high cyclic loading conditions are drawn.Keywords: cyclic loading, FLAC3D, lined rock cavern (LRC), strain-dependency
Procedia PDF Downloads 2451661 Microstructure and Corrosion Properties of Pulsed Current Gas Metal Arc Welded Narrow Groove and Ultra-Narrow Groove of 304 LN Austenitic Stainless Steel
Authors: Nikki A. Barla, P. K. Ghosh, Sourav Das
Abstract:
Two different groove sizes 13.6 mm (narrow groove) and 7.5 mm (ultra-narrow groove) of 304 LN austenitic stainless steel (ASS) plate was welded using pulse gas metal arc welding (P-GMAW). These grooves were welded using multi-pass single seam per layer (MSPPL) deposition technique with full assurance of groove wall fusion. During bead on plate deposition process, the thermal cycle was recorded using strain buster (temperature measuring device). Both the groove has heat affected Zone (HAZ) width of 1-2 mm. After welding, the microstructure studies was done which revealed that there was higher sensitization (Chromium carbide formation in grain boundary) in the HAZ of 13.6 mm groove weldment as compared to the HAZ of 7.5 mm weldment. Electrochemical potentiokinetic reactivation test (EPR) was done in 0.5 N H₂SO₄ + 1 M KSCN solution to study the degree of sensitization (DOS) and it was observed that 7.5 mm groove HAZ has lower DOS. Mass deposition in the 13.6 mm weld is higher than 7.5mm groove weld, which naturally induces higher residual stress in 13.6 mm weld. Comparison between microstructural studies and corrosion test summarized that the residual stress affects the sensitization property of welded ASS.Keywords: austenitic stainless steel (ASS), electrochemical potentiokinetic reactivation test (EPR), microstructure, pulse gas metal arc welding (P-GMAW), sensitization
Procedia PDF Downloads 163