Search results for: teaching and learning english
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9391

Search results for: teaching and learning english

1171 High Resolution Image Generation Algorithm for Archaeology Drawings

Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu

Abstract:

Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.

Keywords: archaeology drawings, digital heritage, image generation, deep learning

Procedia PDF Downloads 58
1170 Research Trends in Fine Arts Education Dissertations in Turkey

Authors: Suzan Duygu Bedir Erişti

Abstract:

The present study tried to make a general evaluation of the dissertations conducted in the last decade in the field of art education in the Department of Fine Arts Education in the Institutes of Education Sciences in Turkey. In the study, most of the universities which involved an Institute of Education Sciences within their bodies in Turkey were reached. As a result, a total of a hundred dissertations conducted in the departments of Fine Arts Education at several universities (Anadolu, Gazi, Ankara, Marmara, Dokuz Eylul, Ondokuz Mayıs, Selcuk and Necmettin Erbakan) were determined via the open access systems of universities as well as via the Thesis Search System of Higher Education Council. Most of the dissertations were reached via the latter system, and in cases of failure, the dissertations were reached via the former system. Consequently, most of the dissertations which did not have any access restriction and which had appropriate content were reached. The dissertations reached were examined based on document analysis in terms of their research topics, research paradigms, contents, purposes, methodologies, data collection tools, and analysis techniques. The dissertations conducted in institutes of Education Sciences could be said to have demonstrated a development, especially in recent years with respect to their qualities. It was also found that a great majority of the dissertations were carried out at Gazi University and Marmara University and that a similar number of dissertations were conducted in other universities. When all the dissertations were taken into account, in general, they were found to differ a lot in their subject areas. In most of the dissertations, the quantitative paradigm was adopted, while especially in recent years, more importance has been given to methods based on the qualitative paradigm. In addition, most of the dissertations conducted with quantitative paradigm were structured based on the general survey model and experimental research model. In terms of statistical techniques, university-focused approaches were used. In some universities, advanced statistical techniques were applied, while in some other universities, there was a moderate use of statistical techniques. Most of the studies produced results generalizable to the levels of postgraduate education and elementary school education. The studies were generally structured in face-to-face teaching processes, while some of them were designed in environments which did not include results generalizable to the face-to-face education system. In the present study, it was seen that the dissertations conducted in the departments of Fine Arts Education at the Institutes of Education Sciences in Turkey did not involve application-based approaches which included art-based or visual research in terms of either research topic or methodology.

Keywords: fine arts education, dissertations, evaluation of dissertations, research trends in fine arts education

Procedia PDF Downloads 197
1169 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags

Authors: Zhang Shuqi, Liu Dan

Abstract:

For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.

Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation

Procedia PDF Downloads 104
1168 Twitter Sentiment Analysis during the Lockdown on New-Zealand

Authors: Smah Almotiri

Abstract:

One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2020, until April 4, 2020. Natural language processing (NLP), which is a form of Artificial intelligence, was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applying machine learning sentimental methods such as Crystal Feel and extending the size of the sample tweet by using multiple tweets over a longer period of time.

Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS

Procedia PDF Downloads 190
1167 Revisiting Historical Illustrations in the Age of Digital Anatomy Education

Authors: Julia Wimmers-Klick

Abstract:

In the contemporary study of anatomy, medical students utilize a diverse array of resources, including lab handouts, lectures, and, increasingly, digital media such as interactive anatomy apps and digital images. Notably, a significant shift has occurred, with fewer students possessing traditional anatomy atlases or books, reflecting a broader trend towards digital approaches like Virtual Reality, Augmented Reality, and web-based programs. This paper seeks to explore the evolution of anatomy education by contrasting current digital tools with historical resources, such as classical anatomical illustrations and atlases, to assess their relevance and potential benefits in modern medical education. Through a comprehensive literature review, the development of anatomical illustrations is traced from the textual descriptions of Galen to the detailed and artistic representations of Da Vinci, Vesalius, and later anatomists. The examination includes how the printing press facilitated the dissemination of anatomical knowledge, transforming covert dissections into public spectacles and formalized teaching practices. Historical illustrations, often influenced by societal, religious, and aesthetic contexts, not only served educational purposes but also reflected the prevailing medical knowledge and ethical standards of their times. Critical questions are raised about the place of historical illustrations in today's anatomy curriculum. Specifically, their potential to teach critical thinking, highlight the history of medicine, and offer unique insights into past societal conditions are explored. These resources are viewed in their context, including the lack of diversity and the presence of ethical concerns, such as the use of illustrations from unethical sources like Pernkopf’s atlas. In conclusion, while digital tools offer innovative ways to visualize and interact with anatomical structures, historical illustrations provide irreplaceable value in understanding the evolution of medical knowledge and practice. The study advocates for a balanced approach that integrates traditional and modern resources to enrich medical education, promote critical thinking, and provide a comprehensive understanding of anatomy. Future research should investigate the optimal combination of these resources to meet the evolving needs of medical learners and the implications of the digital shift in anatomy education.

Keywords: human anatomy, historical illustrations, historical context, medical education

Procedia PDF Downloads 21
1166 Determining Optimal Number of Trees in Random Forests

Authors: Songul Cinaroglu

Abstract:

Background: Random Forest is an efficient, multi-class machine learning method using for classification, regression and other tasks. This method is operating by constructing each tree using different bootstrap sample of the data. Determining the number of trees in random forests is an open question in the literature for studies about improving classification performance of random forests. Aim: The aim of this study is to analyze whether there is an optimal number of trees in Random Forests and how performance of Random Forests differ according to increase in number of trees using sample health data sets in R programme. Method: In this study we analyzed the performance of Random Forests as the number of trees grows and doubling the number of trees at every iteration using “random forest” package in R programme. For determining minimum and optimal number of trees we performed Mc Nemar test and Area Under ROC Curve respectively. Results: At the end of the analysis it was found that as the number of trees grows, it does not always means that the performance of the forest is better than forests which have fever trees. In other words larger number of trees only increases computational costs but not increases performance results. Conclusion: Despite general practice in using random forests is to generate large number of trees for having high performance results, this study shows that increasing number of trees doesn’t always improves performance. Future studies can compare different kinds of data sets and different performance measures to test whether Random Forest performance results change as number of trees increase or not.

Keywords: classification methods, decision trees, number of trees, random forest

Procedia PDF Downloads 395
1165 The Effects of Physician-Family Communication from the Point View of Clinical Staff

Authors: Lu-Chiu Huang, Pei-Pei Chen, Li-Chin Yu, Chiao-Wen Kuo, Tsui-Tao Liu, Rung-Chuang Feng

Abstract:

Purpose: People put increasing emphasis on demands of medical quality and protecting their interests. Patients' or family's dissatisfaction with medical care may easily lead to medical dispute. Physician-family communication plays an essential role in medical care. A sound communication cannot only strengthen patients' belief in the medical team but make patient have definite insight into treatment course of the disease. A family meeting provides an effective platform for communication between clinical staff, patients and family. Decisions and consensuses formed in family meetings can promote patients' or family's satisfaction with medical care. Clinical staff's attitudes toward family meeting may determine behavioral intentions to hold family meeting. This study aims to explore clinical staff's difficulties in holding family meeting and evaluate how their attitudes and behavior influence the effect of family meetings. Methods: This was a cross-sectional study. It was conducted at a regional teaching hospital in Taipei city. The research team developed its own structural questionnaires, whose expert validity was checked by the nursing experts. Participants filled in the questionnaires online. Data were collected by convenience sampling. A total of 568 participants were invited. They included doctors, nurses, social workers, and so on. Results: 1) The average score of ‘clinical staff’s attitudes to family meetings’ was 5.15 (SD=0.898). It fell between ‘somewhat agree’ and ‘mostly agree’ on the 7-point likert scale. It indicated that clinical staff had positive attitudes toward family meetings, 2) The average score of ‘clinical staff’s behavior to family meetings’ was 5.61 (SD=0.937). It fell between ‘somewhat agree’ and ‘mostly agree’ on the 7-point likert scale. It meant clinical staff tended to have positive behavior at the family meeting, and 3) The average score of ‘Difficulty in conducting family meetings’ was 5.15 (SD=0.897). It fell between ‘somewhat agree’ and ‘mostly agree’ on the 7-point likert scale. The higher the score was, the less difficulty the clinical staff felt. It demonstrated clinical staff felt less difficulty in conducting family meetings. Clinical staff's identification with family meetings brought favored effects. Persistent and active promotion for family meetings can bring patients and family more benefits. Implications for practice: Understanding clinical staff's difficulty in participating family meeting and exploring their attitudes or behavior toward physician-family communication are helpful to develop modes of interaction. Consequently, quality and satisfaction of physician-family communication can be increased.

Keywords: clinical staff, communication, family meeting, physician-family

Procedia PDF Downloads 327
1164 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference

Authors: Hussein Alahmer, Amr Ahmed

Abstract:

Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate.  This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.

Keywords: CAD system, difference of feature, fuzzy c means, lesion detection, liver segmentation

Procedia PDF Downloads 325
1163 Epidemiology of Low Back Pain among Nurses Working in Public Hospitals of Addis Ababa, Ethiopia

Authors: Mengestie Mulugeta Belay, Serebe Abay Gebrie, Biruk Lambbiso Wamisho, Amare Worku

Abstract:

Background: Low back pain (LBP) related to nursing profession, is a very common public health problem throughout the world. Various risk factors have been implicated in the etiology and LBP is assumed to be of multi-factorial origin as individual, work-related and psychosocial factors can contribute to its development. Objectives: To determine the prevalence and to identify risk factors of LBP among nurses working in Addis Ababa City Public Hospitals, Ethiopia, in the year 2015. Settings: Addis Ababa University, Black-Lion (‘Tikur Anbessa’) Hospital-BLH, is the country’s highest tertiary level referral and teaching Hospital. The three departments in connection with this study: Radiology, Pathology and Orthopedics, run undergraduate and residency programs and receive referred patients from all over the country. Methods: A cross-sectional study with internal comparison was conducted throughout the period October-December, 2015. Sample was chosen by simple random sampling technique by taken the lists of nurses from human resource departments as a sampling frame. A well-structured, pre-tested and self-administered questionnaire was used to collect quantifiable information. The questionnaire included socio-demographic, back pain features, consequences of back pain, work-related and psychosocial factors. The collected data was entered into EpiInfo version 3.5.4 and was analyzed by SPSS. A probability level of 0.05 or less and 95% confidence level was used to indicate statistical significance. Ethical clearance was obtained from all respected administrative bodies, Hospitals and study participants. Results: The study included 395 nurses and gave a response rate of 91.9%. The mean age was 30.6 (±8.4) years. Majority of the respondents were female (285, 72.2%). Nearly half of the participants (n=181, 45.8% (95% CI (40.8%- 50.6%))) were complained low back pain. There was statistical significant association between low back pain and working shift, physical activities at work; sleep disturbance and felt little pleasure by doing things. Conclusion: A high prevalence of low back pain was found among nurses working in Addis Ababa Public Hospitals. Recognition and preventive measures like providing resting periods should be taken to reduce the risk of low back pain in nurses working in Public hospitals.

Keywords: low back pain, risk factors, nurses, public hospitals

Procedia PDF Downloads 311
1162 TerraEnhance: High-Resolution Digital Elevation Model Generation using GANs

Authors: Siddharth Sarma, Ayush Majumdar, Nidhi Sabu, Mufaddal Jiruwaala, Shilpa Paygude

Abstract:

Digital Elevation Models (DEMs) are digital representations of the Earth’s topography, which include information about the elevation, slope, aspect, and other terrain attributes. DEMs play a crucial role in various applications, including terrain analysis, urban planning, and environmental modeling. In this paper, TerraEnhance is proposed, a distinct approach for high-resolution DEM generation using Generative Adversarial Networks (GANs) combined with Real-ESRGANs. By learning from a dataset of low-resolution DEMs, the GANs are trained to upscale the data by 10 times, resulting in significantly enhanced DEMs with improved resolution and finer details. The integration of Real-ESRGANs further enhances visual quality, leading to more accurate representations of the terrain. A post-processing layer is introduced, employing high-pass filtering to refine the generated DEMs, preserving important details while reducing noise and artifacts. The results demonstrate that TerraEnhance outperforms existing methods, producing high-fidelity DEMs with intricate terrain features and exceptional accuracy. These advancements make TerraEnhance suitable for various applications, such as terrain analysis and precise environmental modeling.

Keywords: DEM, ESRGAN, image upscaling, super resolution, computer vision

Procedia PDF Downloads 8
1161 Detection of Hepatitis B by the Use of Artifical Intelegence

Authors: Shizra Waris, Bilal Shoaib, Munib Ahmad

Abstract:

Background; The using of clinical decision support systems (CDSSs) may recover unceasing disease organization, which requires regular visits to multiple health professionals, treatment monitoring, disease control, and patient behavior modification. The objective of this survey is to determine if these CDSSs improve the processes of unceasing care including diagnosis, treatment, and monitoring of diseases. Though artificial intelligence is not a new idea it has been widely documented as a new technology in computer science. Numerous areas such as education business, medical and developed have made use of artificial intelligence Methods: The survey covers articles extracted from relevant databases. It uses search terms related to information technology and viral hepatitis which are published between 2000 and 2016. Results: Overall, 80% of studies asserted the profit provided by information technology (IT); 75% of learning asserted the benefits concerned with medical domain;25% of studies do not clearly define the added benefits due IT. The CDSS current state requires many improvements to hold up the management of liver diseases such as HCV, liver fibrosis, and cirrhosis. Conclusion: We concluded that the planned model gives earlier and more correct calculation of hepatitis B and it works as promising tool for calculating of custom hepatitis B from the clinical laboratory data.

Keywords: detection, hapataties, observation, disesese

Procedia PDF Downloads 156
1160 Building Academic Success and Resilience in Social Work Students: An Application of Self-Determination Theory

Authors: Louise Bunce, Jill Childs, Adam J. Lonsdale, Naomi King

Abstract:

A major concern for the Social Work profession concerns the frequency of burn-out and high turnover of staff. The characteristic of resilience has been identified as playing a crucial role in social workers’ ability to have a satisfying and successful career. Thus a critical role for social work education is to develop resilience in social work students. We currently need to know more about how to train resilient social workers who will also increase the academic standing of the profession. The specific aim of this research was to quantify characteristics that may contribute towards resilience and academic success among student social workers in order to mitigate against the problems of burn-out and low academic standing. These three characteristics were competence (effectiveness at mastering the environment), autonomy (sense of control and free will), and relatedness (interacting and connecting with others), as specified in Self-Determination Theory (SDT). When these three needs are satisfied, we experience higher degrees of motivation to succeed and wellbeing. Thus when these three needs are met in social work students, they have the potential to raise academic standards and promote wellbeing characteristics that contribute to the development of resilience. The current study tested the hypothesis that higher levels of autonomy, competence, and relatedness, as defined by SDT, will predict levels of academic success and resilience in social work students. Two hundred and ten social work students studying at a number of universities completed well-established questionnaires to assess autonomy, competence, and relatedness, level of academic performance and resilience (The Brief Resilience Scale). In this scale, students rated their agreement with items e.g., ‘I bounce back quickly after hard times’ and ‘I usually come through difficult times with little struggle’. After controlling for various factors, including age, gender, ethnicity, and course (undergraduate or postgraduate) preliminary analysis revealed that the components of SDT provided useful predictive value for academic success and resilience. In particular, autonomy and competence provided a useful predictor of academic success while relatedness was a particularly useful predictor of resilience. This study demonstrated that SDT provides a valuable framework for helping to understand what predicts academic success and resilience among social work students. This is relevant because the psychological needs for autonomy, competence and relatedness can be affected by external social and cultural pressures, thus they can be improved by the right type of supportive teaching practices and educational environments. These findings contribute to the growing evidence-base to help build an academic and resilient social worker student body and workforce.

Keywords: education, resilience, self-determination theory, student social workers

Procedia PDF Downloads 328
1159 Design and Validation of the 'Teachers' Resilience Scale' for Assessing Protective Factors

Authors: Athena Daniilidou, Maria Platsidou

Abstract:

Resilience is considered to greatly affect the personal and occupational wellbeing and efficacy of individuals; therefore, it has been widely studied in the social and behavioral sciences. Given its significance, several scales have been created to assess resilience of children and adults. However, most of these scales focus on examining only the internal protective or risk factors that affect the levels of resilience. The aim of the present study is to create a reliable scale that assesses both the internal and the external protective factors that affect Greek teachers’ levels of resilience. Participants were 136 secondary school teachers (89 females, 47 males) from urban areas of Greece. Connor-Davidson Resilience Scale (CD-Risc) and Resilience Scale for Adults (RSA) were used to collect the data. First, exploratory factor analysis was employed to investigate the inner structure of each scale. For both scales, the analyses revealed a differentiated factor solution compared to the ones proposed by the creators. That prompt us to create a scale that would combine the best fitting subscales of the CD-Risc and the RSA. To this end, the items of the four factors with the best fit and highest reliability were used to create the ‘Teachers' resilience scale’. Exploratory factor analysis revealed that the scale assesses the following protective/risk factors: Personal Competence and Strength (9 items, α=.83), Family Cohesion Spiritual Influences (7 items, α=.80), Social Competence and Peers Support (7 items, α=.78) and Spiritual Influence (3 items, α=.58). This four-factor model explained 49,50% of the total variance. In the next step, a confirmatory factor analysis was performed on the 26 items of the derived scale to test the above factor solution. The fit of the model to the data was good (χ2/292 = 1.245, CFI = .921, GFI = .829, SRMR = .074, CI90% = .026-,056, RMSEA = 0.43), indicating that the proposed scale can validly measure the aforementioned four aspects of teachers' resilience and thus confirmed its factorial validity. Finally, analyses of variance were performed to check for individual differences in the levels of teachers' resilience in relation to their gender, age, marital status, level of studies, and teaching specialty. Results were consistent to previous findings, thus providing an indication of discriminant validity for the instrument. This scale has the advantage of assessing both the internal and the external protective factors of resilience in a brief yet comprehensive way, since it consists 26 items instead of the total of 58 of the CD-Risc and RSA scales. Its factorial inner structure is supported by the relevant literature on resilience, as it captures the major protective factors of resilience identified in previous studies.

Keywords: protective factors, resilience, scale development, teachers

Procedia PDF Downloads 297
1158 Tornado Disaster Impacts and Management: Learning from the 2016 Tornado Catastrophe in Jiangsu Province, China

Authors: Huicong Jia, Donghua Pan

Abstract:

As a key component of disaster reduction management, disaster emergency relief and reconstruction is an important process. Based on disaster system theory, this study analyzed the Jiangsu tornado from the formation mechanism of disasters, through to the economic losses, loss of life, and social infrastructure losses along the tornado disaster chain. The study then assessed the emergency relief and reconstruction efforts, based on an analytic hierarchy process method. The results were as follows: (1) An unstable weather system was the root cause of the tornado. The potentially hazardous local environment, acting in concert with the terrain and the river network, was able to gather energy from the unstable atmosphere. The wind belt passed through a densely populated district, with vulnerable infrastructure and other hazard-prone elements, which led to an accumulative disaster situation and the triggering of a catastrophe. (2) The tornado was accompanied by a hailstorm, which is an important triggering factor for a tornado catastrophe chain reaction. (3) The evaluation index (EI) of the emergency relief and reconstruction effect for the ‘‘6.23’’ tornado disaster in Yancheng was 91.5. Compared to other relief work in areas affected by disasters of the same magnitude, there was a more successful response than has previously been experienced. The results provide new insights for studies of disaster systems and the recovery measures in response to tornado catastrophe in China.

Keywords: China, disaster system, emergency relief, tornado catastrophe

Procedia PDF Downloads 270
1157 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios

Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong

Abstract:

Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.

Keywords: decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle

Procedia PDF Downloads 134
1156 Measuring Engagement Equation in Educational Institutes

Authors: Mahfoodh Saleh Al Sabbagh, Venkoba Rao

Abstract:

There is plenty of research, both in academic and consultancy circles, about the importance and benefits of employee engagement and customer engagement and how it gives organization an opportunity to reduce variability and improve performance. Customer engagement is directly related to the engagement level of the organization's employees. It is therefore important to measure both. This research drawing from the work of Human Sigma by Fleming and Asplund, attempts to assess engagement level of customer and employees - the human systems of business - in an educational setup. Student is important to an educational institute and is a customer to be served efficiently and effectively. Considering student as customer and faculty as employees serving them, in–depth interviews were conducted to analyze the relationship between faculty and student engagement in two leading colleges in Oman, one from private sector and another from public sector. The study relied mainly on secondary data sources to understand the concept of engagement. However, the search of secondary sources was extensive to compensate the limited primary data. The results indicate that high faculty engagement is likely to lead to high student engagement. Engaged students were excited about learning, loved the feeling of they being cared as a person by their faculty and advocated the organization to other. The interaction truly represents an opportunity to build emotional connection to the organization. This study could be of interest to organizations interest in building and maintaining engagement with employees and customers.

Keywords: customer engagement, consumer psychology, strategy, educational institutes

Procedia PDF Downloads 472
1155 Improving the Run Times of Existing and Historical Demand Models Using Simple Python Scripting

Authors: Abhijeet Ostawal, Parmjit Lall

Abstract:

The run times for a large strategic model that we were managing had become too long leading to delays in project delivery, increased costs and loss in productivity. Software developers are continuously working towards developing more efficient tools by changing their algorithms and processes. The issue faced by our team was how do you apply the latest technologies on validated existing models which are based on much older versions of software that do not have the latest software capabilities. The multi-model transport model that we had could only be run in sequential assignment order. Recent upgrades to the software now allowed the assignment to be run in parallel, a concept called parallelization. Parallelization is a Python script working only within the latest version of the software. A full model transfer to the latest version was not possible due to time, budget and the potential changes in trip assignment. This article is to show the method to adapt and update the Python script in such a way that it can be used in older software versions by calling the latest version and then recalling the old version for assignment model without affecting the results. Through a process of trial-and-error run time savings of up to 30-40% have been achieved. Assignment results were maintained within the older version and through this learning process we’ve applied this methodology to other even older versions of the software resulting in huge time savings, more productivity and efficiency for both client and consultant.

Keywords: model run time, demand model, parallelisation, python scripting

Procedia PDF Downloads 118
1154 Enhanced Image Representation for Deep Belief Network Classification of Hyperspectral Images

Authors: Khitem Amiri, Mohamed Farah

Abstract:

Image classification is a challenging task and is gaining lots of interest since it helps us to understand the content of images. Recently Deep Learning (DL) based methods gave very interesting results on several benchmarks. For Hyperspectral images (HSI), the application of DL techniques is still challenging due to the scarcity of labeled data and to the curse of dimensionality. Among other approaches, Deep Belief Network (DBN) based approaches gave a fair classification accuracy. In this paper, we address the problem of the curse of dimensionality by reducing the number of bands and replacing the HSI channels by the channels representing radiometric indices. Therefore, instead of using all the HSI bands, we compute the radiometric indices such as NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), etc, and we use the combination of these indices as input for the Deep Belief Network (DBN) based classification model. Thus, we keep almost all the pertinent spectral information while reducing considerably the size of the image. In order to test our image representation, we applied our method on several HSI datasets including the Indian pines dataset, Jasper Ridge data and it gave comparable results to the state of the art methods while reducing considerably the time of training and testing.

Keywords: hyperspectral images, deep belief network, radiometric indices, image classification

Procedia PDF Downloads 280
1153 Improving Perceptual Reasoning in School Children through Chess Training

Authors: Ebenezer Joseph, Veena Easvaradoss, S. Sundar Manoharan, David Chandran, Sumathi Chandrasekaran, T. R. Uma

Abstract:

Perceptual reasoning is the ability that incorporates fluid reasoning, spatial processing, and visual motor integration. Several theories of cognitive functioning emphasize the importance of fluid reasoning. The ability to manipulate abstractions and rules and to generalize is required for reasoning tasks. This study, funded by the Cognitive Science Research Initiative, Department of Science and Technology, Government of India, analyzed the effect of 1-year chess training on the perceptual reasoning of children. A pretest–posttest with control group design was used, with 43 (28 boys, 15 girls) children in the experimental group and 42 (26 boys, 16 girls) children in the control group. The sample was selected from children studying in two private schools from South India (grades 3 to 9), which included both the genders. The experimental group underwent weekly 1-hour chess training for 1 year. Perceptual reasoning was measured by three subtests of WISC-IV INDIA. Pre-equivalence of means was established. Further statistical analyses revealed that the experimental group had shown statistically significant improvement in perceptual reasoning compared to the control group. The present study clearly establishes a correlation between chess learning and perceptual reasoning. If perceptual reasoning can be enhanced in children, it could possibly result in the improvement of executive functions as well as the scholastic performance of the child.

Keywords: chess, cognition, intelligence, perceptual reasoning

Procedia PDF Downloads 356
1152 The Development of Crisis Distance Education at Kuwait University During the COVID-19 Pandemic

Authors: Waleed Alanzi

Abstract:

The purpose of this qualitative study was to add to the existing literature and provide a more detailed understanding of the individual experiences and perceptions of 15 Deans at the University of Kuwait regarding their first year of planning, developing, and implementing crisis distance education (CDE) in response to the COVID-19 epidemic. An interpretative phenomenological approach was applied, using the thematic analysis of interview transcripts to describe the challenging journeys taken by each of the Deans from the first-person point of view. There was objective evidence, manifested by four primary themes (“Obstacles to the implementation of CDE”; “Planning for CDE”; “Training for CDE,” and “Future Directions”) to conclude that the faculty members, technical staff, administrative staff, and students generally helped each other to overcome the obstacles associated with planning and implementing CDE. The idea that CDE may turn homes into schools and parents into teachers was supported. The planning and implementation of CDE were inevitably associated with a certain amount of confusion, as well as disruptions in the daily routines of staff and students, as well as significant changes in their responsibilities. There were contradictory ideas about the future directions of distance education after the pandemic. Previous qualitative research on the implementation of CDE at higher education institutions in the Arab world has focused mainly on the experiences and perceptions of students; however, little is known about the experiences and perceptions of the students at the University of Kuwait during the COVID19 pandemic, providing a rationale and direction for future research.

Keywords: distance learning, qualitative research, COVID-19 epidemic, Kuwait university

Procedia PDF Downloads 105
1151 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks

Authors: Khalid Ali, Manar Jammal

Abstract:

In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.

Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity

Procedia PDF Downloads 224
1150 Case of A Huge Retroperitoneal Abscess Spanning from the Diaphragm to the Pelvic Brim

Authors: Christopher Leung, Tony Kim, Rebecca Lendzion, Scott Mackenzie

Abstract:

Retroperitoneal abscesses are a rare but serious condition with often delayed diagnosis, non-specific symptoms, multiple causes and high morbidity/mortality. With the advent of more readily available cross-sectional imaging, retroperitoneal abscesses are treated earlier and better outcomes are achieved. Occasionally, a retroperitoneal abscess is present as a huge retroperitoneal abscess, as evident in this 53-year-old male. With a background of chronic renal disease and left partial nephrectomy, this gentleman presented with a one-month history of left flank pain without any other symptoms, including fevers or abdominal pain. CT abdomen and pelvis demonstrated a huge retroperitoneal abscess spanning from the diaphragm, abutting the spleen, down to the iliopsoas muscle and abutting the iliac vessels at the pelvic brim. This large retroperitoneal abscess required open drainage as well as drainage by interventional radiology. A long course of intravenous antibiotics and multiple drainages was required to drain the abscess. His blood culture and fluid culture grew Proteus species suggesting a urinary source, likely from his non-functioning kidney, which had a partial nephrectomy. Such a huge retroperitoneal abscess has rarely been described in the literature. The learning point here is that the basic principle of source control and antibiotics is paramount in treating retroperitoneal abscesses regardless of the size of the abscess.

Keywords: retroperitoneal abscess, retroperitoneal mass, sepsis, genitourinary infection

Procedia PDF Downloads 221
1149 [Keynote Talk]: The Challenges and Solutions for Developing Mobile Apps in a Small University

Authors: Greg Turner, Bin Lu, Cheer-Sun Yang

Abstract:

As computing technology advances, smartphone applications can assist in student learning in a pervasive way. For example, the idea of using a mobile apps for the PA Common Trees, Pests, Pathogens, in the field as a reference tool allows middle school students to learn about trees and associated pests/pathogens without bringing a textbook. In the past, some researches study the mobile software Mobile Application Software Development Life Cycle (MADLC) including traditional models such as the waterfall model, or more recent Agile Methods. Others study the issues related to the software development process. Very little research is on the development of three heterogenous mobile systems simultaneously in a small university where the availability of developers is an issue. In this paper, we propose to use a hybride model of Waterfall Model and the Agile Model, known as the Relay Race Methodology (RRM) in practice, to reflect the concept of racing and relaying for scheduling. Based on the development project, we observe that the modeling of the transition between any two phases is manifested naturally. Thus, we claim that the RRM model can provide a de fecto rather than a de jure basis for the core concept in the MADLC. In this paper, the background of the project is introduced first. Then, the challenges are pointed out followed by our solutions. Finally, the experiences learned and the future work are presented.

Keywords: agile methods, mobile apps, software process model, waterfall model

Procedia PDF Downloads 409
1148 A Quantitative Survey Research on the Development and Assessment of Attitude toward Mathematics Instrument

Authors: Soofia Malik

Abstract:

The purpose of this study is to develop an instrument to measure undergraduate students’ attitudes toward mathematics (MAT) and to assess the data collected from the instrument for validity and reliability. The instrument is developed using five subscales: anxiety, enjoyment, self-confidence, value, and technology. The technology dimension is added as the fifth subscale of attitude toward mathematics because of the recent trend of incorporating online homework in mathematics courses as well as due to heavy reliance of higher education on using online learning management systems, such as Blackboard and Moodle. The sample consists of 163 (M = 82, F = 81) undergraduates enrolled in College Algebra course in the summer 2017 semester at a university in the USA. The data is analyzed to answer the research question: if and how do undergraduate students’ attitudes toward mathematics load using Principal Components Analysis (PCA)? As a result of PCA, three subscales emerged namely: anxiety/self-confidence scale, enjoyment, and value scale. After deleting the last five items or the last two subscales from the initial MAT scale, the Cronbach’s alpha was recalculated using the scores from 20 items and was found to be α = .95. It is important to note that the reliability of the initial MAT form was α = .93. This means that employing the final MAT survey form would yield consistent results in repeated uses. The final MAT form is, therefore, more reliable as compared to the initial MAT form.

Keywords: college algebra, Cronbach's alpha reliability coefficient, Principal Components Analysis, PCA, technology in mathematics

Procedia PDF Downloads 123
1147 The Algerian Experience in Developing Higher Education in the Country in Light of Modern Technology: Challenges and Prospects

Authors: Mohammed Messaoudi

Abstract:

The higher education sector in Algeria has witnessed in recent years a remarkable transformation, as it witnessed the integration of institutions within the modern technological environment and harnessing all appropriate mechanisms to raise the level of education and the level of training. Observers and those interested that it is necessary for the Algerian university to enter this field, especially with the efforts that seek to employ modern technology in the sector and encourage investment in this field, in addition to the state’s keenness to move towards building a path to benefit from modern technology, and to encourage energies in light of a reality that carries many Aspirations and challenges by achieving openness to the new digital environment and keeping pace with the ranks of international universities. Higher education is one of the engines of development for societies, as it is a vital field for the transfer of knowledge and scientific expertise, and the university is at the top of the comprehensive educational system for various disciplines in light of the achievement of a multi-dimensional educational system, and amid the integration of three basic axes that establish the sound educational process (teaching, research, relevant outputs efficiency), and according to a clear strategy that monitors the advancement of academic work, and works on developing its future directions to achieve development in this field. The Algerian University is considered one of the service institutions that seeks to find the optimal mechanisms to keep pace with the changes of the times, as it has become necessary for the university to enter the technological space and thus ensure the quality of education in it and achieve the required empowerment by dedicating a structure that matches the requirements of the challenges on which the sector is based, amid unremitting efforts to develop the capabilities. He sought to harness the mechanisms of communication and information technology and achieve transformation at the level of the higher education sector with what is called higher education technology. The conceptual framework of information and communication technology at the level of higher education institutions in Algeria is determined through the factors of organization, factors of higher education institutions, characteristics of the professor, characteristics of students, the outcomes of the educational process, and there is a relentless pursuit to achieve a positive interaction between these axes as they are basic components on which the success and achievement of higher education are based for his goals.

Keywords: Information and communication technology, Algerian university, scientific and cognitive development, challenges

Procedia PDF Downloads 84
1146 An Exploration of Science, Technology, Engineering, Arts, and Mathematics Competition from the Perspective of Arts

Authors: Qiao Mao

Abstract:

There is a growing number of studies concerning STEM (Science, Technology, Engineering, and Mathematics) and STEAM (Science, Technology, Engineering, Arts, and Mathematics). However, the research is little on STEAM competitions from Arts' perspective. This study takes the annual PowerTech STEAM competition in Taiwan as an example. In this activity, students are asked to make wooden bionic mechanical beasts on the spot and participate in a model and speed competition. This study aims to explore how Arts influences STEM after it involves in the making of mechanical beasts. A case study method is adopted. Through expert sampling, five prize winners in the PowerTech Youth Science and Technology Creation Competition and their supervisors are taken as the research subjects. Relevant data which are collected, sorted out, analyzed and interpreted afterwards, derive from observations, interview and document analyses, etc. The results of the study show that in the PowerTech Youth Science and Technology Creation Competition, when Arts involves in STEM, (1) it has an impact on the athletic performance, balance, stability and symmetry of mechanical beasts; (2) students become more interested and more creative in making STEAM mechanical beasts, which can promote students' learning of STEM; (3) students encounter more difficulties and problems when making STEAM mechanical beasts, and need to have more systematic thinking and design thinking to solve problems.

Keywords: PowerTech, STEAM contest, mechanical beast, arts' role

Procedia PDF Downloads 85
1145 Screening for Women with Chorioamnionitis: An Integrative Literature Review

Authors: Allison Herlene Du Plessis, Dalena (R.M.) Van Rooyen, Wilma Ten Ham-Baloyi, Sihaam Jardien-Baboo

Abstract:

Introduction: Women die in pregnancy and childbirth for five main reasons—severe bleeding, infections, unsafe abortions, hypertensive disorders (pre-eclampsia and eclampsia), and medical complications including cardiac disease, diabetes, or HIV/AIDS complicated by pregnancy. In 2015, WHO classified sepsis as the third highest cause for maternal mortalities in the world. Chorioamnionitis is a clinical syndrome of intrauterine infection during any stage of the pregnancy and it refers to ascending bacteria from the vaginal canal up into the uterus, causing infection. While the incidence rates for chorioamnionitis are not well documented, complications related to chorioamnionitis are well documented and midwives still struggle to identify this condition in time due to its complex nature. Few diagnostic methods are available in public health services, due to escalated laboratory costs. Often the affordable biomarkers, such as C-reactive protein CRP, full blood count (FBC) and WBC, have low significance in diagnosing chorioamnionitis. A lack of screening impacts on effective and timeous management of chorioamnionitis, and early identification and management of risks could help to prevent neonatal complications and reduce the subsequent series of morbidities and healthcare costs of infants who are health foci of perinatal infections. Objective: This integrative literature review provides an overview of current best research evidence on the screening of women at risk for chorioamnionitis. Design: An integrative literature review was conducted using a systematic electronic literature search through EBSCOhost, Cochrane Online, Wiley Online, PubMed, Scopus and Google. Guidelines, research studies, and reports in English related to chorioamnionitis from 2008 up until 2020 were included in the study. Findings: After critical appraisal, 31 articles were included. More than one third (67%) of the literature included ranked on the three highest levels of evidence (Level I, II and III). Data extracted regarding screening for chorioamnionitis was synthesized into four themes, namely: screening by clinical signs and symptoms, screening by causative factors of chorioamnionitis, screening of obstetric history, and essential biomarkers to diagnose chorioamnionitis. Key conclusions: There are factors that can be used by midwives to identify women at risk for chorioamnionitis. However, there are a paucity of established sociological, epidemiological and behavioral factors to screen this population. Several biomarkers are available to diagnose chorioamnionitis. Increased Interleukin-6 in amniotic fluid is the better indicator and strongest predictor of histological chorioamnionitis, whereas the available rapid matrix-metalloproteinase-8 test requires further testing. Maternal white blood cells count (WBC) has shown poor selectivity and sensitivity, and C-reactive protein (CRP) thresholds varied among studies and are not ideal for conclusive diagnosis of subclinical chorioamnionitis. Implications for practice: Screening of women at risk for chorioamnionitis by health care providers providing care for pregnant women, including midwives, is important for diagnosis and management before complications arise, particularly in resource-constraint settings.

Keywords: chorioamnionitis, guidelines, best evidence, screening, diagnosis, pregnant women

Procedia PDF Downloads 123
1144 Development and Power Characterization of an IoT Network for Agricultural Imaging Applications

Authors: Jacob Wahl, Jane Zhang

Abstract:

This paper describes the development and characterization of a prototype IoT network for use with agricultural imaging and monitoring applications. The sensor and gateway nodes are designed using the ESP32 SoC with integrated Bluetooth Low Energy 4.2 and Wi-Fi. A development board, the Arducam IoTai ESP32, is used for prototyping, testing, and power measurements. Google’s Firebase is used as the cloud storage site for image data collected by the sensor. The sensor node captures images using the OV2640 2MP camera module and transmits the image data to the gateway via Bluetooth Low Energy. The gateway then uploads the collected images to Firebase via a known nearby Wi-Fi network connection. This image data can then be processed and analyzed by computer vision and machine learning pipelines to assess crop growth or other needs. The sensor node achieves a wireless transmission data throughput of 220kbps while consuming 150mA of current; the sensor sleeps at 162µA. The sensor node device lifetime is estimated to be 682 days on a 6600mAh LiPo battery while acquiring five images per day based on the development board power measurements. This network can be utilized by any application that requires high data rates, low power consumption, short-range communication, and large amounts of data to be transmitted at low-frequency intervals.

Keywords: Bluetooth low energy, ESP32, firebase cloud, IoT, smart farming

Procedia PDF Downloads 138
1143 Inclusive Education in Jordanian Double-Shift Schools: Attitudes of Teacher and Students

Authors: David Ross Cameron

Abstract:

In an attempt to alleviate the educational planning problem, double-shift schools have been created throughout various regions in Jordan, namely communities closer to the Syrian border, where a large portion of the refugee population settled, allowing Jordanians to attend the morning-shift and Syrians to attend the afternoon-shift. Subsequently, overcrowded classrooms have added a significant amount of stress on school facilities and teacher capacities. Established national policies and the implementation of inclusive educational practices have been jeopardized. In particular, teachers’ and student’s attitudes of the importance of inclusive education provisions in the classroom have deteriorated. To have a more comprehensive understanding of the current situation and possible plan for intervention, a focus study was carried out at a double-shift Jordanian/Syrian girls’ public school in Irbid, Jordan. Interviews and surveys of 29 students with physical, learning, emotional and behavioral disabilities, 33 students without any special needs and nine teachers were included with a mixed-method social research approach to highlight the current attitudes that students and teachers held and factors that contributed to shaping their inclinations and beliefs of inclusive education.

Keywords: capacity building, development, double-shift, Irbid, inclusive education, Jordan, pedagogy, planning, policy, refugee, special education, special needs, vulnerable population

Procedia PDF Downloads 255
1142 Automated End-to-End Pipeline Processing Solution for Autonomous Driving

Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi

Abstract:

Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.

Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing

Procedia PDF Downloads 123